
NeuroImage 243 (2021) 118513 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

Hierarchical modelling of functional brain networks in population and 

individuals from big fMRI data 

Seyedeh-Rezvan Farahibozorg 

a , ∗ , Janine D. Bijsterbosch 

b , Weikang Gong 

a , Saad Jbabdi a , 
Stephen M. Smith 

a , 1 , Samuel J. Harrison 

a , c , d , 1 , Mark W. Woolrich 

a , e , 1 

a FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom 

b Department of Radiology, Washington University School of Medicine, St. Louis, United States 
c Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland 
d New Zealand Brain Research Institute, University of Otago, Christchurch, New Zealand 
e OHBA, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Oxford University, Oxford, United Kingdom 

a r t i c l e i n f o 

Keywords: 

sPROFUMO 

Hierarchical network modelling 
Big data fMRI 
Single subject connectivity 
Stochastic inference 
Cognition prediction 
Resting state networks 

a b s t r a c t 

A major goal of large-scale brain imaging datasets is to provide resources for investigating heterogeneous pop- 
ulations. Characterisation of functional brain networks for individual subjects from these datasets will have an 
enormous potential for prediction of cognitive or clinical traits. We propose for the first time a technique, Stochas- 
tic Probabilistic Functional Modes (sPROFUMO), that is scalable to UK Biobank (UKB) with expected 100,000 
participants, and hierarchically estimates functional brain networks in individuals and the population, while al- 
lowing for bidirectional flow of information between the two. Using simulations, we show the model’s utility, 
especially in scenarios that involve significant cross-subject variability, or require delineation of fine-grained 
differences between the networks. Subsequently, by applying the model to resting-state fMRI from 4999 UKB 
subjects, we mapped resting state networks (RSNs) in single subjects with greater detail than has been possi- 
ble previously in UKB ( > 100 RSNs), and demonstrate that these RSNs can predict a range of sensorimotor and 
higher-level cognitive functions. Furthermore, we demonstrate several advantages of the model over independent 
component analysis combined with dual-regression (ICA-DR), particularly with respect to the estimation of the 
spatial configuration of the RSNs and the predictive power for cognitive traits. The proposed model and results 
can open a new door for future investigations into individualised profiles of brain function from big data. 
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. Introduction 

Spontaneous fluctuations in human brain activity, and their inter-
retations, have been a key focus of human neuroscience research
or several years ( Biswal et al., 1995 ; Buckner and Vincent, 2007 ;
alhoun et al., 2008 ; Damoiseaux et al., 2006 ; Raichle et al., 2001 ;
mith et al., 2013b ). Resting state networks (RSNs) characterise func-
ionally synchronised regions that underlie the brain function in the ab-
ence of active tasks, and have been replicated in different population
ohorts ( Fransson et al., 2007 ; Lee et al., 2013 ) and using several imag-
ng modalities such as functional Magnetic Resonance Imaging (fMRI)
 Allen et al., 2014 ; Beckmann et al., 2005 ; Power et al., 2014 ) and
agneto-/Electroencephalography ( Brookes et al., 2011 ; de Pasquale

t al., 2010 ; Mantini et al., 2007 ; Vidaurre et al., 2018b ), and have been
hown to coactivate with spontaneous replay of recently acquired infor-
ation ( Higgins et al., 2021 ). Large-scale neuroimaging datasets such
∗ Corresponding author. 
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s the Human Connectome Project (HCP) ( Smith et al., 2013a ; Van Es-
en et al., 2012 ) and UK Biobank (UKB) ( Alfaro-Almagro et al., 2018 ;
iller et al., 2016 ), have significantly advanced RSN research, leading

o the mapping of brain function with unprecedented detail ( Fan et al.,
016 ; Glasser et al., 2016 ). Furthermore, the wealth of non-imaging phe-
otypes in these datasets has provided new insights into the translational
mportance of the RSNs, which display significant associations with life
actors, genetics, behavioural and clinical traits ( Elliott et al., 2018 ;
inn et al., 2015 ; Jiang et al., 2020 ; Kong et al., 2019 ; Vidaurre et al.,
017 ). What remains largely unresolved, however, is how to accurately
nd robustly model cross-individual variations of the RSNs in big epi-
emiological data, such that substantial degrees of population hetero-
eneity are interpretably accounted for ( Smith et al., 2013b ). This is
articularly important if we are interested in utilising RSNs to charac-
erise cognitive idiosyncrasies in individuals or as biomarkers to predict,
.g., pathology before clinical onset. 
ust 2021 
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Functional brain modes 1 in rest and task are conventionally mod-
lled using group-average algorithms, such as independent component
nalysis (ICA) ( McKeown et al., 1998 ). Typically, modes are modelled as
patially contiguous parcels ( Bellec et al., 2010 ; Craddock et al., 2012 ;
an den Heuvel et al., 2008 ) or functionally unified systems distributed
ver multiple brain areas ( Beckmann and Smith, 2004 ; Calhoun and
dali, 2012 ; Thomas Yeo et al., 2011 ), and characterised in terms of
patial configuration over the brain voxels (mode topography) and a
ummary time course that captures mode activity over time. Of par-
icular interest is to characterise the functional connectivity between
he modes themselves, ideally using models that can accurately dis-
mbiguate changes in functional connectivity across separate dimen-
ions (e.g. spatial or temporal features) ( Bijsterbosch et al., 2019 , 2018 ),
hereby obtaining functional connectomes. 

Recent evidence indicates that even after registration of the subject
ata to a standard brain such as MNI space, functional modes still signifi-
antly vary across individuals ( Glasser et al., 2016 ; Gordon et al., 2017a ;
ueller et al., 2013 ). These misalignments can be due to multiple factors

ncluding limitations in methodologies for aligning subjects’ data (e.g.
egistration errors), differences in subjects’ brain anatomy ( Devlin and
oldrack, 2007 ; Llera et al., 2019 ) or inherent differences in functional
ocalisations of the modes ( Bijsterbosch et al., 2018 ; Gordon et al.,
017b ; Haxby et al., 2020 ; Laumann et al., 2015 ). Therefore, it is in-
reasingly desirable to devise models with hierarchical links between
he population and individuals, which can accurately cope with subject
eviations from the group, while at the same time maintaining a repre-
entative group model that provides correspondence over subjects. Hi-
rarchical models can differ with respect to multiple factors contribut-
ng to subject and/or group level mode estimations. Some of the key
actors include: the direction of information flow between population
nd individuals; explicit versus derivational mode estimations for indi-
iduals; iterative versus one-off mode estimations; defining hierarchies
ver mode topography or functional connectivity; defining modes as
istributed networks versus contiguous parcels; hard versus soft bound-
ries between modes; and scaling of algorithms to modern big data such
s HCP ( ∼1000 subjects) and UKB ( ∼100,000 subjects). Details of these
actors and some examples in existing models are presented in Appendix
. 

A key element distinguishing hierarchical models is the way the di-
ection of information flow between the population and individuals is
et up. Unidirectional models often start from group-level estimations
nd derive subject modes as a variant of the group, of which dual regres-
ion is a well-known example ( Beckmann et al., 2009 ; Nickerson et al.,
017 ). It runs a two-step multiple regression paradigm: firstly, group
aps, typically from spatial ICA, are regressed against subject fMRI
ata to extract subject-specific mode time courses; secondly, DR re-
resses subject mode time courses against fMRI time-series to obtain
ubject-specific spatial mode maps. Alternatively, bidirectional mod-
ls such as multi-subject dictionary learning ( Abraham et al., 2013 ;
aroquaux et al., 2011 ), hierarchical ICA ( Guo and Tang, 2013 ; Shi and
uo, 2016 ), hierarchical topographic factor analysis ( Manning et al.,
018 ) and the framework of Probabilistic Functional Modes (PRO-
UMO) ( Harrison et al., 2015 ) allow for bottom-up, data-driven esti-
ation of the group-level modes, as well as top-down regularisation of

he subject specific modes using the group-level model - and can thus
ccommodate larger degrees of population heterogeneity. 

Another important factor that distinguishes different hierarchical
odels is whether the hierarchy is defined over the mode topogra-
hy or functional connectivity. As elaborated in Appendix A, existing
lgorithms often define hierarchy on spatial maps, thus identifying a
onsensus spatial layout for the modes, and estimating how the spatial
rrangement of the voxels belonging to the mode varies across indi-
1 We use functional mode (FM) as an umbrella term to describe both large- 
cale and parcel-like functional entities of the brain function in rest and task. 
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iduals ( Glasser et al., 2016 ; Manning et al., 2018 ; Mejia et al., 2019 ;
ickerson et al., 2017 ; Shi and Guo, 2016 ). An alternative approach is to
stimate a between-mode functional connectivity matrix (i.e. NetMats)
t the group-level, and hierarchically estimate subject-specific connec-
ivity through making comparisons with the group ( Chong et al., 2017 ).
otably, however, defining hierarchy solely on spatial topography or

emporal connectivity might neglect how these two elements interact
ith each other in reality, which might in turn result in topographical
isalignments being (mis)interpreted as (being changes in) functional

onnectivity or vice versa ( Bijsterbosch et al., 2018 ). One solution is pro-
osed by the latest version of PROFUMO ( Harrison et al., 2020 ) which
efines hierarchical models on both spatial topographies and functional
onnectivity. 

Despite their promise for modelling population heterogeneity, the
pplication of hierarchical models to modern high-resolution fMRI with
housands of subjects is limited because of computational costs. Recent
ork has proposed solutions that are applicable to group models or uni-
irectional hierarchical models, e.g. using incremental or stochastic ma-
rix factorisations ( Mensch et al., 2018 ; Smith et al., 2014 ), or utilising
ayesian priors from group estimations to inform subject-specific net-
ork modelling ( Mejia et al., 2019 ). Nevertheless, the application of

he bidirectional hierarchical models to big data remains impractical
c.f. Fig. 1 ) ( Mejia et al., 2019 ). 

Contributions of the current study are twofold. Firstly, we pro-
ose an advance to PROFUMO using stochastic variational Bayes (VB)
hat can reduce the computational costs by a factor of 100, in or-
er to scale the model for big data. We refer to the proposed model
s stochastic PROFUMO, or sPROFUMO for short, and refer to the
robabilistic functional modes identified using this approach as PFMs.
tochastic VB ( Hoffman et al., 2013 ) entails partitioning small, ran-
om subsets of observations into numerous batches, and visiting only
 fraction of the population in every iteration, thus significantly re-
ucing the computational expense ( Fig. 1 ), without loss of generalis-
bility. For the purposes of fMRI analyses, different subjects provide
 natural way to subdivide the data, and our algorithm therefore iter-
tes through updating the group model over batches, while simultane-
usly optimising subject modes within these batches. This approach has
een successfully applied to neuroimaging data to discover functional
odes using group-level Hidden Markov Models (HMM) ( Vidaurre et al.,
018a ). Generalising this approach in sPROFUMO requires modifica-
ions to the original algorithm to ensure preserving group-level gener-
lisability, cross-subject variability and subject-group alignment, as we
ill elaborate later in section Model. In addition to scaling the model

o work on big data, sPROFUMO substantially reduces the computa-
ional expenses for medium-sized datasets while preserving the accuracy
f estimations, and thus is expected to facilitate the model’s broader
sability. 

The second contribution of this study is to unravel the cognitive rel-
vance of sPROFUMO RSNs in individual subjects, and disentangle the
patial versus temporal properties of RSNs that contribute to the predic-
ion of cognitive function. We applied sPROFUMO to fMRI data from
999 UKB subjects, which allowed us to obtain both our first high-
imensional PFM decomposition of brain function (100, 150 and 200
odes), and an increase in the detail of mapping of RSNs in single sub-

ects compared to what has been reported previously from UKB. We
ested how accurately these PFMs can predict 68 cognitive scores that
over a range of sensorimotor, memory, executive functions and general
uid intelligence. Our focus on high-dimensional RSNs was informed by
ecent studies that suggest the functional parcellations with 100–1000
odes to provide more elaborate delineation of the brain function com-
ared to low-dimensional decompositions, which is useful for prediction
f non-imaging variables ( Dadi et al., 2020 ; Pervaiz et al., 2020 ). We in-
estigated in detail the prediction power of mode elements in spatial and
emporal domains, and identified the sPROFUMO modes, or PFMs, that
rovided the best predictors. We further carried out a detailed compar-
son between sPROFUMO and ICA-DR with regards to accounting for
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Fig. 1. Computational efficiency of Stochastic PROFUMO (sPROFUMO) : CPU RAM required to run the model on up to 100,000 participants, compared to classic 
PROFUMO. RAM usage for stochastic PROFUMO is calculated with batch size set to 50 or 1% of the full population, whichever the larger. Here we have used 
volumetric data from UK Biobank as reference for the calculations, which includes ∼230,000 voxels (brain masked), 1 recording session and 490 timepoints per 
recording. Both x- and y-axes are logarithmic scales. 
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ross-subject variability and prediction power for cognitive heterogene-
ty. 

