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Abstract: The quantum phase transition of a one-dimensional transverse field Ising model in an
imaginary longitudinal field is studied. A new order parameter M is introduced to describe the
critical behaviors in the Yang-Lee edge singularity (YLES). The M does not diverge at the YLES point,
a behavior different from other usual parameters. We term this unusual critical behavior around
YLES as the pseudo-YLES. To investigate the static and driven dynamics of M, the (1+1) dimensional
ferromagnetic-paramagnetic phase transition ((1+1) D FPPT) critical region, (0+1) D YLES critical
region and the (1+1) D YLES critical region of the model are selected. Our numerical study shows that
the (1+1) D FPPT scaling theory, the (0+1) D YLES scaling theory and (1+1) D YLES scaling theory are
applicable to describe the critical behaviors of M, demonstrating that M could be a good indicator to
detect the phase transition around YLES. Since M has finite value around YLES, it is expected that M
could be quantitatively measured in experiments.

Keywords: Pseudo-Yang-Lee edge singularity; non-equilibrium phase transition; Kibble-Zurek
scaling mechanism; non-Hermitian Ising model

1. Introduction

As one of the most interesting phenomena in many body systems, quantum phase transition
occurs when parameters of a system change through a critical point, and the occurrence indicates
the emergence of new physics and new states of the system [1,2]. In most of the studies of quantum
phase transition, the Hamiltonians are usually assumed as Hermitian ones. Nevertheless, owing to
recent experimental progress [3–9], the phase transition in non-Hermitian systems has been drawing
a great deal of interest, since they can present rich behaviors different from those of Hermitian
systems [10–17]. Interesting characters have been found in various non-Hermitian systems, such as
the parity-time (PT) symmetry breaking phase transition induced by interface state [18,19] and the
real-complex energy spectrum transition accompanied by a many-body localization-delocalization
phase transition [20]. Besides these studies of equilibrium phase transition, the non-equilibrium
phenomena in non-Hermitian systems have also been studied [21,22]. It was found that the
Kibble-Zurek scaling (KZS) mechanism was still applicable in describing the driven dynamics across
the exceptional points (EPs), where the complex spectrum becomes gapless [21].

On the other hand, Yang and Lee were the first to connect phase transitions in non-Hermitian
systems with zeros of the partition function, termed Lee-Yang zeros, in the complex plane of magnetic
field [23]. They showed that the zero distribution approached the positive real axis and gave the
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transition point. When the applied symmetry-breaking field was imaginary, the edges of Lee-Yang
zeros were singularity points in the thermodynamic limit [24]. These singularities were termed
Yang-Lee edge singularities (YLES), and could be considered as a second order phase transition
point with appropriate scaling laws [25–30]. The Lee-Yang zeros and YLES have been detected in
recent experiments [31–33]. Theoretical investigations demonstrated that there were exotic scaling
behaviors in the YLES, such as the negative correlation-length exponents, and divergence of order
parameters [25]. The KZS mechanism has also been demonstrated to be applicable in the driven
dynamics of YLES [34,35].

As one of the key features of YLES, the divergence of order parameter P depending on an applied
field h usually exhibits as P = |h− hL

YL|σ with σ < 0, where hL
YL is the YLES point. For a one dimension

(1 D) spin−1/2 Ising chain, several theoretical studies confirmed that σ = −1/2 [25,30,36–39]. By fine
tuning the coupling strengths in the model, an unusual exponent of σ = −3/2 was found for a
special three-state Potts model [40] and the 1 D spin-1/2 axial-next-to-nearest-neighbor model [41].
More recently, the exponent of σ = −1/2 has also been found in the scaling behaviors of the
non-Hermitian Berry phase in YLES [42].