. Model 

In this section, we first provide a brief conceptual summary of PRO-
UMO (see ( Harrison et al., 2020 ) for further details), and next elabo-
ate on the stochastic variational inference and its application to obtain
PROFUMO. 

.1. Classic PROFUMO summary 

PROFUMO is a hierarchical matrix factorisation framework with two
evels of subject and group modelling. 

At the subject level, fMRI timeseries ( D 

sr ) are decomposed into a
et of spatial maps ( P 

s ), time courses ( A 

sr ) and time course amplitudes
 H 

sr ), with residuals 𝜺 𝑠𝑟 : 

 

sr = 𝑷 𝑠 𝑯 

sr 𝑨 

sr + 𝜺 sr 

 

sr ∈ ( ℝ ) 𝑁 𝑣 ×𝑁 𝑡 , 𝑷 𝑠 ∈ ( ℝ ) 𝑁 𝑣 ×𝑁 𝑚 , 𝑯 

sr ∈ ( ℝ ) 𝑁 𝑚 ×𝑁 𝑚 , 𝑨 

sr ∈ ( ℝ ) 𝑁 𝑚 ×𝑁 𝑡 (1) 

here s denotes each subject and r denotes a recording session. P 

s de-
otes spatial mode layout of the modes across the brain voxels, which
ereafter we will refer to as spatial maps , or just maps . A 

sr represents
ode time courses and H 

sr denotes mode amplitudes. N v , N m 

and N t 
enote the number of voxels, modes and time points, respectively. 

Assuming that anatomical and functional organisation of the brain
egions remain unchanged for a subject, the spatial maps, P 

s , are as-
umed to be the same across multiple scans (or runs – sets of continuous
imeseries data). Each map is modelled using a Double-Gaussian Mixture
odel (DGMM), where one Gaussian component is set to account for

he signal and a second Gaussian distribution captures the background
patial noise in each voxel. Additionally, a per-mode membership prob-
bility is estimated to determine the probability of a voxel belonging
o the signal versus the noise component. Therefore, P 

s consists of five
osterior parameters (one map for each): signal mean, signal variance,
oise mean, noise variance and membership probability. Spatial maps
re one of the elements that are estimated hierarchically in PROFUMO.
3 
herefore, in addition to P 

s for each subject, a consensus set of group-
evel parameters is also estimated to capture both the group maps and
he key patterns of cross-subject variability in the spatial domain. Con-
retely, we introduce a set of hyperpriors on - and infer the group-level
osteriors over - the signal means, signal variances, noise variances and
embership probabilities. 

The mode time courses, A 

sr , are estimated separately for each scan.
hese timeseries are allowed to vary across runs such that PROFUMO
an account for both the unconstrained nature of the resting state and
he inherent cross-run variations in task data. Similar to the spatial
aps, mode time courses are also modelled as a sum of a signal and a
oise component, where the signal component is HRF-constrained and
he noise component follows a Gaussian distribution. A 

sr is not modelled
ierarchically, because in general (at least for resting state data) there
ill be no consensus temporal structure across the subjects. However,

ven though the time courses are unconstrained, the temporal corre-
ations amongst the neural time courses can be both highly structured
ithin-individuals, and have a consensus structure across individuals
 Shehzad et al., 2009 ). In order to account for these correlations, PRO-
UMO models the precision matrix 𝜶𝑠𝑟 hierarchically and using Wishart
istributions. Additionally, because of haemodynamic responses that
overn the BOLD signal, the estimation of the partial correlation ma-
rices explicitly incorporates HRF-constrained autocorrelations between
he modes. 

Finally, the mode amplitudes, H 

sr , are modelled as positive diagonal
atrices, to capture (subject and/or scan) variations in the amplitude of

he mode time series. In the dual regression paradigm, these amplitudes
ppear as the time course standard deviations and have been shown
o reflect meaningful sources of within- and between-subject variations
 Bijsterbosch et al., 2017 ). The PROFUMO framework captures these
ariations via multivariate normal distributions, again with a hierarchi-
al link between the group and the subject levels. 

.2. Stochastic PROFUMO (sPROFUMO) 

.2.1. Standard VB 

PROFUMO uses a variational Bayesian (VB) framework to find a so-
ution for the full probabilistic model described in the previous section.
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his optimises the parameters of an approximating distribution 𝑞, with
he aim that it is as close as possible to the true posterior. In each model
teration, the group model is used to constrain the subject-specific ma-
rix factorisations, from which one can infer posterior distributions for
ubject-specific spatial maps, time course correlations and amplitudes.
ext, the posterior evidence is accumulated and combined across indi-
iduals to obtain an updated version of the group model. The model iter-
tes between these two levels of estimation until convergence. In order
o reach convergence, the algorithm utilises the conjugate-exponential
tructure of the model to obtain a closed-form version of the natural
radient of the Free Energy (i.e. the difference between the true and ap-
roximate posteriors, as measured by the Kullback-Leibler (KL) diver-
ence), based on which we optimise via gradient ascent. Therefore, for
bservations D (where D is a collection of all D 

sr in Eq. (1) ), group-level
atent variables 𝝀 and subject-level latent variables z , we will have: 

 ( 𝑞, 𝑫 ) = 𝔼 𝑞 
[
log 𝑝 ( 𝑫 , 𝒛 , 𝝀) 

]
− 𝔼 𝑞 

[
log 𝑞 ( 𝒛 , 𝝀) 

]
(2) 

here 𝔼 𝑞 [ log 𝑝 ( 𝑫 , 𝒛 , 𝝀) ] is the expected log joint, log 𝑞( 𝒛 , 𝝀) is the (ap-
roximate) log joint posterior distribution over the latent variables, and
 ( 𝑞, 𝑫 ) is the free energy of the model. To find a (locally) optimal solu-

ion, traditional VB optimisation must have access to the entire dataset
n each iteration, which becomes computationally intractable when a
arge number of subjects need to be analysed. 

.2.2. Substitution of standard VB with stochastic VB to obtain 

PROFUMO 

One of the main contributions of this work is to reduce the computa-
ional expense of the VB optimisation, by substituting standard VB with
tochastic VB ( Hoffman et al., 2013 ). Applying this approach to PRO-
UMO requires modifications to the original algorithm to ensure that:
) the group model is not biased by a few batches and instead remains
epresentative of the entire population, b) single subjects are kept con-
istent with the group regardless of when they have been visited, and c)
he model has flexibility to accommodate single-subject heterogeneity
n a big data population. 

We start by making use of the fact that in VB the group- and
ubject-level PROFUMO parameters are inferred independently, and de-
ne them as global and local variables, respectively. Specifically, mean-
eld approximations allow for factorisation of the joint posteriors into
 global term and a product of local terms; i.e.: 

 ( 𝒛 , 𝝀) = 𝑞 ( 𝝀|𝜃) 
𝑆 ∏
𝑠 =1 

𝑅 ∏
𝑟 =1 

𝑞 
(
𝒛 sr 

||𝜙sr 

)
(3) 

here 𝝀, z are global (i.e. group) and local (i.e. subject) latent variables
espectively, governed by global and local parameters 𝜃 and 𝜙. Here,
 and R denote the total number of subjects and recordings per sub-
ect. The mean-field approximations allow for simplification of the free
nergy estimations into a sum of a global and a local term such that: 

 ( 𝜃) = 𝔼 𝑞 
[
log 𝑝 ( 𝝀|𝐃 , 𝐳 ) 

]
− 𝔼 𝜃

[
log 𝑞 ( 𝝀) 

]
+ cons 𝑡 𝜃 (4) 

 ( 𝜙) = 𝔼 𝑞 
[
log 𝑝 ( 𝑫 , 𝒛 ) 

]
− 

𝑆 ∑
𝑠 =1 

𝑅 ∑
𝑟 =1 

𝔼 𝜙𝑠𝑟 
[
log 𝑞 

(
𝒛 𝑠𝑟 

)]
+ 𝑐𝑜𝑛𝑠 𝑡 𝜙

Classic VB iterates between keeping 𝜃 fixed and optimising with re-
pect to 𝜙 = > ∇ 𝜙 ( 𝜙) = 0 and keeping 𝜙 fixed and optimising with re-
pect to 𝜃 = > ∇ 𝜃 ( 𝜃) = 0 until convergence (where ∇ 𝜙 ( 𝜙) and ∇ 𝜃 ( 𝜃)
enote gradients of  with respect to 𝜙 and 𝜃, respectively). 

With stochastic VB, we instead randomly subsample the local vari-
bles (i.e. sessions/subjects) across batches, and focus on continuously
mproving the estimation of the global parameters as more observations
re visited over time. Considering L I ( 𝜃) as the free energy term corre-
ponding to the I th batch, we will have: 

 𝐼 ( 𝜃) 
Δ
= 

𝔼 𝑞 
[
log 𝑝 ( 𝝀) 

]
− 𝔼 𝑞 

[
log 𝑞 ( 𝝀) 

]
+ 𝑁 max 

𝜙𝐼 

(
𝔼 𝑞 

[
log 𝑝 

(
𝑫 𝐼 , 𝒛 𝐼 |𝝀

)]
− 𝔼 𝑞 

[
log 𝑞 

(
𝒛 𝐼 

)])
(5) 
4 
The third term on the right-hand side refers to the optimisation of
he local variables within batch I, while the overall aim will be to op-
imise 𝐿 𝐼 ( 𝜃) across batches. The natural gradient of 𝐿 𝐼 ( 𝜃) is therefore
 noisy estimate of the natural gradient of the overall variational ob-
ective. According to proofs provided by Hoffman et al. (2013) , even
hough the noisy gradient ∇̂ 𝜃 𝑖 = 0 does not have an analytical solu-
ion, the conjugate-exponential structure of PROFUMO means that con-
ergence can be achieved if: a) we scale the subject-specific terms in
q. (5) in each batch by the factor N (i.e. number of batches), such that
 𝐼 ( 𝜃) is updated as though the entire population was included; and b)
lobal parameters are updated iteratively, using a weighted sum of the
ntermediate global parameters obtained from the current batch ( ̂𝜃𝑡 ) and
hat has been accumulated over all the previous batches ( 𝜃𝑡 −1 ). In other
ords, we keep a memory of the global parameter updates over time;

.e.: 

𝒕 = 

(
1 − 𝝆𝒕 

)
𝜽𝒕 −1 + 𝝆𝒕 𝜽̂𝒕 (6)

e adopt a similar approach as ( Hoffman et al., 2013 ; Vidaurre et al.,
018a ), in defining a decreasing step size for the stochastic gradient
escent: 

𝒕 = ( 𝒕 + 𝝉) − 𝜷 (7) 

> 0 is the delay parameter of stochastic inference that determines
he degree to which initial batches influence the overall inference,
nd 𝛽 ∈ ( 0 . 5 , 1 ] is the forget rate of the model that determines the de-
ree to which global parameter updates rely on the current batch versus
revious batches (i.e. inter-batch variations). Larger 𝛽 thus corresponds
o smaller 𝜌𝑡 and results in less stochasticity in the model. 

Having described the general rationale behind stochastic VB infer-
nce and application to PROFUMO, we next elaborate specific changes
n the model implementation in Sections 2.2.3 to 2.2.5 . A flowchart of
hese steps is outlined in Fig. 2 . 

.2.3. Changes in model initialisation 

As outlined in 2.1 , PROFUMO estimates multiple parameters per
oxel and mode. For a typical volumetric fMRI in 2 mm MNI space, this
ntails estimating of the order of 150,000,000 parameters per subject.
onsidering that with a model of this complexity, random initialisations
re likely not viable, the algorithm initialises the group maps based on a
roup-level variational ICA in order to place the parameters within a re-
listic ballpark. To obtain this initialisation, subject fMRI data matrices
 

sr are first dimension reduced using SVD to obtain X 

sr ∈ ℝ 

𝑁 𝑣 ×𝑁 𝑝 where
 is the number of top singular values. The X 

sr matrices are concate-
ated across subjects and further reduced using random SVD to 2 ∗ N m 

patial basis vectors. 
However, to handle many thousands of subjects, e.g. in UKB, the SVD

pproach used in the original PROFUMO will become intractable as it
equires concatenation of the subject data from the entire population
n one matrix. We therefore substituted this step in sPROFUMO with
ELODIC’s Incremental Group-PCA (MIGP) ( Smith et al., 2014 ). MIGP

s an online PCA decomposition, where subjects’ data are visited one at
 time, and dimension reduced to 2 ∗ N m 

in every step, until the entire
opulation is visited. Considering that MIGP loads only a few subjects’
ata at a time, it offers an additional advantage of allowing us to work
ith the full rank subject data D 

sr instead of dimension-reduced X 

sr ,
nd is thus expected to preserve fine-grained modes that are likely to
et eliminated in subject-specific dimension reductions. 