In the present research, we are going to define a new order parameter, which is not diverged
at the YLES point, to character the critical behaviors around the YLES for the non-Hermitian Ising
model. This order parameter obeys the similar scaling behavior with the usual order parameter but
the critical exponent σ is positive. We termed this unusual scaling behavior around the YLES point
as pseudo-YLES. The static behavior and the driven dynamics of this order parameter are studied
in different critical regions, and KZS mechanism is still applicable to describing the behavior of this
order parameter. Since the YLES points can appear at finite system size [34], the usual defined order
parameter diverges at the YLES points even at small lattice size. However, the new defined order
parameter is finite around the YLES points, and it is expected that this order parameter may be detected
quantitatively in the experimental study.

This paper is organized as follows. In Section 2, the non-Hermitian 1 D Ising model subject
to a transverse field and an imaginary longitudinal field is introduced, and the order parameter
reflecting the pseudo-YLES is defined. In Section 3, the static behavior and driven dynamics of the
order parameter are studied in different critical regions. A brief summary is given in Section 4.

2. The Non-Hermitian Ising Model and Order Parameter

We study a 1 D transverse-field Ising model with an imaginary longitudinal field, since this
model is a typical and universal prototype to investigate the scaling behaviors in YLES [27,43,44].
The corresponding non-Hermitian Hamiltonian for a chain with length L is given by

H = −
L

∑
n=1

σz
nσz

n+1 − λ
L

∑
n=1

σx
n − ih

L

∑
n=1

σz
n, (1)

where σx
n and σz

n are the Pauli matrices at n site in the x and z direction, respectively. The second and
third terms in Equation (1) respectively present a transverse real external field and a longitudinal
imaginary field. When the imaginary field is absent, the Hamiltonian becomes Hermitian.

For the Hermitian Ising model, in order to research the classical phase transition, the ordinary
order parameter is usually defined as

MC = Tr(Se−βH/Tr(e−βH)) (2)

= Tr[e−βH/2Se−βH/2]/Tr(e−βH),

with S = ±1 and β = 1/T being the inverse temperature. MC is the ordinary magnetization.
For the Hermitian system, MC is real and bounded in the range of [−1,1]. For the classical YLES,
the order parameter can be defined in the same way of MC, but the Hamiltonian is non-Hermitian.
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Since the applied magnetic field is complex, MC in YLES is usually complex and not bounded in
the range of [−1, 1]. Several analytic and numerical studies have demonstrated that MC diverges as
MC ∝ (h− hL

YL)
−1/2 for the model of Equation (1) [25,34,35].

For the quantum YLES, the order parameter can be defined by a quantum-classical mapping.
Since the d-dimensional quantum system can be mapped to a (d + 1)-dimensional classical system,
the order parament of the quantum YLES system can be defined as [27,34]

MQ = lim
β→∞

Tr[e−βH/2M̂e−βH/2]/Tr(e−βH) (3)

= 〈ψL
g |M̂|ψR

g 〉/〈ψL
g |ψR

g 〉,

in which the operator M̂ ≡ ∑L
n σz

n/L. 〈ψL
g | and ψR

g 〉 are the normalized left and right eigenvectors
satisfying H|ψR

n 〉 = En|ψR
n 〉 and 〈ψL

n |H = 〈ψL
n |En. Moreover, the eigenvectors usually form a

biorthonormal basis

〈ψL
m|ψR

n 〉 = δmn, ∑
n
|ψR

n 〉〈ψL
m| = 1. (4)

In the non-Hermitian model, the MQ is complex. It has been demonstrated that both the real
and imaginary parts of MQ, MR = Re(MQ) and MI = Im(MQ), could be used to describe critical
behavior of YLES [34,35]. Around the YLES points, the static MR and MI scale as MR ∝ |h− hL

YL|σ and
MI ∝ |h− hL

YL|σ. For the (0+1) D YLES, σ = −1/2. Therefore, it should be difficult to quantitatively
measure MR and MI in the experiment.

We think that it may be feasible to define some parameters that are possible to detect quantitatively
experimentally. Here, we propose an order parameter evaluated in the space of the right eigenvector
of the non-Hermitian system, as

M = lim
β→∞

Tr[e−βH+/2M̂e−βH/2]/Tr(e−β(H++H)/2) (5)

= 〈ψR∗
g |M̂|ψR

g 〉/〈ψR∗
g |ψR

g 〉,

where 〈ψR∗
g |means the Hermitian conjugation of the right eigenvector |ψR

g 〉. It should be noted that
〈ψR∗

m | and |ψR
n 〉 are generally not orthonormal, 〈ψR∗

m |ψR
n 〉 6= δmn. When the Hamiltonian is Hermitian,

this order parameter automatically goes back to what it should be. Since the operator M̂ itself is
Hermitian, the order parameter defined in Equation (5) is always real. Similar definition of order
parameters can also be found in Refs. [20,21]. It will be shown below that M is not divergence at YLES
critical points, which differs from the behaviors of usual order parameters of YLES. Recently, a method
of computing mean values of observable by introducing a metric operator has been proposed [45,46],
and the order parameter M can also be defined by introducing an adequate metric operator.

3. Pseudo-YLES Critical Behaviors

Before presenting our numerical results, we briefly introduce the phase structure of the model
Equation (1). Since the imaginary longitudinal field has the same dimension as the real longitudinal
field, Equation (1) has a ordinary ferromagnetic-paramagnetic phase transition (FPPT) point at
(gc, hc) = (0, 0) in thermal limit, where g ≡ λ− λc and λc = 1 [1]. Besides this FPPT phase transition,
there are also critical points for YLES at (gL

YL, hL
YL) for g > 0. The appearance of the YLES corresponds

to the disappearance of energy gap between the ground state and the first excited state, which can
induce critical phenomena. However, different from the FPPT, YLES can appear even at finite size,
and the YLES critical points varies with system size L. Therefore, different critical regions coexist for
this model: (i) around the FPPT critical point, the critical region belongs to the (1+1) D FPPT universe
class; (ii) the (0+1) D YLES critical region appears near hL

YL for a fixed g, and this critical region shrinks
with the increase of L; (iii) the (1+1) D YLES critical region appears near h∞

YL for a fixed g and large L,
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and h∞
YL is the critical point of the infinite-size YLES. Since the (0+1) D YLES critical region appears

at finite size, different critical regions can overlap with each other. For example, at large lattice size
and small g the (0+1) D YLES critical region and (1+1) D FPPT critical region overlaps with each other.
On the other hand, the (0+1) D YLES critical region overlaps with the (1+1) D YLES critical region
near the h∞

YL for large lattice size. In these critical regions, it was shown that KZS is still applicable,
and different scaling theories could be applicable simultaneously in the overlapping region [34,35].

In present study, to investigate the pseudo-YLES critical behaviors, the static and driven dynamic
behaviors of M in the (0+1) D YLES, (1+1) D FPPT and (1+1) D YLES critical regions are numerically
calculated. For the sake of clarity, all usual critical exponents of the three critical regions are listed in
Table 1 [1,34,35].

Table 1. Critical exponents for the (0+1) D YLES, (1+1) D FPPT and (1+1) D YLES, respectively.

(0+1) D YLES ν0 β0 δ0 z0 r0
−1 1 −2 1 3

(1+1) D FPPT ν1 β1 δ1 z1 r1
1 1/8 15 1 23/8

(1+1) D YLES ν2 β2 δ2 z2 r2
−5/2 1 −6 1 3.4

3.1. Pseudo-YLES Critical Behaviors in the (0+1) D YLES Critical Region

Firstly, the properties of M in the (0+1) D YLES critical region is studied. It is found that at a fixed
g, static M satisfies

M ∝ |h− hL
YL|σ0 , (6)

where σ0 > 0 is the (0+1) D YLES critical exponent for M. The positive σ0 is different from the divergent
behaviors of usual parameters. In Figure 1, M versus |h− hL

YL| for different lattice size with g = 0.01
are plotted. In the double logarithmic coordinates, these curves are parallel straight lines. The power
law fitting results show that σ0 = 0.4997± 0.0005. Furthermore, it is interesting that M is nearly the
inverse of MR around the YLES point, since MR ∝ |h− hL

YL|−0.5 [34]. Therefore, it is expected that one
can experimentally measure M (MR) by measuring MR (M) around YLES.