After obtaining the spatial basis, group-level variational spatial ICA
 Harrison et al., 2020 ; Lawrence and Bishop, 2000 ) is applied to the
CA output in order to infer N m 

initial maps. These initial maps,
ogether with hyperpriors, are used to initialise the group model in
ROFUMO/sPROFUMO. Note that initial maps do not provide subject-
pecific results, subject-specific decompositions are conducted during
ull inference, with the group model used as a prior. 
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Fig. 2. Flowchart of different steps of stochastic PROFUMO (sPROFUMO) . Batch updates, progressing from left to right, involve treating group model as global 
parameters that are continuously updated over time, whilst subsets of subjects are randomly selected and respective parameters are locally optimised within each 
batch. Blue boxes: group model update process, blue arrows: flow of information from the group to the subjects, where dark blue denotes hierarchical links between 
the spatial maps and light blue denotes hierarchical links between partial temporal correlation matrices. Orange boxes: subject models and batch-based update 
process, orange arrows: flow of information from subjects/batches to the group, where dark orange denotes hierarchical links between the spatial maps and light 
orange denotes hierarchical link between partial temporal correlation matrices. Grey: initialisation and priors, MIGP: MELODIC’s Incremental Group-PCA. 
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.2.4. Batch randomisations and changes in update rules 

Considering that we randomise subjects across numerous small
atches of size K, and in order to maximise the chances of every sub-
ect being selected multiple times, the randomisation is weighted by a
arameter 𝑤 𝑠 = 𝜏𝑛 𝑖 that determines the probability of a subject i being
icked in the current batch, where n i denotes the number of times that
he subject i has been picked so far. Subjects that are picked for a batch
re initialised as follows: 

• When a subject is visited for the first time, we can either initialise
them based on the initial maps (from variational ICA as outlined
earlier in 2.2.3 ) or the latest group model. There are arguably pros
and cons to each approach; namely, initialisation based on the latest
group will align the subjects and can thus help with quicker model
convergence. However, considering that any subsequent batches will
be built upon the first few batches, it might result in the overall
inference being biased towards the early batches, thus potentially
compromising the representativeness of the final group model. We
therefore chose to always initialise subjects’ first visit based on the
initial maps. 

• In any subsequent visits, subject-specific updates build upon pre-
vious incarnations of the subject model. In this way, by keeping a
memory of a subject’s own previous visits, it can be expected that
subject-specific deviations from the group are more accurately ac-
counted for. 

• After subject-initialisations, we initially keep the group model con-
stant and run multi-iterations of subject updates to bring the subjects
into a better alignment with the group. We refer to this step as initial

batch updates. 
• Subsequently, we run the full inference ( Section 2.1 ) on subjects

within current batch (local parameters in stochastic VB) as well as
5 
the group model (global parameters). We refer to this step as full

batch updates, or batch updates for short. 

As outlined earlier, we treat group-level parameters as global param-
ters that stochastic VB optimises continuously across batches. Consid-
ring that all the distributions that are used in the model are from the
xponential family (e.g. Gaussian), changes in the group-level update
ules follow Eq. 6 . 

It is worth noting that sPROFUMO can be expected to allow for larger
egrees of heterogeneity; i.e. subject deviations from the group average.
his is due to the fact that in PROFUMO, all subjects are updated in line
ith the group in every model iteration, which will produce a tendency

or the algorithm to converge to local optima where the subject-level
odels are close to the group average. On the contrary, in sPROFUMO
e are updating stochastically by using a random subset of the subjects
t each model iteration with each subject being only visited at random
ntervals; and though the model update procedures are designed to en-
ure subject-group alignment throughout iterations, this stochastic up-
ating may help sPROFUMO to jump out of local minima ( Keskar et al.,
017 ; Kleinberg et al., 2018 ). 

.2.5. Additional considerations 

Batch randomisations mean that some of the subjects will be selected
uring the earliest batches and may not be revisited later. We therefore
evisit every subject again at the end of the inference and update them
ith reference to the final group model. This is done to ensure the final

stimations of posteriors for all subjects are defined in relation to the
ame group model. 

Additionally, with regards to the choice of the stochastic parameters
n Eqs. (6) and 7 , it is typically of interest to minimise the running times
nd RAM memory requirements of the model, while maximising the
ccuracies of estimations and reaching a convergence point. The number
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f batches, and initial and full batch updates, control the running times
hile the choice of batch size controls the memory usage. It is therefore
f interest to find an optimal trade-off between these factors, which we
ill later explore using simulations. 

. Materials and methods 

.1. Simulations 

We performed two sets of simulations. The first set focused on evalu-
ting sPROFUMO’s performance compared to PROFUMO, where the en-
ire population is available at every model iteration. More specifically,
e tested how the choice of the key stochastic parameters, namely batch

ize, stochastic forget rate 𝛽 and full batch updates, affects the accuracy
f final results. The second set of simulations were aimed at evaluating
PROFUMO’s performance in obtaining high dimensional modes; and in
his case, comparison is with the spatial ICA-dual regression paradigm.

e explored several scenarios that make the second set of simulations
hallenging, particularly with respect to accurate reconstruction of high
imensional subject-specific networks. More details of each simulation
et are presented in the Results section. For each simulation scenario,
e created synthetic data with realistic fMRI settings for 500 subjects
ith two recording sessions for each subject. Each simulation scenario
as repeated twice and results were pooled for reporting. 

Overall, we investigated data from 11 scenarios, each repeated twice
nd each repeat consisting of two datasets (2 × 500) of simulated sub-
ects, providing a thorough evaluation of our model. Each synthetic fMRI
ata matrix consisted of 10,000 voxels and 300 time points at a TR of
.72 s, and was created using an outer product model, similar to Eq. (1) .
herefore, spatial and temporal properties of the modes are simulated

ndependently in this pipeline. 
At the group level, we defined a set of spatial maps P g that con-

isted of modes generated from a number of randomly-selected contigu-
us blocks of voxels (i.e. parcels), such that some of the modes were
onfined to one brain region and others were distributed over multi-
le non-contiguous regions. Weights of signal for each voxel within a
ode were drawn from a Gamma distribution. Subject-specific vari-

tions of these parcels, and subsequently subject spatial mode maps,
 s , were defined at the vicinity of the group maps by applying spatial
arps and adding background Gaussian noise. Time courses were gen-

rated separately for each mode, subject and session, but we defined
 hierarchical link between the group and subjects’ temporal correla-
ion matrices, following a Wishart distribution, to ensure a consensus
epresentation of the functional connectivity between the two levels.
ime courses were first generated as semi-Gaussian neural time course
ith amplified frequencies < 0.1 Hz, and next convolved with a random
raw from the FLOBS basis functions ( Woolrich et al., 2004 ) such that
nal time courses would mimic the BOLD signal. Finally, random noise
as added to the outer product of spatial maps and time courses to cre-
te space-time data matrices. More details of simulation parameters are
vailable in ( Bijsterbosch et al., 2019 ; Harrison et al., 2020 , 2015 ). 

The simulated modes were reconstructed using sPROFUMO, PRO-
UMO and ICA/ICA-DR, and results were compared against the ground
ruth. For this purpose, we initialised all three models based on the same
et of spatial bases that were obtained using MIGP, to ensure that the ob-
erved differences are not due to the initial PCA. Additionally, we have
nitialised PROFUMO and sPROFUMO based on the same set of initial
aps. 

.2. Applying sPROFUMO to UK Biobank 

We used UK Biobank (UKB) data, accessed under application num-
er 8107, for volumetric resting state fMRI data as well as cognitive
ests and imaging confounds (see 3.4.1 and 3.4.2 for more details on
he latter). We randomly drew 4999 subjects from the May 2019 re-
ease of this dataset. fMRI data consisted of one recording session per
6 
ubject, with 490 (occasionally 530) time points per session, at a TR
f 0.735 s, yielding ∼6 minutes of data per subject. Data were pre-
rocessed using the standard UKB pipeline that includes quality control,
rain extraction, motion correction, artefact rejection using FSL-FIX,
igh-pass temporal filtering (sigma = 50.0 s, Gaussian-weighted least-
quares straight line fitting) and registration to standard MNI-2 mm
pace ( Alfaro-Almagro et al., 2018 ). As a part of sPROFUMO’s inter-
al initialisation (see ( Harrison et al., 2020 ) for details), we further
rocessed the data using voxel-wise removal of timecourse mean and
ariance normalisation. We next initialised the model as explained in
.2.3 and ran full model inference thorough batch randomisations as
utlined in 2.2.4 and 2.2.5 , and characterised 100, 150 and 200 sPRO-
UMO modes. 

.2.1. Dealing with the missing modes to obtain high dimensional 

ecompositions 

In previous PROFUMO papers and based on real resting state fMRI
ata from up to ∼1000 subjects in HCP Young Adult cohort, we re-
orted that while the model reliably estimates a low dimensional set
f modes (i.e. up to 40), it tends to eliminate any more modes beyond
hat ( Harrison et al., 2020 ). Additionally, some of the modes that are re-
iably estimated in the group might be returned as empty in a subset of
ubjects. This is despite the fact that ICA and ICA-DR have reported up
o 300 modes from the same data ( Smith et al., 2015 ). The mode elimi-
ation in PROFUMO corresponds to the lack of evidence – in a Bayesian
ense – for the mode being present, given that subject’s data and the
nferred noise level. Together, these can render the posterior probabili-
ies of mode presence as zero. The validity of, and reasons behind, these
issing modes had remained puzzling to date. More importantly, it is
nclear whether these are specific to the s/PROFUMO framework or
ight also be reflected in a different way in other models e.g. ICA-DR. 

In Appendix B, we will present details of five main changes in the
ata and model that were found to largely resolve sPROFUMO missing
odes for the UK Biobank data in the current study; these include: 1)

ncreased group-level signal-to-noise ratio due to the higher number of
ubjects in UKB; 2) stochastic variational inference in sPROFUMO may
ave allowed for the VB optimisation to jump out of local minima, re-
ulting in an improved minima that seems to allow for higher degrees of
ubject variability in the group model; 3) homogeneous spatial smooth-
ess in different parts of the brain (e.g. cortical and subcortical regions);
) no SVD dimensionality reduction at the single subject level, and 5) in-
reased subject-level SNR by applying a small amount of spatial smooth-
ng. Factors 1, 2 and 3 led to a higher number of group-level modes being
eliably reconstructed and factors 2, 4 and 5 increased the number of
ubject-specific modes. 

.3. Applying spatial ICA and ICA-Dual regression to UK Biobank 

In addition to sPROFUMO characterisation of functional brain modes
rom resting state fMRI data, we also used spatial ICA followed by dual
egression (DR) to characterise the modes. The ICA and ICA-DR are
mongst the most commonly used methods for group-level and subject-
evel estimation of the resting state networks, respectively. Additionally,
CA/ICA-DR have been used as standard RSN characterisation methods
rom large-scale datasets such as HCP and UKB. Thus, they can pro-
ide suitable models to compare sPROFUMO results against. We used
SL tool MELODIC to identify 150 spatially independent ICA modes at
he group-level and subsequently used FSL tool dual_regression to map
he ICA group-level results onto single subject data. Stage 1 of Dual Re-
ression yielded subject-specific time courses for each mode and stage 2
ielded subject-specific spatial maps. We further computed mode ampli-
udes as standard deviation of the time courses and estimated functional
onnectivity between the modes using Tikhonov-regularised partial cor-
elations. It is worth noting that in order to make the final sPROFUMO
nd ICA/ICA-DR results fully comparable, we used the same PCA initial-
sation for both models. For this purpose, MIGP results were obtained as
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xplained earlier in 2.2.3 and were fed into both MELODIC and sPRO-
UMO for initialisation. 

.4. Prediction pipeline 

We investigated the accuracies of the spatial and temporal properties
f sPROFUMO modes (i.e. PFMs) in predicting cognitive outcome from
ehavioural cognitive tests in UKB. We conducted predictions at two
evels: multi-mode predictions where output from all the modes were
ombined, and uni-mode predictions where each mode was used sepa-
ately for prediction. For both levels, we conducted predictions based
n: a) Mode spatial maps, b) Mode temporal network matrices (tempo-
al NetMats; partial correlation matrix between PFM timecourses), c)
ode spatial NetMats (full correlation matrix between PFM maps), d)
ode amplitudes and e) multi-element; i.e. all 4 elements combined.
e further compared PFM prediction accuracies to ICA-DR. 

.4.1. Selecting cognitive tests 

As the first step, we selected a subset of outcome measures from
K Biobank cognitive tests by pruning 1172 metrics to 68. This initial
ltering was based on two criteria, firstly, one of the authors manu-
lly screened the outcome measures and only included active measures
hat were directly reflective of each subject’s performance. For example,
mongst outputs from the “Reaction Time ” task, which entails viewing
wo cards (A and B) and pressing buttons if they are identical, we in-
luded the “Mean time to correctly identify matches ”, while “Index for
ard A in round ” was excluded. Secondly, we only selected tests that
ad a non-NaN value in at least 25% of the subjects. The final list of
8 tests belonged to the following categories: Reaction time, Trail mak-

ng, Matrix pattern completion, Numeric memory, Prospective memory, Pairs

atching, Symbol digit substitution and Fluid intelligence . These tests cover
 wide range of cognitive abilities from sensorimotor coordination to
emory and executive functions, thus providing a suitable testbed for

valuating the cognitive relevance of the PFMs. The list of 68 measures
re shown in Table S 1 and more details are available in UKB website:
ttps://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id = 100026. 

.4.2. Confound removal 

The large number of subjects in UKB provides an unparalleled poten-
ial for application of machine learning algorithms and predicting non-
maging phenotypes based on image-extracted brain features. However,
ontamination of the imaging data by interfering factors, often referred
o as imaging confounds, is likely to have a significant impact on the
nterpretability of the results ( Alfaro-Almagro et al., 2020 ; Snoek et al.,
019 ). One solution to alleviate this problem is to regress out the con-
ounds (a.k.a. deconfounding) before applying machine learning predic-
ions. There is not currently a consensus in the literature as to whether or
ot deconfounding is required in prediction pipelines. Indeed, if the aim
s to obtain the highest prediction accuracies for non-imaging pheno-
ypes, regardless of the factors that drive the accuracies, one may opt to
un predictions without deconfounding. However, that might arguably
nterfere with the interpretability of the results in scenarios where a
ommon confounding factor, e.g. head size or head motion might have
ontributed to prediction accuracies ( Snoek et al., 2019 ). Here, in order
o improve the interpretability of our results, we chose to run predic-
ions after deconfounding. 

In a recent study, Alfaro-Almagro et al. (2020) provided a compre-
ensive set of 602 confounds in UKB brain imaging. Here we used a
educed set by: a) selecting conventional confounds including age, age
quared, sex, age × sex, site, head size and head motion; b) reducing the
emaining confounds by applying singular value decompositions and
etrieving the top principal components that explained 85% of the vari-
nce. These two steps yielded 82 variables for deconfounding, which
ere regressed out of both predictor and target variables using lin-
ar regression. Importantly, we applied deconfounding within cross-
7 
alidation folds in order to avoid leakage of information from test to
rain data, as proposed by ( Snoek et al., 2019 ). 

.4.3. Elastic-Net prediction and cross-validation 

The prediction pipeline was implemented in Python 3.6.5 using
cikit-learn 0.19.1 ( Pedregosa et al., 2011 ). It was built around Elas-
icNet regression and nested 5-fold cross validations, where subjects
ere split into 5 non-overlapping subsets, and in each iteration 80%
f the subjects were assigned to train and 20% to the test group. In each
ross-validation loop, where pre-prediction feature selections were re-
uired (details in the following sections), the top n% of the features
ere selected based on correlation with the target variable within the

raining set. Next, quantile transformation ( QuantileTransformer ) was ap-
lied to obtain a Gaussian distribution for each predictor and target
ariable across subjects. The quantiles were estimated using the train-
ng set and applied to transform both train and test data. Next, con-
ound regression parameters (or “betas ”) were estimated from the train-
ng set and applied to de-confound both train and test data. Finally,
lasticNetCV was used to predict target variables in the test set. Note
hat we used nested cross-validations within the training set to optimise
he ratio of Lasso to Lasso + Ridge regularisation ( l1ratio varied between
0.1,0.5,0.7,0.9,0.95,0.99,1.0] with 10 alphas per l1ratio ). The predic-
ion accuracies were calculated based on correlations between estimated
nd actual values of the target variables across subjects in the test set. 

.4.4. Multi-mode prediction 

Multi-mode prediction involved combining output from all the
odes to predict cognitive outcome based on sPROFUMO and ICA-DR
odes: 

• For the spatial maps, estimating 150 modes resulted in a P grand ma-
trix of N subject × N voxel × 150, yielding ∼35 million features per
subject. Dimensionality reduction of this matrix to a few hundred
features that can meaningfully capture the essence of subject spa-
tial maps is non-trivial. For this purpose, we used unsupervised
learning in the form of FMRIB’s Linked ICA for big data (bigFLICA)
( Gong et al., 2021 ; Groves et al., 2011 ), which is an ICA framework
originally proposed to fuse multimodal data. First, we collapsed sub-
ject spatial maps across voxels using sparse dictionary learning and
obtained a P dicL matrix of size N subject × 1000 × 150. Next, we con-
sidered each mode as a separate “modality ” within bigFLICA and ob-
tained a P feat feature matrix of size N subject × 500. Using linked ICA
in this way will allow us to preserve subject-specific variations in
each mode’s spatial map and combine them across numerous modes
to obtain a set of independent features to characterise the sources of
population variations in PFMs. 

• For the spatial and full/partial temporal correlation matrices (spa-
tial and temporal NetMats), we started with matrices of size N mode ×
N mode for each subject. After applying the Fisher r-to-Z transforma-
tion, we flattened these matrices by taking the upper diagonal ele-
ments. Next, in order to obtain feature matrix from spatial NatMat,
i.e. SNET feat of size N subject × 500, we used SVD for dimensionality
reduction, and reduced the flattened spatial NetMats to 500 features.
Similarly, for temporal NetMat feature matrix TNET feat , we extracted
250 SVD features from each of the full and partial temporal NetMats
and concatenated them to obtain a TNET feat of size N subject × 500.
Partial temporal NetMats were computed based on precision matri-
ces and with a Tikhonov regularisation parameter 0.01. 

• Mode amplitudes were used without any transformations; i.e. pro-
viding a H feat matrix of size N subject × 150. 

We conducted uni-element predictions based on P feat, SNET feat, 
NET feat and H feat separately, and multi-element predictions when all
hese elements were combined. For the multi-element predictions, we
tilised pre-prediction univariate feature selections to further reduce
rom 1650 features to 900. For this purpose, in each cross-validation
oop, the top 900 features that showed the highest correlations with
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5  
he target variable, within the training set, were selected. 5-fold cross-
alidations were repeated 20 times for prediction of each cognitive
core, the 20 repeats were pooled for visualisation using Bland-Altman
lots and averaged for statistical comparisons. 

.4.5. Uni-mode prediction 

The uni-mode prediction steps are conceptually similar to multi-
ode predictions outlined above, with a few exceptions. Firstly, for the
imensionality reduction of the spatial maps we did not need to com-
ine information across modes using bigFLICA. Instead, we used sparse
ictionary learning to obtain feature matrices of N subject × 500 for each
ode. For spatial and temporal NetMats we take rows of correlation
atrices for each subject and do not apply additional dimensionality

eduction, thus obtaining 149 features per subject, per mode for each
etMat. For the amplitudes, as there is one value per subject-mode, we

imply add a mode’s amplitude to the temporal NetMat feature matrix. 

.4.6. Statistical significance of predictions 

We conducted the aforementioned predictions based on both sPRO-
UMO and ICA-DR, and compared the overall model predication accura-
ies, as well as the predictions of different model elements in the spatial
nd temporal domains. In order to estimate p-values, we took note of
he fact that cognitive tests included in the study (Table S 1) can be cor-
elated with each other, and as such, a regular paired t -test is not valid
ecause it assumes that the sample covariance is spherical. In order to
vercome this problem, we used a generalised least square approach as
mplemented in MATLAB lscov function, which solves a linear regres-
ion, A x = B , by finding x that will maximise (B – A x) T V 

− 1 (B – A x).
ere A is a column of ones, B is the difference of the correlation accu-

acies for each comparison pair (e.g. ICA-DR SMAPs versus sPROFUMO
MAPs). V is the sample covariance, which we approximate by comput-
ng the covariance matrix amongst the cognitive tests, and projecting
t onto the nearest symmetric positive definite matrix. After estimat-
ng x and the standard deviation of x ( 𝜎2 

𝑥 
), t-values (similar to paired

 -test) can be estimated as 𝑥 √
𝜎2 𝑥 

, which are then used to estimate the

orresponding p-values. Note that for the statistical significance testing,
ognitive tests with negative predictions for either of the models in a
airwise comparison are removed as these would act as noise and dis-
uise potentially interesting differences between the two models for the
ell-predicted tests ( Gong et al., 2021 ). 

.4.7. Canonical correlation analysis 

Canonical Correlation Analysis (CCA) was used as an add-on test
o the prediction results, mainly to disentangle the contribution of
patial versus temporal model elements ( Section 4.6 ) in the predic-
ion accuracies of sPROFUMO and ICA-DR. More specifically, it was
imed to test the degree to which sPROFUMO SMAP/TNETs and ICA-
R SMAP/TNETs capture similar sources of subject variability. It was
onducted using the following steps: 

1 500 summary features for PFM SMAPs and 500 summary features
for ICA-DR SMAPs across all 150 modes were obtained using FLICA,
as elaborated in Section 3.4.4 . 

2 500 summary features for PFM TNETs and 500 summary features
for ICA-DR TNETs across all 150 modes were obtained using SVD,
as elaborated in Section 3.4.4 . 

3 Imaging confounds were regressed out of both PFM and ICA-DR fea-
ture matrices, as elaborated in Section 3.4.2 

4 We conducted CCA for four pair-wise comparisons: 1) PFM SMAP
vs ICA-DR SMAP; 2) PFM TNET vs ICA-DR TNET; 3) PFM TNET vs
ICA-DR SMAP and 4) PFM SMAP vs ICA-DR TNET. 

5 The CCA would yield a linear transformation of PFM feature ma-
trix (X) and ICA-DR feature matrix (Y) in a way to maximise their
correlation; i.e. Y 

∗ A = U ∼X 

∗ B = V , where U and V are the linearly-
transformed versions of ICA-DR and PFM feature matrices, respec-
tively. 
8 
6 By finding correlations between columns of U and V for the top 100
CCA components, we estimated shared variances for each pairwise
comparison. We further estimated confidence intervals on correla-
tions using bootstraps. 

7 We finally tested how many of the CCA components were signifi-
cantly correlated. For this purpose, we ran permutations: in each
iteration, we kept X matrix in step 5 fixed, randomly permuted Y
alongside rows (i.e. subjects), and repeated step 6. Across 5000 per-
mutations, we constructed a null distribution for the correlations of
the top 100 CCA components. The correlation value corresponding
to the top 5% of the null distribution for the first CCA component was
used as threshold for p-value < 0.05 significance level for all the CCA
components. This yields a significance threshold that is Family-Wise
Error-rate (FWE) corrected for multiple comparisons. 

. Results 

Results presented here are broadly focused on: firstly, evaluating
PROFUMO’s performance, especially with respect to scaling to big data
nd reconstruction of a high dimensional set of sPROFUMO modes, or
FMs. Secondly, investigations into the functional and cognitive rele-
ance of these high dimensional modes from resting state data. And,
hirdly, a detailed comparison of the model with the ICA & Dual Regres-
ion (DR) paradigm, which has been one of the most commonly used
ethods in RSN research and functional mode discovery. 

.1. Simulation set 1 - sPROFUMO vs. PROFUMO 

This first simulation set tested how sPROFUMO’s accuracies depend
n the choice of the main stochastic parameters, and compared it to
ROFUMO. Simulations were designed to mimic real fMRI data (as out-
ined in Section 3.1 ) and comprised two datasets. To mimic big data,
ach dataset consisted of 500 subjects and 2 recordings per subject. 15
odes were simulated in the brain, which consisted of a mixture of con-

iguous and distributed modes and were simulated to be temporally cor-
elated and spatially overlapping, where on average 1.3 modes resided
er brain voxel. Subject spatial maps (or in short, subject maps) were
imulated to have on average of ∼17% spatial misalignment with the
roup maps (i.e., a given subject mode was on average ∼83% overlap-
ing with the group). Spatial mode layouts were kept constant between
ubject runs, while mode time courses were allowed to be different, thus
esembling the unconstrained nature of the resting-state signals. 

As shown in Fig. 3 , we evaluated the model’s performance by com-
uting correlations between three elements of ground truth and es-
imated modes: group maps, subject maps and subject time courses.
irstly, we found that sPROFUMO is robust to the choice of batch size,
nd by decreasing batch sizes from 20% to 5% of the population, model
erformance was comparable to PROFUMO ( Fig. 3 a). This shows how
PROFUMO can be used to generate the same results as classic PRO-
UMO while being RAM efficient. 