10-6 10-5 10-4 10-3

10-2

10-1

M

|h-hL
YL|

 4
 5
 6
 7
 8
 9
 10

L

Figure 1. The curves of M versus h− hL
YL for different lattice size and g = 0.01. The power-law fitting

gives that σ0 = 0.4997± 0.0005.
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Next, the driven dynamics of M is studied by changing h for a fixed g. Here, we study the linear
driving, namely h changes in the way of h = h0 + Rt across the critical region, since this kind of driving
is widely used and readily realized in experiments. R is the varying rate of h, and it is chosen small
enough and h0 is irrelevant.

For the (0+1) D YLES critical region, it has been demonstrated that the KZS mechanism was still
applicable to the driven dynamics [34]. Since the YLES can appear at finite lattice size, the driven
dynamics is characterized by h and R under fixed L. The scaling function satisfies [34,47,48]

M(h− hL
YL, R) = Rs0 f1[(h− hL

YL)R
β0δ0
ν0r0 ]. (7)

In Equation (7), s0 is the scaling factor of M for the driven dynamics, and r0 = z0 + β0δ0/ν0 with
z0, β0 and ν0 being the usual critical exponents for the (0+1) D YLES as shown in Table 1 [25,34], and f1

is the scaling function of the (0+1) D YLES driven dynamics. It should be noted that the lattice size is
not involved in this scaling function. At hL

YL, ML
YL = M(hL

YL − hL
YL, R) ∝ Rs0 . Therefore, by fitting the

curve of ML
YL verse R, s0 can be determined.

To verify the scaling function Equation (7), we numerically solved Schrödinger equation for model
Equation (1) under periodic boundary condition. The finite difference method in the time direction
is used, and the time interval is chosen as 2× 10−5 in our calculation. Initial condition being h = h0,
the exact diagonalization is carried out. The lowest real eigenenergy is obtained and the corresponding
right eigenstate is set as the initial state. Since the Hamiltonian is non-Hermitian, the wave function is
normalized as 〈Ψ∗R|ΨR〉 = 1 after each step of evolution.

In Figure 2, ML
YL verse R for L = 4 to 10 are plotted. These lattice sizes correspond to the small

and middle size systems. The curves are parallel straight lines in the double logarithmic coordinates,
indicating that the scaling function Equation (7) and s0 are universal for different size. By a power
law fitting, it is found that s0 = 0.3348 ± 0.0007. Since the driven dynamics of MR shows that
MR[(hL

YL − hL
YL, R)] ∝ Rβ0/ν0r0 = R−1/3 [34], ML

YL is also nearly the inverse of MR[(hL
YL − hL

YL, R)].
We select L = 10 and calculate the driven dynamics with a fixed g to verify the scaling function of
Equation (7). In Figure 3, M versus h for different R and the rescaled curves are plotted. The rescaled
curves collapse onto each other, indicating that the driven dynamics can be well described by scaling
function Equation (7).

3x10-4 6x10-4 9x10-4
0.004

0.008

0.012

M
 L Y

L

R

L=4

L=10

Figure 2. The curves of ML
YL versus R for different lattice size and g = 3 in the double logarithmic

coordinates. Power law fitting gives that s0 = 0.3348± 0.0007. From top to bottom, the lattice size is 4
to 10.
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M
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R(´10-6)
(a)

L=10

(b)

M
R-

s 0

(h-hLYL)R-b0d0/n0r0

Figure 3. (a) The curves of M versus h− hL
YL for different R with L = 10 and (b) the rescaled curves of

MR−s0 versus (h− hL
YL)R−β0δ0/ν0r0 according to Equation (7). Here, g = 0.001 and hL

YL = 0.010558.

3.2. Critical Behaviors of M in the (1+1) D FPPT and (1+1) D YLES Critical Region

In this subsection, the critical behaviors of M in the critical regions of (1+1) D FPPT and (1+1) D
YLES is studied.