Secondly, we found that sPROFUMO is robust to the choice of 𝛽
 Fig. 3 b). This indicates that in real data application, one can flexibly
weak 𝛽 values to allow for higher or lower inter-batch variations in the
osterior parameters, as would fit data and study requirements. Thirdly,
s shown in Fig. 3 c, we found that the accuracy of the results was robust
o the initial and full batch updates (see Section 2.2.4 for definitions).
hus, in real data, this parameter can be flexibly altered to reduce the
odel’s running time. 

This first set of simulations therefore depicts sPROFUMO’s robust-
ess to the choice of specific parameters, thus allowing us to tweak
hem in real data to obtain more flexible and memory-efficient infer-
nce. It is worth noting that for real data applications, it is useful to
ake data properties such as recording length and noise-level into ac-
ount when choosing the parameters. For example, for datasets with
horter recordings per subject (e.g. UKB), we recommend using at least
0 subjects per batch to boost within-batch SNR, while for datasets with
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Fig. 3. Simulation set 1 : illustrating robustness of sPROFUMO (yellow) to the choices of stochastic parameters including batch size, stochastic 𝜷 and batch updates, 
and comparison to classic PROFUMO (blue). BU: Batch Updates, BU 20/10 denotes initial/full batch updates. 
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onger recordings (e.g. HCP), smaller batch sizes can be used. Addition-
lly, for datasets with a small number of subjects and a large number of
ecording sessions (e.g. Midnight Scan Club ( Gordon et al., 2017b )), dif-
erent recording sessions can be randomised across batches. Moreover,
or datasets with excessive noise and artefact levels (e.g. data from ba-
ies or participants with movement disorders), using larger batch sizes
an be beneficial to increase the effective group-level SNR. 

.2. Simulations set 2 - high dimensional RSNs: sPROFUMO vs. ICA 

In the next simulation set, we specifically focused on scenarios that
re associated with the estimation of a high-dimensional set of modes,
nd that can be particularly challenging for the matrix factorisation
odels. In these simulations, we compared sPROFUMO’s performance

o ICA-DR. As shown in Fig. 4 , we focused on three factors; i.e. spa-
ial misalignments across subjects, spatial overlaps amongst the modes,
nd mode size, and evaluated each of these factors based on two resting
tate datasets, each with 500 subjects and 2 runs per subject (see Figure
 1 in Appendix C for examples of simulated and estimated sPROFUMO
odes). 

The first scenario tested the hypothesis that in order to obtain a
igh-dimensional set of modes, we are required to estimate not only
he modes that agree across the individuals, but also the modes with
arger degrees of cross-subject inconsistencies (e.g., in the presence of
patial misalignments). We simulated 15 modes per subject, and the
mount of misalignment (cross-subject) was increased from a moderate
3.1%, where subject maps were on average ∼80% overlapping with the
roup; to an excessive 57.7%, where subject and group maps were only
40% overlapping. In this scenario, simulated modes were set to be non-
verlapping at the group-level, and mode sizes were fixed on 8.6% of
he brain voxels, on average. As shown in Fig. 4 a, all the model elements
ere somewhat affected by the increase in misalignment, but the effect
as most pronounced in the subject map estimations. Additionally, the
iggest difference between sPROFUMO and ICA-DR was also reflected
n the subject map estimations, where, e.g., for 57.7% misalignments,
9 
PROFUMO’s average accuracy remained close to 0.9, while ICA-DR’s
ccuracy dropped to less than 0.5. 

In scenario 2 ( Fig. 4 b), we fixed cross-subject misalignments at 300
oxels (i.e. 3% of the brain voxels), and increased the number of modes
n the brain from 20 to 30 to 40 while keeping the mode size constant
t 8.6% of the brain voxels, on average. Therefore, simulated modes
nly varied with respect to the spatial overlap between the modes (1.7
o 3.5 modes per voxel on average). We found that while sPROFUMO
enerally coped well with moderate overlaps (i.e. 1.7 and 2.6 modes per
oxel), larger overlaps induced a big impact on both spatial and tempo-
al accuracies of the PFMs. Similar to the previous scenario, we found
PROFUMO’s accuracies to be higher than the ICA-DR. Especially for the
xtreme case of 3.5 modes per voxel, for the group and subject maps we
ound: 0.6 ICA vs 0.75 sPROFUMO and 0.15 ICA-DR vs. 0.55 sPRO-
UMO, respectively. Larger spatial overlap between the modes induces
igher spatial correlations amongst the modes, and as such, this scenario
as expected to be particularly challenging for the spatial ICA because it

s built around the assumption of spatial mode independence. Somewhat
urprisingly, however, we also observed a big impact on sPROFUMO,
ven though model assumptions were not explicitly violated. 

In the third and last scenario ( Fig. 4 c), we held the amount of mode
verlap constant, and increased the number of modes in the brain from
0 to 30 to 40, thus obtaining smaller modes, covering 6.5% to 3.25%
f the brain voxels. The smaller modes have been frequently reported
n high dimensional functional parcellation studies ( Dadi et al., 2020 ;
mith et al., 2015 ), and are particularly challenging to accurately esti-
ate in single subjects because even small amounts of misalignments

relative to the overall number of the voxels in the brain) can easily
urpass the number of voxels in these modes. Additionally, estimation
f these modes is likely to be more affected by the amount of noise in
he data and/or dimensionality reduction that is often a part of the pre-
rocessing pipelines. Here we observed that even though sPROFUMO
roup map and subject time course estimations remained fairly accu-
ate ( > 0.8) for the smallest modes, subject map accuracies dropped to
0.5. Nevertheless, similar to the previous scenarios, its performance

emained superior to that of the ICA-DR by up to 100%. 
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Fig. 4. Simulation set 2: sPROFUMO (yellow) versus spatial ICA (green) in overcoming challenging simulation scenarios for obtaining high-dimensional (i.e. large 
number of) modes at individual subject level, including: a) cross-individual spatial variability; b) amount of spatial mode overlap; and c) mode size (i.e. smaller 
modes). 
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In summary, these simulations based on three plausible scenarios,
rovide initial evidence that high dimensional decompositions, partic-
larly at single subject level, are associated with extra challenges for
ccurate functional mode reconstructions that are not typically seen at
ower dimensions. We further showed that the hierarchical modelling in
PROFUMO helps to overcome these challenges often with up to 100%
ore accuracy than ICA-DR. In Appendix C (and Figure A 2) we show
ow these results extend to classic PROFUMO and further discuss some
f the plausible reasons for when each of these modelling frameworks
ield low accuracies. Future studies are expected to investigate addi-
ional scenarios and how these findings might generalise to other single
ubject modelling frameworks. 

.3. sPROFUMO on UK Biobank: different types of RSNs identified in a 

igh dimensional soft parcellation 

After evaluating sPROFUMO using extensive simulations in the pre-
ious sections, we applied the model to the resting state fMRI data
rom 4999 subjects in UKB and characterised 150 sPROFUMO modes,
r PFMs. For this purpose, we set 𝛽 = 0 . 6 𝑎𝑛𝑑 𝜏 = 5 for the inference
in Eq. (7) ) and subjects were randomised across batches of size 50.
he inference was conducted across 250 batches; thus, each subject was

ncluded in a batch 2.5 times on average. Within each batch, subjects
ere first updated 10 times, keeping the group model constant, in order

o bring the subjects into accordance with the group (i.e. initial batch
pdates, see Section 2.2.4 for details and rationale) and next, the full
nference was run 20 times (i.e. full batch updates). Therefore, the over-
ll group model was updated 5000 times, and each subject 50 times
longside the group (on average). The model was run on 10 processing
ores on a compute node, taking ∼210 hours to complete, and the mem-
ry usage peaked at ∼100GB. Model convergence is shown in Figure A
 (Appendix D), where we measured convergence based on the Free En-
rgy calculated across the full population, as well as the group spatial
10 
ap and group partial temporal correlation matrix, which represent the
wo key aspects of the model that are estimated hierarchically. 

Fig. 5 illustrates the 150 group-level PFMs that consist of a variety
f cortical, subcortical and cerebellar modes, providing a high dimen-
ional soft parcellation of the brain. PFMs in this figure are thresholded
t 0.5 for illustration purposes. A key distinction between the current
esults and the previous PROFUMO papers is the reconstruction of a
igh dimensional set of resting state modes. As shown in Fig. 5 a, we can
roadly categorise these PFMs into four categories: 1) high-SNR dis-
ributed RSNs (yellow), 2) lower SNR distributed RSNs (blue), 3) lower
NR parcel-like RSNs (green) and 4) PFMs with physiological or MR ac-
uisition origins (purple). Hereafter, we will refer to all the categories
s functional modes (or PFMs), but only categories 1–3 are referred to
s RSNs. PFMs in category (1) show a close match to the well-known
ensorimotor and cognitive RSNs that are typically reported at lower
imensions. PFMs in category (2) appear to represent the variants of
ensorimotor and cognitive RSNs that are less frequently found in rest-
ng state studies. PFMs in category (3), i.e. the parcel-like modes, were
ound to spatially overlap with one or several of the distributed RSNs in
ategories (1) and (2). As will be illustrated later in Section 4.3.1 , we
ound the signal to noise ratio of the categories (2) and (3) to be lower
han the more established RSNs in category (1) 

We further characterised the similarities between the PFMs based
n two types of correlation-based network matrices (NetMats): partial
emporal NetMats and spatial NetMats. As outlined earlier in Section
.1 , in sPROFUMO (and PROFUMO), modes are simultaneously char-
cterised in both the spatial and temporal domains. In the spatial do-
ain, a mode is described based on its spatial layout (i.e. topography)

cross the brain voxels and in the temporal domain it is described with
ime courses, time course amplitudes, and time course partial correla-
ions. The group-level spatial NetMat was computed as cross-mode cor-
elations of the group spatial maps and showed a structured pattern
onsisting of 6 distinct clusters that were characterised by high within-
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Fig. 5. Summary results of applying sPROFUMO to 4999 subjects from UK Biobank and obtaining a high dimensional decomposition with 150 PFMs : a) 
the reconstructed modes include the large-scale RSNs that are typically found in lower dimensional decompositions, with the addition of less-common RSNs. Four 
types of PFMs were identified here: high SNR distributed RSNs (category (1) yellow frames), lower SNR distributed RSNs (category (2) blue), contiguous parcel-like 
RSNs (category (3) green) and PFMs of physiological or acquisition origin (category (4) purple), that altogether provide a high dimensional, soft parcellation of the 
brain function. Modes shown in this figure are thresholded at an absolute value of 0.5 for illustration purposes. b) Group-average spatial (left) and partial temporal 
(right) network matrices (NetMats) for sPROFUMO modes. The spatial NetMats cluster into 6 distinct clusters of modes. 
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luster correlations and low cross-cluster correlations ( Fig. 5 b - left).
hese clusters were identified using the Louvain algorithm as outlined in
 Geerligs et al., 2015 ) and can be broadly labelled as: somatosensory; vi-
ual and cerebellar; variants and subdivisions of DMN; parieto-occipital;
ronto-parietal; fronto-central and subcortical. We additionally charac-
erised the group-average temporal NetMat based on partial correla-
ions amongst the mode time courses, as shown in ( Fig. 5 b - right). Us-
ng the same mode ordering in Fig. 5 b – left&right shows that modes
ith high spatial correlations tend to be generally more temporally cor-

elated, albeit with a notable reduction in the strength of the block
tructure. 
11 
.3.1. Signal versus noise components 

Up to this point, we have shown results based on the “signal ” el-
ments of sPROFUMO. However, as outlined in Section 2.1 , in both
patial and temporal domains, sPROFUMO additionally estimates noise
erms. More specifically, every PFM is characterised by six elements:
patial signal and noise, temporal signal and noise, amplitudes and resid-
als. Figure A 4 in Appendix D illustrates signal and noise components
or a set of example resting state PFMs in three random subjects. In
he spatial domain (Figure A 4a), it can be seen that the signal element
aptures the spatial topography of a PFM and its variability across sub-
ects, while the background that is irrelevant to the mode topography
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s accurately assigned to the noise components. This property is key in
btaining clean subject spatial maps, and can be expected to be particu-
arly useful for datasets with naturally lower SNRs or when less data per
ubject are available. In the temporal domain (Figure A 4b), the separa-
ion of signal and noise components clearly shows how the time courses
f example RSNs from categories (1), (2) and (3) from Fig. 5 differ from
ach other, with category (1) showing substantially higher SNR. 

.3.2. Stability of sPROFUMO PFMs across subjects and model runs 

We further evaluated how reliably sPROFUMO modes were esti-
ated across and within subjects based on three set of consistency met-

ics: a) between-run consistency; b) consistency of results when a smaller
opulation is analysed and c) cross-individual robustness of the results.
ere we present a brief summary and further details are presented in
ppendix E and Figure A 5. Firstly, between-run stability was measured
y re-running the model on the same subjects and measuring correla-
ions between the outputs of the two runs, in order to measure stabil-
ty to stochastic randomisations. We found average consistency of 0.98,
.98 and 0.94 for the group spatial maps, spatial and temporal NetMats,
espectively. For subject-specific PFMs these values were: 0.90, 0.94
nd 0.77, with 0.85 consistency for the amplitudes. Secondly, we tested
hether the model will produce replicable results if a smaller popula-

ion is analysed. For this purpose, we re-ran the model on a subset of the
riginal subjects, with 1500 subjects, and compared subject and group
esults to that of the 4999 population. We found average replicability
f 0.96, 0.92 and 0.86 for the group spatial maps, spatial and partial
emporal NetMats, respectively. For subject-specific PFMs, these values
ere: 0.84, 0.72 and 0.62, with 0.89 consistency for the amplitudes.
hirdly, we measured cross-individual robustness of the results based
n subject-to-group (S2G) and subject-to-subject (S2S) consistencies. In
he absence of a ground truth in the real data, higher S2G and S2S con-
istencies have been often used as metrics of performance and robust-
ess in single subject modelling ( Gordon et al., 2020 ; Guntupalli et al.,
018 ). This is particularly due to the fact that we expect the biologically
eaningful RSNs to exhibit similar key features across individuals (e.g.

ight-hand motor network should localise to left motor cortex), and we
xpect the group model to capture the key elements shared across the
opulation. We found the most-to-least consistent sPROFUMO mode el-
ments to be: spatial NetMats (S2S: 0.79, S2G: 0.89), partial temporal
etMats (S2S: 0.70, S2G: 0.83), spatial maps (S2S: 0.55, S2G: 0.73) and
ode amplitudes (S2S: 0.31, S2G: 0.56). It is worth noting that while

2G and S2S consistencies yield useful metrics of results stability, in or-
er to provide more direct evaluation of the model’s ability to capture
eaningful subject-specific variability in spatial and/or temporal do-
ains, we complement results from this section with additional metrics

rom simulations ( Section 4.2 ) and prediction power for cognitive tests
 Section 4.6 ). 

.4. Functional relevance of sPROFUMO PFMs at the single-subject level 

A closer examination of the PFMs in Fig. 6 reveals interesting links
ith the established functional subdivisions of the brain, not only for the
roup but also at individual subject level. For example, Fig. 6 a – Right
llustrates four large-scale PFMs distributed over motor cortex and cere-
ellum that closely correspond to a somatotopy map of the foot, left
and, right hand and face/tongue areas in the brain ( Buckner et al.,
011 ; Haak et al., 2018 ; Van Den Heuvel and Pol, 2010 ). Importantly,
isual inspection of the example subject PFMs shows rich details of to-
ographical variability across the individuals, whilst the characteristic
eatures of the PFMs, e.g. lateralisation of left versus right-hand motor
etworks persists. Similarly, Fig. 6 a – LEFT shows seven PFMs in the
ccipital lobe that correspond to specific functional sub-regions of the
isual cortex ( Wang et al., 2015 ). 

In addition to the sensorimotor RSNs, we detected multiple variants
f the higher-level cognitive networks in single subjects. Fig. 6 b illus-
rates two variants of the DMN which is typically characterised by sub-
12 
etworks in bilateral Inferior Parietal Lobe (IPL), Posterior Cingulate
ortex (PCC), bilateral Temporal Lobes and medial Prefrontal Cortex
PFC). The two DMNs identified here were distinct by several factors
see six marked arrows and explanations in Fig. 6 b and its caption).
onsidering these distinctions, DMN1 and DMN2 seem to closely match
espectively to the medial temporal and dorsal medial DMN variants that
ecent studies have reported ( Andrews-Hanna et al., 2014 ; Braga and
uckner, 2017 ), and which was also reported in the PFMs inferred from
CP CIFTI data using PROFUMO ( Harrison et al., 2020 ). The important
istinction between the results we show here and these previous results
s that the characteristic features of the PFMs hold in individual subjects,
ven when using only six minutes of data per subject: for example, note
he presence of the Para-hippocampal subnetwork in DMN1 versus its
bsence in DMN2. By way of contrast, HCP results used one hour of data
er subject, and Braga & Buckner’s analyses used nearly three hours of
ata per subject. 

.5. Distinct behaviours of sPROFUMO and ICA at 150-mode 

ecomposition 

We next conducted a detailed comparison of the sPROFUMO PFMs
ith 150 functional modes estimated using spatial ICA (FSL’s MELODIC)
nd Dual Regression (DR). Results are shown in Fig. 7 . Note that group-
evel modes in this figure are thresholded for illustration purposes (refer
o colourbars and figure caption for details). 

At the group-level, we paired sPROFUMO and ICA modes based on
he spatial correlation across voxels. As shown in Fig. 7 a, for 74 modes,
e found a clear one-to-one correspondence between PFMs and ICs,
hile for the other half, every PFM corresponded to multiple ICs. A

loser examination of the modes revealed that one-to-one correspon-
ence typically occurs for smaller modes (i.e. categories (2) and (3)
n Fig. 5 ), such as cerebellar and subcortical RSNs in Fig. 7 b. In con-
rast, large-scale PFMs corresponded to multiple ICs as shown e.g. for
MN in Fig. 7 b. This pattern is likely a by-product of differences in
odel assumptions. More specifically, ICA assumes spatial indepen-
ence amongst the modes and as a result, ICA modes are oftentimes
inimally overlapping ( Beckmann and Smith, 2004 ; Bijsterbosch et al.,
019 ). Consequently, by moving to higher dimensions, ICA is expected
o split the large-scale modes into multiple fine-grained modes with
mall overlaps. On the contrary, sPROFUMO does not impose any such
ssumption and thus yields a mixture of overlapping large-scale and
ne-grained PFMs in high dimensional decomposition. As we will later
over in the Discussion , this can have implications for the interpretabil-
ty of the sPROFUMO and ICA modes. 

In addition to the group-level differences, we also detected interest-
ng differences between sPROFUMO and ICA-DR’s single-subject results.
n Fig. 7 c, we show two visual and motor networks because they provide
xamples of high SNR modes that are typically reliably estimated in sin-
le subjects. As can be noticed, PFM subject maps are less contaminated
y the background noise. We showed earlier in Section 4.3.1 how the
ouble-Gaussian Mixture Modelling in sPROFUMO accurately assigns
ninteresting background to the noise component. Here this is reflected
n the histogram of the signal map values across the voxels (Figure A 6 in
ppendix F), where for a large number of voxels, signal values are near
ero, indicating that noise membership probability has outweighed sig-
al probability. However, such a pattern cannot be systematically cap-
ured using ICA-DR and instead, as shown in Figure A 6, it yields one
aussian distribution across the voxels to account for signal and noise,
ombined. 

.6. Predicting cognitive outcome based on sPROFUMO and ICA-DR 

We have so far shown evidence of sPROFUMO’s ability to yield sta-
le and functionally relevant results, and its potential to cope with chal-
enging scenarios for reliable estimation of the high dimensional PFMs.

e further examined in detail how the model compares against spatial
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Fig. 6. Functional relevance of sPROFUMO modes (i.e. PFMs) in population and individuals illustrated based on: a) examples of visual and motor networks. 
These PFMs show similarities with the well-known subdivisions of the sensory-motor networks and show rich details of spatial variability across participants; b) two 
variants of DMN, that are distinct by several factors, marked with arrows, including: 1) a Para-hippocampal node exists in DMN1, but not DMN2; 2) while DMN1 
includes posterior IPL and Angular Gyrus, DMN2 includes anterior IPL and Temporoparietal Junction; 3) lateral temporal cortex, including anterior temporal lobes 
are pronounced in DMN2 but less so in DMN1; 4) while DMN1 includes ventromedial PFC, DMN2 includes dorsomedial PFC; 5) a subnetwork in the inferior frontal 
cortex exists in DMN2 but not in DMN1. Note that group-level modes shown in this figure are thresholded at an absolute value of 0.5 for illustration purposes but 
subject-level modes are unthresholded to preserve the details of cross-subject variability. 
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CA-DR paradigm. An important next question that might occur to the
eader is whether the PFMs inferred by sPROFUMO are indeed capable
f accounting for interpretable individual-specific traits; e.g. are these
igh dimensional PFMs of significant cognitive relevance? We looked to
ddress this question by assessing the sPROFUMO PFMs’ ability to pre-
ict a battery of 68 cognitive tests in the UKB data. These tests spanned
 range of sensorimotor and higher-level cognitive functions. 

First, we computed the prediction accuracies by combining outputs
rom all the functional modes, which we refer to as multi-mode predic-
ions. For this purpose, as outlined earlier in Section 3.4.4 , spatial maps
cross all the functional modes where dimensionality-reduced and com-
ined using sparse dictionary learning and bigFLICA ( Gong et al., 2021 ),
n order to obtain a set of SMAP features across the subjects. Addition-
lly, spatial and temporal NetMats were dimension-reduced to obtain
NET and TNET features, and mode amplitudes across the subjects were
tilised as AMP features. The main purposes of the multi-mode predic-
ions were: a) to determine which of the model elements provide the
est predictors, and b) to compare sPROFUMO’s performance to ICA-
R. Bland-Altman plots in Fig. 8 a show correlation-based prediction ac-
uracies, where values above and below the baseline (at zero) depict
igher performances for sPROFUMO and ICA-DR, respectively. 

Two advantages of sPROFUMO that can be noted from these plots
re its superior overall (i.e. multi-element) (p-value = 4.47 × 10 − 6 ) and
MAP (p-value = 3.03 × 10 − 7 ) prediction accuracies. More specifically,
he size, locations and spatial arrangement of the functional modes in
PROFUMO were found to provide better predictions compared with
CA-DR. In contrast, TNET from ICA-DR, i.e. the functional connectivity
mongst the modes, outperformed that of sPROFUMO (p-value = 3.59 ×
0 − 6 ). Apart from this double dissociation of SMAP and TNET, the SNET
nd AMP elements showed similar performances between the two mod-
13 
ls. It is worth noting that, as elaborated in Section 3.4.2 , we conducted
redictions after a set of imaging confounds were linearly regressed out
f both the predictor and target variables. While this can arguably al-
ow us to obtain more interpretable prediction results, we further tested
Figure A 7) that prediction patterns, in particular the double dissoci-
tion, are maintained if no deconfounding or unilateral deconfounding
f predictor variables are performed. 

We next made a closer examination of sPROFUMO’s multi-mode
ulti-element accuracies for each cognitive test in isolation, as shown

n violin plots in Appendix G, Figure A 8, and broadly categorised the 68
ests into three sets: a) sensorimotor metrics that include tests of reaction
ime and trail making; b) memory and executive functions that include
ests of numeric and prospective memory, symbol-digit and pair match-
ng, and matrix pattern completions; c) a range of fluid intelligence tests.

e found sPROFUMO to be most successful at predicting tests related
o memory and executive functions, where the average prediction accu-
acies were found to be as high as ∼0.3. 

Next, taking a step away from combining outputs of all the func-
ional modes, we used uni-mode predictions, to identify the best pre-
icting modes. As shown in Fig. 8 c, these included multiple frontal,
ronto-parietal and variants of the DMN, in addition to one visual, one
uditory, and one cerebellar mode. We found the uni-mode prediction
ccuracies to be up to 0.15, 0.2, 0.2 and 0.25 for TNET, SNET, SMAP
nd multi-element, respectively ( Fig. 8 b). Comparison against ICA-DR
evealed a generally better performance for sPROFUMO, reflected in
MAP, SNET and multi-element prediction but not the TNET. The supe-
ior performance of sPROFUMO for uni-mode multi-element predictions
 Fig. 8 b left) is particularly interesting as it reveals that single PFMs at
50-mode decomposition are of higher cognitive relevance compared to
CA-DR modes of the same dimensionality. 
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Fig. 7. Comparison of 150 sPROFUMO modes from UKB to spatial ICA (group) and ICA-Dual Regression (subjects) : a) sPROFUMO and ICA modes that 
are matched based on spatial correlation across voxels. For the 74 modes labelled as showing one-to-one matching, absolute spatial correlation between each pair 
was > 0.7 and this correlation was at least two standard deviations higher that the next best matching mode. Modes that do not pass this criterion are labelled as 
having one-to-many matching. b) Left: examples of cerebellar, subcortical, frontal and parietal modes with one-to-one matching; right: example of one DMN mode 
in sPROFUMO that was divided into six subnetworks in ICA; c) example subject-level differences between sPROFUMO and ICA-DR for sensorimotor networks in two 
UKB participants. Note that group-level modes shown in this figure are thresholded for illustration purposes (refer to colourbars for thresholds) but subject-level 
modes are unthresholded to preserve the details of cross-subject variability and noise levels in each spatial map. 
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In summary, we found sPROFUMO to successfully predict a range of
ognitive tests, and to generally outperform ICA-DR. Notably, we found
 double dissociation between the two models, where in sPROFUMO the
patial mode topographies showed the highest contribution in predicting
he cognitive outcome, while in ICA-DR, between-mode functional con-
ectivity provided the best predicting element. This dissociation is in-
ine with previous findings of ICA-DR and PROFUMO ( Bijsterbosch et al.,
019 , 2018 ; Harrison et al., 2020 ; Llera et al., 2019 ) based on canon-
cal correlations analysis of behavioural and life factors. In this study,
e expand those findings using predictions and a sample size that is
pproximately five times larger. 