For the (1+1) D FPPT critical region, the order parameter M should satisfy a similar scaling form
in the real longitudinal-field case. The static M satisfies the following relation [35,47].

M = L−β1/ν1 f2(gL1/ν1 , hLβ1δ1/ν1). (8)

Here, f2 is the scaling function for M, and β1, δ1 and ν1 are the 2 D classical FPPT critical exponents
as shown in Table 1 [1]. These parameters are used to describe the scaling behaviors of quantum
Ising chains.

To confirm the relation in Equation (8), the static M versus h was calculated with a fixed gL1/ν1 .
Here, we choose that g is small and L is large, so that the system is in the (1+1) D FPPT critical
region. In Figure 4a, M versus h with different lattice size is plotted. In these curves, the knee points
correspond to YLES points hL

YL. After rescaling according to Equation (8), the rescaled curves of
MLβ1/ν1 versus hLβ1δ1/ν1 match with each other as shown in Figure 4b.

0.00 0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

M

h

 8
 9
 10
 11
 12
 13
 14

(a)

L

M
Lb

1/n
1

hLb1d1/n1

(b)

Figure 4. The curves of static M versus h for different L for foxed gL1/ν1 = 0.06 (a) and the rescaled
curves of MLβ1/ν1 versus hLβ1δ1/ν1 (b) according to Equation (8).
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The driven dynamics in the (1+1) D FPPT critical region is characterized by h, R and L. The scaling
form of M reads [35]

M(g, h, L, R) = R
β1

ν1r1 f3(gR−
1

ν1r1 , L−1R−
1
r1 , hR−

β1δ1
ν1r1 ), (9)

where r1 and z1 are the critical exponent of the (1+1) D FPPT and f3 is a scaling function. By fixing gR−
1

ν1r1

and L−1R−
1
r1 in Equation (9), the curves of M as a function of h for different lattice size are calculated.

The results are plotted in Figure 5a. The rescaled curves of MR−
β1

ν1r1 versus hR−
β1δ1
ν1r1 match with each

other very well as shown in Figure 5b, which confirms the scaling function of Equation (9). Moreover,
from Figure 5a, M for different L reach a saturation value at large h but still less than 1, which means M is
bounded in the range of [−1,1] as the order parameter defined in the Hermitian system.

0.00 0.02 0.04 0.06 0.08
0.0

0.2

0.4

0.6

0.8

0 20 40 60 80
0.0

0.4

0.8

1.2 (b)

M

h

 8
 9
 10
 11
 12
 13
 14

L

(a)

M
R-

b 1
d 1
/r 1

hR-b1d1/n1r1

Figure 5. (a) The curves of M versus h for different L with gR−
1
νr = 0.3133 and L−1R1 1

r = 0.1915 and
(b) the rescaled curves of MR−βδ/r versus hR−βδ/νr according to Equation (9).

Near h∞
YL for a fixed g, the scaling dynamics of M of the medium lattice size should satisfy the

(1+1) D KZS with the finite-size corrections being considered. Following the (1+1) D YLES scaling
theory, the scaling form of M reads [34]

M(h− h∞
YL, R, L) = Rs2 f4

[
(h− h∞

YL)R−
β2δ2
ν2r2 , L−1R−1/r2

]
, (10)

where β2, δ2, ν2 and r2 are the critical exponents of the (1+1) D YLES critical theory (see Table 1) [34],
and s2 is the (1+1) D YLES critical exponent for M. By fixing L−1R−1/r2 in Equation (10), s2 can be
obtained by fitting M∞

YL = M(h∞
YL − h∞

YL, R, L) verse R.
To verify the scaling function of Equation (10), s2 is firstly determined by fitting M∞

YL versus R for
a fixed L−1R−1/r2 . Here, g is chosen as g = 4, which is large enough to ensure that the system is not in
the critical region of (1+1) D YLES. In Figure 6, M∞

YL versus R and the fitted curve are plotted, and it is
achieved that s2 = 0.5816. In Figure 7, M verses h and the rescaled curves according to Equation (10)
are plotted. We find that the rescaled curve matches with each other, confirming Equation (10).
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0.003 0.006 0.009

0.002

0.003

0.004

0.005

M
 ¥ Y
L

R

 data
 fitted curve

Figure 6. The curve of M∞
YL versus R and the fitted curve with fixed L−1R−1/r2 = 2.001689 in the

double logarithmic coordinates. The fitting curve is M∞
YL ∝ R0.5816. Here, h∞

YL = 2.292425 and g = 4.