.6.1. sPROFUMO versus PROFUMO predictions 

The proposed stochastic version of PROFUMO (i.e. sPROFUMO) aims
o make the model applicable to big datasets where PROFUMO’s appli-
ation is not computationally practical. For example, for the 150-mode
FM decomposition based on 4999 UKB subjects, PROFUMO would re-
uire ∼7.5 TB, which were intractable with our computing resources,
hile sPROFUMO required ∼100GB. Nevertheless, it is important to

how that sPROFUMO’s ability to predict cognitive tests is not worse
han PROFUMO. For this purpose, we ran both models on a smaller pop-
lation consisting of 1500 subjects. We conducted multi-mode predic-
ions using multi-element model summaries, spatial maps, spatial Net-
14 
ats, temporal NetMats and Amplitudes. Results are shown in Figure A
, where we found no significant difference between the two models. 

.7. Disentangling double dissociation of sPROFUMO spatial map versus 

CA-DR temporal NetMats in predictions 

Our prediction results revealed that while ICA-DR TNETs outperform
PROFUMO TNETs for prediction of cognitive tests, sPROFUMO SMAPs
how superior performance compared with ICA-DR SMAPs. This double
issociation raises a key question, namely, are the two algorithms mea-
uring overlapping sources of subject variability, but projecting them
nto different model elements? In order to address this question, we
onducted two analyses: 

Firstly, we calculated the degree to which sPROFUMO SMAP/TNET
hare variance with ICA-DR SMAP/TNET across individuals. For this
urpose, we extracted multi-mode summaries of each model in spatial
ersus temporal domains, and obtained N subject × 500 feature matrices
or SMAPs and TNETs. We performed Canonical Correlation Analysis
CCA) to measure shared variance in pairwise comparisons, as outlined
n Section 3.4.7 . Results are shown in Fig. 9 . Interestingly, we found the
ighest shared variance to be between sPROFUMO SMAPs and ICA-DR
NETs, where 77 out of top 100 CCA components where significantly
orrelated after Family-wise error-rate (FWER) correction for multiple
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Fig. 8. Prediction of cognitive outcome using 150 sPROFUMO modes at rest, and comparison to ICA-DR of the same dimensionality . These results show 

an overall higher performance for sPROFUMO and reveal a double dissociation between the role of spatial topography versus functional connectivity in prediction 
accuracies (PA) of the two models. a) Bland-Altman plots for multi-mode prediction. 5-fold cross-validations used to estimate prediction accuracies for 68 cognitive 
tests, each repeated 20 times, providing 20 × 68 dots per plot; b) density scatter plots of uni-mode predictions. 5-fold cross-validations used to estimate prediction 
accuracies for each of the 150 modes and 68 cognitive tests, providing 150 × 68 dots per plot. Since PFM and ICA-DR modes are not necessarily one-to-one matching 
(see Fig. 7 ), predictions are sorted and paired based on worst-to-best accuracy; c) examples of the best predicting sPROFUMO RSNs. Red dashed lines in (a) and (b) 
denote baselines for equal performance. 
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omparisons (see Section 3.4.7 for details). We also found significant
orrelations of sPROFUMO TNETs with ICA-DR TNETs (44 CCA com-
onents). On the contrary, we only found a few shared components
etween sPROFUMO SMAPs with ICA-DR SMAPs (1 significant CCA
omponents) and sPROFUMO TNET with ICA-DR SMAP (2 CCA compo-
ents). Therefore, it is likely that what ICA-DR projects onto functional
onnectivity matrices is inherently a combination of spatial variability
nd functional connectivity of RSNs in PFMs. 

Secondly, considering these significant shared variances between
CA-DR and sPROFUMO model elements, we next tested whether the
15 
ognition prediction power of each model will be reduced if the lin-
ar projection of the opposite model is regressed out. More specifi-
ally, we first focused on sPROFUMO SMAPs, and compared its orig-
nal prediction accuracies with when ICA-DR SMAPs or TNETs were re-
ressed out ( Fig. 9 b, boxplots on the left). We found that only when
he ICA-DR TNETs were regressed out, were the PFM SMAP predictions
ignificantly reduced. Next, we focused on ICA-DR TNETs and com-
ared its original prediction accuracies with when sPROFUMO SMAPs
r TNETs were regressed out ( Fig. 9 b, boxplots on the right). This time
e found significant reduction of accuracies in both cases. The reduc-
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Fig. 9. Disentangling sources of subject variability in sPROFUMO versus ICA-DR Spatial Maps (SMAP) and temporal NetMats (TNETs) : a) Canonical Corre- 
lation Analysis (CCA) revealed the highest number of significantly-correlated CCA components to be between sPROFUMO SMAPs and ICA-DR TNETs, followed by 
shared components between sPROFUMO TNETs and ICA-DR TNETs. Dashed lines show thresholds for significant correlations after Family-wise error rate correction 
for multiple comparisons using permutations. Pairwise comparisons that are associated with more conservative thresholds showed broader confidence intervals. b) 
Testing the degree to which sPROFUMO SMAP prediction accuracies will be reduced if ICA-DR SMAP or TNETs are linearly regressed out before running predictions. 
Testing the degree to which ICA-DR TNET prediction accuracies will be reduced if sPROFUMO SMAP or TNETs are linearly regressed out before running predictions. 
∗ denotes p-value < 0.01, and ∗ ∗ denotes p-value < 0.005. 

t  

o
 

D  

t  

I  

m  

v  

t  

D  

r  

r

4

 

t  

s  

h  

2  

i  

d  

4  

1  

t  

a
 

b  

W  

g  

b  

l  

a  

p  

r  

u  

i  

h  

b
 

s  

c  

w  

R  

m  

M  

c  

t  

t  

a  

N  

n
 

s  

p  

o  

W  

t  

(  

s  

f  

(  

b  

f  

f  

a  

p  

t  

r  

P  

t  

f  

×  

c  

 

t  

m  

t  

2  

a  

g  

v  

d  

other studies in the future. 
ion was particularly evident when sPROFUMO SMAPs were regressed
ut. 

These results altogether confirm that sPROFUMO SMAPs and ICA-
R TNETs measure overlapping sources of subject variability that con-

ribute to prediction of cognitive tests. Importantly, however, while in
CA-DR the sources of cognitive variability seem to be predominantly
apped onto functional RSN connectivity, sPROFUMO appears to di-

ide them between spatial variability and temporal connectivity, with
he former playing a more important role. As we will discuss later in
iscussion , this can have important implications for how spatial topog-

aphy and functional connectivity might interplay in subject-specific
esting-state network estimations. 

.8. Effect of mode dimensionality on group- and subject-level PFMs 

Results presented up to this point are based on the decomposi-
ions of 150 sPROFUMO PFMs in the brain at rest. Recent studies of
ubject-specific high dimensional functional parcellations have reported
undreds of functional modes at rest ( Dadi et al., 2020 ; Smith et al.,
015 ). These findings are often based on the datasets with long record-
ngs in the order of hours e.g. HCP data or combinations of multiple
atasets. Given the relatively small number of time points in UKB (i.e.
90 time points corresponding to 6 minutes), here we chose to estimate
50 modes. Nonetheless, this choice remained somewhat arbitrary. We
herefore explored the extent to which the key results hold when 100
nd 200 PFMs were to be estimated. 

First focusing on the group model, we paired group spatial maps
ased on the spatial correlation across the voxels, as shown in Fig. 10 a.
hen comparing 100 and 150 dimensions, we found that there was

enerally a one-to-one correspondence between the first 100 PFMs, and
y increasing to 150, sPROFUMO added new PFMs. We made a simi-
ar observation when comparing 150 and 200 PFMs. Modes that started
ppearing at higher dimensions were spatially correlated with multi-
le of the existing modes. These new modes were amongst the lower-
anked modes in sPROFUMO’s matrix factorisation and thus, perhaps
nsurprisingly, were found to be typically lower in SNR. We next exam-
ned model convergence (Figure A 10 in Appendix H) and found that
igher-dimensional decompositions showed a quicker convergence of
oth group spatial maps and partial temporal NetMats. 

Next, we investigated the effect of increased dimensionality on
ubject-specific PFMs ( Fig. 10 b). Focusing on cross-subject consisten-
ies, similar to Section 4.3.2 and Appendix E, for each model element,
16 
e calculated correlations between each subject and all other subjects.
egardless of dimensionality, spatial NetMats were the most consistent
odel element across the individuals, followed by partial temporal Net-
ats and spatial maps, and consistencies of these elements further in-

reased with dimensionality. On the contrary, mode amplitudes were
he least consistent element and further decreased in consistency by
he increased dimensionality. Interestingly, increasing the dimension-
lity from 100 to 150/200 resulted in more structured partial temporal
etMats with higher off-diagonal values, which in turn resulted in a
oticeable increase in cross-subject temporal NetMat consistencies. 

We finally compared cognition prediction accuracies of different
PROFUMO dimensionalities ( Fig. 10 c and Figure A 11). For this pur-
ose, we first looked at the results from multi-mode predictions based
n SMAPs, SNETs, TNETs, Amplitudes and multi-element combination.
e generally found similar performances for different dimensionali-

ies ( Fig. 10 c), except for three significant differences: SMAPs from 100
 t = 4.02; p = 0.0003) and 150-mode ( t = 6.99; p = 6.4 × 10 − 8 ) decompo-
itions were significantly better than 200-mode decompositions; TNETs
rom 150-mode were significantly better than 100-mode decompositions
 t = 3.74; p = 0.0018); Amplitudes from 100-mode were significantly
etter than 150-mode decompositions ( t = 4.55; p = 0.0001). Next, we
ocused on uni-mode predictions, namely to see if the modes that are
ound at higher dimensions can outperform the modes that are present
t lower dimensions. For this purpose, we focused on 150-mode decom-
ositions. By comparing against 100-mode decompositions, we labelled
he top 82 modes that showed a clear one-to-one matching (spatial cor-
elation > 0.75) as primary PFMs, and the remaining 68 as secondary
FMs. We compared multi-element predictions of each secondary PFM
o all the primary PFMs and found 7 modes that significantly outper-
ormed at least 25% of the primary PFMs (after FDR correction across 82
68 multiple comparisons). Results are shown in Figure A 11, these in-

lude 5 parcel-like parietal modes, one frontal and one cerebellar mode.
These results altogether show that the increased dimensionality of

he PFMs can add unique information to what is provided by lower di-
ensions, resulting in more accurate fits to the data and improve consis-

ency. Increasing dimensionality from 100 to 150 (but not from 150 to
00), also showed some improvements for prediction of cognitive tests
nd revealed new cognitively-relevant fine-grained modes. Therefore,
iven the relatively short recordings in UKB, 100/150 modes might pro-
ide a better choice of dimensionality compared with 200. We will later
iscuss how our findings on high dimensional PFMs might generalise to
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Fig. 10. Estimating different number of resting state functional modes using sPROFUMO (comparing 150 to 100 and 200) . a) Group-level: going to higher 
dimensions (i.e. from 100 to 150 and 150 to 200) yielded new modes that were spatially overlapping with the existing modes; b) subject-level: all model elements 
except for the amplitudes became more consistent for higher dimensions; c) different dimensionalities showed similar multi-mode prediction performances for 
cognitive tests except for: SMAPs of 100 and 150-mode decompositions were significantly better than 200-mode decomposition, TNETs of 150 were better than 100, 
and amplitudes of 100 were better than 150. ∗ ∗ denotes p < 0.005, refer to the main text for t-value/p-values. 
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. Discussion 

In this study, we proposed stochastic PROFUMO (sPROFUMO) for
nferring functional brain modes in individuals and populations from
ig fMRI data. We applied the model to resting state data from 4999 UK
iobank (UKB) subjects, in order to obtain high dimensional PFM de-
ompositions of the brain function at rest, and predicted cognitive traits
ased on these functional modes. The highlights of the proposed model
nd results are threefold: firstly, sPROFUMO resolves the issue of com-
utational costs that is associated with the application of bidirectional
ierarchical models to big fMRI data; e.g. UKB with expected 100,000
ubjects. It therefore provides suitable means to leverage the unprece-
ented richness of population variability that is provided by big data,
nd explicitly models functional networks for each individual within
he epidemiological cohorts. Secondly, using simulations and real data,
e illustrated several advantages of sPROFUMO over the established
aradigm of ICA Dual Regression. This was particularly reflected in over
00% more accurate estimation of cross-subject variability in the spatial
PROFUMO mode topographies, and providing a potentially more inter-
retable reflection of cognitive variability in RSN topographies versus
onnectivity . Thirdly, sPROFUMO enabled us to obtain an unprece-
ently detailed mapping of the single subject RSNs based on UKB, and
e showed these RSNs to be predictive of individualistic cognitive traits.
he sPROFUMO code and discovered PFMs will be made publicly avail-
ble in hopes of being useful for future investigations into individualised
rain function. 

.1. Hierarchical functional mode modelling from big data 

An important objective of big neuroimaging data is to provide re-
ources for precision medicine and neuroscience ( Bzdok and Yeo, 2017 ;
anguli et al., 2018 ; Quinlan et al., 2020 ; Sui et al., 2020 ). Therefore,
17 
ncreasing developments have been made to map the brain function in
ingle subjects, and an important challenge in doing so is to overcome
he computational costs of such models ( Mejia et al., 2019 ). Classic PRO-
UMO ( Harrison et al., 2020 , 2015 ) provides an advanced approach for
ierarchical modelling of the functional brain networks in population
nd individuals. The sPROFUMO method proposed in this study builds
pon PROFUMO and incorporates two key differences in order to make
t suitable for big data application. Firstly, it substantially reduces the
omputational costs of the model. For example, for a 150-mode PFM de-
omposition and 4999 UKB subjects as used in this study, classic PRO-
UMO would typically require ∼7.5 TB and for the forthcoming 100,000
ubjects in UKB, this value will increase to 150 TB of computer RAM,
hich are intractable. With sPROFUMO, these values are decreased by
 factor of 100, such that thousands of subjects can be readily analysed
ith a modest computing cluster, while still maintaining similar accu-

acies to that of PROFUMO, as evaluated by extensive simulations and
rediction accuracies for cognitive traits. 

The stochastic variational inference used in sPROFUMO can enable
he model to also accommodate larger degrees of population hetero-
eneity; i.e. subject deviations from the group. More specifically, in the
revious studies, we had observed that PROFUMO requires a mode to
e present in a majority of individuals in order to be estimated for the
opulation ( Harrison et al., 2020 ), otherwise, it was found to be typi-
ally “switched off” - returned as “missing ” for the population as well
s all subjects. On the contrary, we found that sPROFUMO was able to
ecover modes even when they were estimable in only a minority of
he subjects. This could be useful in various instances when there are
ubstantial variations in the SNR of the fMRI recordings across the in-
ividuals, e.g. in babies or patients, such that the less prominent modes
ight only be estimable in a subset of subjects. As outlined in Section
.2.1 and Appendix B, we applied additional data curation strategies to
oost the number of estimable modes in individuals, such that all the
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eported modes in this study were consistently present (i.e. showing no
r a few missing modes across individuals). 

Another feature of sPROFUMO, which is directly inherited from
ROFUMO, and we found to be particularly useful when applying the
odel to UKB, was its explicit account of signal and noise components

t single subject level. UKB, despite the unprecedently large number of
ubjects that provides excellent group-level SNR, has a relatively small
mount of data per subject, where each subject is scanned once and for
6 minutes ( Miller et al., 2016 ). This will make it particularly challeng-

ng to estimate “clean ” modes at single subject level and, thus, further
odelling strategies are required to obtain high SNR mode estimation

n individuals. Unlike the common approach used in matrix factorisa-
ions, where each mode is decomposed into spatial map, time course
nd residuals ( Beckmann et al., 2009 ; Guo and Tang, 2013 ; Mejia et al.,
019 ; Varoquaux et al., 2011 ), in s/PROFUMO, spatial maps and mode
ime courses are further decomposed into signal and noise components.

e showed that ( Fig. 7 and Figure A 4) this noise modelling can accu-
ately tease apart signal from the background noise and substantially
mproved the SNR of subject mode estimations, e.g. compared to ICA-
R. 

.2. High dimensional single subject RSN decompositions in UK Biobank 

We estimated high dimensional sPROFUMO RSNs in population and
ndividuals from UKB. The importance of high dimensional RSN decom-
ositions has come to light in the last few years, as they provide a de-
ailed mapping of the brain function ( Dadi et al., 2020 ; Pervaiz et al.,
020 ; Smith et al., 2015 , 2013b ). The fine millimetre spatial resolu-
ion of fMRI makes this modality suitable for investigation of the brain
unction on a voxel-by-voxel basis ( Norman et al., 2006 ; Woolgar et al.,
016 ). Nonetheless, resting state fMRI connectivity is oftentimes con-
ucted in low-dimensional spaces, e.g. based on 20–50 networks which
rovides valuable insight into long-distance system-level interactions.
evertheless, growing evidence suggests that this approach has a lim-

ted ability to elucidate the information that is encoded in fine-grained
rain topographies ( Feilong et al., 2020 ) or within-mode interactions
 Schaefer et al., 2018 ). The high dimensional modes (100, 150, 200
FMs) that we identified using sPROFUMO incorporated three types of
SNs: i) high-SNR distributed RSNs, ii) lower SNR distributed RSNs, iii)

ower SNR parcel-like RSNs. 
Importantly, the high dimensional PFMs demonstrated a unique be-

aviour whereby the well-known large scale RSNs, e.g. DMN or DAN,
hat are typically found at lower dimensions were preserved, while new,
patially overlapping, modes were added. This behaviour is distinct from
he existing high dimensional functional parcellations ( Craddock et al.,
012 ; Schaefer et al., 2018 ), and previously reported behaviour in terms
f hierarchically organised networks ( Doucet et al., 2011 ; Lee et al.,
012 ). In particular, this is a fundamentally different behaviour to that
hich we observed in spatial ICA. Namely, in ICA moving to higher di-
ensions (e.g. > 100) typically results in the large-scale modes being di-

ided into multiple minimally-overlapping sub-modes that are predomi-
antly confined to one brain region ( Kiviniemi et al., 2009 ; Smith et al.,
015 , 2013b ). As an example, at 150-mode dimension, we illustrated
he DMN in Fig. 7 , where one PFM spatially overlaps with six different
Cs. 

The additional RSNs identified with sPROFUMO can be described as
he less prominent variants of the well-known RSNs. For example, as
llustrated in Fig. 5 , we found 24 modes in the occipital and occipito-
emporal cortex, coinciding with visual networks ( Wang et al., 2015 )
hile low-dimensional decompositions typically yield less than 10 vi-

ual networks ( Smith et al., 2012 ; Yeo et al., 2011 ). Our results provide
nitial evidence for the relevance of these fine-grained modes for predict-
ng cognitive traits. However, future studies are expected to shed more
ight on details of their functional relevance based on a broader set of
henotypes, ideally based on highly-sampled individuals that can pro-
ide sufficient data for high-SNR recovery of fine-grained modes. Some
18 
lausible scenarios for the functional relevance of these new RSNs in-
lude: a) a subset of these modes that are localised to specific brain
egions are likely to be specialised for specific tasks; b) some of these
odes might be sub-nodes of the distributed networks such as DMN.
hese include the modes that show high one-to-one correlations to ICA-
R modes at high dimensions (c.f. Fig. 7 ); c) a subset of these modes,
.g. parcel-like modes in the parietal cortex ( Fig. 5 , 6th and 7th rows),
ight have occurred due to the limitations of our model for captur-

ng the more complex underlying connectivity patterns e.g. gradients
f connectivity, dynamic connectivity, or presence of subpopulations in
he data ( Lurie et al., 2020 ; Margulies et al., 2016 ; Seitzman et al., 2019 ;
idaurre et al., 2017 ). 

.3. Predicting cognitive outcome based on functional modes 

An important goal of single subject modelling of functional brain
etworks is to account for individualistic cognitive and clinical traits
 Finn and Constable 2016 ; Gordon et al., 2017b ; Kong et al., 2019 ).
everaging the rich source of non-imaging phenotypes in UKB, we used
FMs to predict the outcome of a range of cognitive phenotypes. Based
n multi-mode predictions, we found the model to be most successful
t predicting tests related to memory and executive functions, where
he correlations between the estimated and true test scores were found
o be as high as ∼0.3. These prediction accuracies are on par with pre-
ious reports based on soft ( Pervaiz et al., 2020 ) and hard parcella-
ions ( Kong et al., 2019 ), as well as the more recent multimodal phe-
otype discovery methods ( Gong et al., 2021 ). Furthermore, uni-mode
redictions unravelled multiple variants of DMN and fronto-parietal at-
ention networks as the best predictors of cognitive phenotypes. This
nding can be readily integrated within the previous literature, given
he well-established (albeit less well understood) role of DMN and
ronto-parietal networks in higher-level cognitive function ( Andrews-
anna et al., 2014 ; Buckner et al., 2008 ; Raichle, 2015 ; Spreng et al.,
010 ). Interestingly, however, we also found a cerebellar mode as one of
he top predicting PFMs, which is in accordance with growing evidence
uggesting a key role for the cerebellum in higher-level cognition that
oes beyond motor coordination ( Schmahmann, 2019 ; Sokolov et al.,
017 ; Wagner and Luo, 2020 ). 

Importantly, we found the spatial characteristics of the PFMs, i.e.
patial configuration of the PFMs across the brain voxels as well as spa-
ial correlations amongst the modes, to provide better predictors of cog-
itive phenotypes compared to the functional connectivity. While pre-
ious research has predominantly investigated links between RSNs and
on-imaging phenotypes based on functional connectivity ( Dadi et al.,
019 ; Ng et al., 2016 ; Pervaiz et al., 2020 ; Smith et al., 2015 ), recent
tudies have highlighted ( Bijsterbosch et al., 2018 ; Kong et al., 2019 )
hat differences in spatial topographies can give rise to trait-like dif-
erences. We showed that using sPROFUMO, functional subdivisions of
he brain can be clearly reconstructed in individuals ( Fig. 6 ), and the
rediction results further illustrate that cross-subject variability of these
patial maps is predictive of individualistic traits. 

.3.1. Interpreting the prediction accuracies 

In addition to utilising the prediction accuracies as a proxy for the
odel’s performance, we conducted comparisons between sPROFUMO

nd ICA-DR in order to shed light on how these results can be inter-
reted. While we observed a generally higher performance for sPRO-
UMO, particularly in uni-mode predictions, the most intriguing dif-
erence was the increased predictive performance of sPROFUMO’s spa-
ial topography versus ICA-DR’s functional connectivity. This is in-line
ith recent studies ( Bijsterbosch et al., 2018 ; Llera et al., 2019 ) and can
e explained in light of differences in model assumptions and the way
ubject-group hierarchies are defined in each framework ( Beckmann and
mith, 2004 ; Harrison et al., 2020 ; Nickerson et al., 2017 ). 

If we consider the true sources of subject-variability to span both spa-
ial and temporal characteristics of the functional modes, we ideally re-
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uire a model to: a) identify the variability across the individuals and b)
ccurately assign the division of labour between spatial versus temporal
omains in accounting for that variability. Previous studies have shown
hat if the spatial variability is not accurately specified, in particular if
patial overlaps between the modes are not accurately accounted for, it
an result in a biased, typically over-estimated, functional connectivity
 Bijsterbosch et al., 2019 , 2018 ). In other words, true sources of variabil-
ty that were spatial in nature are likely to be erroneously estimated as
unctional connectivity and enhance its prediction power. In-line with
hese findings, based on CCA analysis and predictions, we found that the
ubject variability that is reflected in ICA-DR TNETs, is mostly captured
y sPROFUMO SMAPs and to a lesser extent by sPROFUMO TNETs. Mul-
iple characteristics in the PROFUMO framework are designed to accu-
ately identify spatial versus temporal variability: Firstly, as we showed
n simulations ( Section 4.2 ), bidirectional hierarchical modelling and
nference allows for accurate estimation of spatial mode configurations
n single subjects. Secondly, considering that there are no constraints
n spatial and/or temporal independence of the PFMs, the model al-
ows the modes to be functionally correlated and spatially overlapping,
epending on the evidence provided by the data at hand. Thirdly, and
mportantly, defining hierarchies on both spatial and temporal charac-
eristics of the modes allows to iteratively fine-tune the parameters in
oth domains until an optimal balance is found. Therefore, sPROFUMO
rediction accuracies can be expected to provide a more interpretable
eflection of the true sources of functional mode variability that con-
ribute to cognitive heterogeneity. This can be further tested using other
ypes of phenotypes in the future. 
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