-0.1 0.0 0.1 0.2
0.00

0.04

0.08

0.12

-2 -1 0 1 2 3 4
0.0

0.6

1.2

M

h-h¥YL

(b)

(h-h¥YL)R-b2d2/n2r2

M
R-

s 2  8
 9
 10
 11
 12
 13
 14

L
(a)

Figure 7. (a) The curves of M versus h for different L with L−1R−1/r2 = 2.001689 and (b) the rescaled
curves of MR−s2 versus (h− h∞

YL)R−β2δ2/ν2r2 according to Equation (10). Here, h∞
YL = 2.292425 and

g = 4.

Finally, we have some discussion with respect the defined M. Suppose that the wave functions
have been normalization, 〈ψL

n |ψR
n 〉 = 1. Then

MQ =
1

〈ψR∗
g |ψR

g 〉
〈ψR∗

g |ψR
g 〉〈ψL

g |M̂|ψR
g 〉. (11)

Now we use the complete set Equation (4), so as to get |ψR
g 〉〈ψL

g | = 1 − ∑nog |ψR
g 〉〈ψL

g |.
One immediately find that

MQ = M− 1
〈ψR∗

g |ψR
g 〉
〈ψR∗

g | ∑
no g
|ψR

n 〉〈ψL
n |M̂|ψR

g 〉, (12)

which means that the behavior of MQ includes M and the information of the highly excited states.
Moreover, We have confirmed numerically that the static behavior of the second term in Equation (12)
have similar scaling behaviors but opposite with MQ around the YLES points. Therefore, the divergence
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of MQ and the second term in Equation (12) can result in a non-divergence behavior of M. From this
equation it is understood that the divergence is from the contribution of excited states. The ground state
itself does not yield divergence. The behavior of MQ reflects the effect from all possible excited states,
while the definition of M seems get rid of the influence from excited states. Therefore, the definition of
M is really a good way to present an index which is finite at critical point.

4. Summary

In summary, the pseudo-YLES critical behavior has been studied in this paper. An order parameter
has been suggested to study the static properties and driven dynamics of pseudo-YLES. We have found
that M scales as M ∝ |h− hL

YL|σ0 around the YLES points, with positive σ0 that is different from the
usual order parameters, and M is not divergence at the YLES points. The static and driven dynamics
of M are studied in the (0+1) D YLES, (1+1) D FPPT and (1+1) D YLES critical regions, and it is found
that the scaling behaviors can be described by the (0+1) D YLES, (1+1) D FPPT and (1+1) D YLES
scaling theories, respectively. These results demonstrate that M could be a good indicator of phase
transition in YLES. Moreover, since the static M is finite around the YLES points, it is expected that M
may be easier to measure experimentally rather than the usual order parameters. Although not shown
here, the order parameter can also be defined in the left eigenvector space, and the order parameter in
the left eigenvector space also satisfies the conclusions obtained above.

Author Contributions: Conceptualization, H.-Y.W. and G.-Y.H.; methodology, G.-Y.H. and L.-J.Z.; software,
L.-J.Z.; formal analysis, G.-Y.H.; investigation, L.-J.Z., H.-Y.W. and G.-Y.H.; writing–original draft preparation,
L.-J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Jiangsu Province (Grant No.
BK20170309) and National Natural Science Foundation of China (Grant No. 11704161 and 11547142).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

YLES Yang-Lee edge singularity
EP exceptional point
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