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The objective of this study was to investigate the role of
lncRNA XIST and its relationship with miR-133a in myocar-
dial I/R injury. H9C2 cells treated by hypoxia/reoxygenation
(H/R) were used to establish an in vitro I/R model. The small
interfering RNA (siRNA) for XIST and miR-133 mimics, in-
hibitor, and suppressor of cytokine signaling (SOCS2) recom-
binant plasmids were used to transfect the cells. Cell apoptosis
was determined by flow cytometry analysis, and cell viability
was used for 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-
tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide
(MTT) assay. The dual-luciferase reporter assay was per-
formed to confirm binding between XIST and miR-133a,
as well as miR-133a and SOCS2. To inhibit or overexpress
XIST, miR-133a, or SOCS2 in I/R mice, we used
recombinant lentivirus vectors and adenovirus vectors for
tail vein injection. The expression of XIST, miR-133a, and
SOCS2 was determined by quantitative real-time PCR, and
LC3 I/II and Beclin1 was determined by western blotting.
The expression of XIST and SOCS2 was significantly upregu-
lated, whereas the miR-133a level was remarkably downregu-
lated in both H/R H9C2 cells and I/R mice myocardial tissues.
In both H/R H9C2 cells and I/R mice, the inhibition of XIST
led to decreased apoptosis and autophagy, and inhibition of
miR-133a reversed these effects. Similarly, overexpression of
miR-133a resulted in reduced apoptosis and autophagy, which
were reversed by overexpression of SOCS2. The inhibition
of XIST and overexpression of miR-133a also promote cell
viability of H/R cells. The dual-luciferase reporter assay
significantly showed that XIST directly targeted on miR-
133a, and miR-133a directly targeted on SOCS2. The
inhibition of XIST could improve myocardial I/R injury by
regulation of the miR-133a/SOCS2 axis and inhibition of
autophagy.
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INTRODUCTION
Because nowadays reperfusion is still the only effective therapeutic
method to rescue acute myocardial infraction, myocardial I/R injury
is one of the clinical challenges in the treatment of ischemic myocar-
dial infraction.1,2 Numerous studies have found that I/R injury is
associated with complex bioprocesses and molecular mechanisms,
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such as cell apoptosis, autophagy, intracellular calcium overload, in-
flammatory response, oxygen free radical release, and vascular endo-
thelial cell injury.3–5 However, the underlying mechanisms for
myocardial I/R injury still need further illumination.

The relationship between long non-coding RNAs (lncRNAs) and
myocardial I/R injury has been reported in several research studies.
It was reported that lncRNA MALAT1 was upregulated in myocar-
dial I/R injury, and inhibition of MALAT1 could improve I/R injury
through regulation of miR-145.6 In a recent study, Wu et al.7 found
that 2,292 lncRNAs were observed to be upregulated and 1,848
lncRNAs downregulated in myocardial I/R injury patients. Among
the lncRNAs, XIST is a new-found lncRNA that shows biofunctions
in several diseases, such as liver cancer and bladder cancer.8,9 In
2019, it was reported that XIST was upregulated in H/R cells and
could promote cell apoptosis of H/R cells by regulation of miR-
130a.10 However, no study focused on the relationship between
XIST and autophagy in myocardial I/R injury, and deeper insights
for XIST in myocardial I/R injury are still unclear.

miR-133a has been reported to play important roles in many
diseases such as breast cancer.11 In a recent study it was also
found that miR-133a could improve myocardial I/R injury
through targeting DAPK2.12 However, no study reported the
interaction between XIST and miR-133a in myocardial I/R injury.
In the present research, we used both in vitro and in vivo models
to investigate the role of XIST in myocardial I/R injury and its
relationship with miR-133a. Results showed that lncRNA XIST
could directly target miR-133a, and the inhibition of XIST resulted
in improvement of myocardial I/R injury through regulation of
SOCS2 and inhibition of autophagy. These results might give
deeper insights for molecular mechanisms of myocardial I/R
injury.
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. XIST and SOCS2 Were Upregulated and miR-133a Was

Downregulated in H/R H9C2 Cells

(A) Expression of XIST, miR-133a, and DAPK2 in A/R and control cells by qRT-

PCR. (B) Protein level of DAPK2 in A/R and control cells by western blotting.

***p < 0.001.
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RESULTS
XIST and SOCS2 Were Upregulated and miR-133a Was

Downregulated in H/R H9C2 Cells

First, the expression of XIST, miR-133a, and SOCS2 in H/R and
the control H9C2 cells were determined by qRT-PCR. As shown
in Figure 1A, the expression of XIST and SOCS2 was significantly
upregulated, whereas the miR-133a level was remarkably downre-
gulated in H/R H9C2 cells. The western blot assay also showed
the protein level of SOCS2 was upregulated in H/R H9C2 cells
(Figure 1B). All of these results indicated that XIST, miR-133a,
and SOCS2 might be associated with the H/R process of myocar-
dial cells.

Inhibition of XIST Promoted Cell Viability and Inhibited

Apoptosis and Autophagy through Regulation of miR-133a

To further investigate the role of XIST and miR-133a in H/R H9C2
cells, both XIST and miR-133a were suppressed by si-XIST and
miR-133a inhibitor, respectively. Results showed that when trans-
fected with si-XIST or miR-133a inhibitor, the expression of XIST
and miR-133a was remarkably decreased (Figure 2A), suggesting
the successful knockdown of the two genes. Then MTT assay was
used to determine the cell viability of different groups of cells. It
was observed that when transfected with si-XIST in H/R cells, the
cell viability was significantly enhanced and the cell apoptosis was
remarkably inhibited compared with the si-NC group (Figures
2B–2D). However, inhibition of miR-133a dramatically reversed
the effects of si-XIST. Similarly, downregulation of XIST signifi-
cantly inhibited the LC3 II/I level and the Beclin1 level (Figures
2E and 2F). However, co-transfection with miR-133a inhibitor
remarkably reversed these effects. All of these results indicated
that silence of XIST could promote cell viability and inhibit cell
apoptosis and autophagy, which were reversed by inhibition of
miR-133a.

XIST Directly Targeted on miR-133a

Then we confirmed the direct binding between XIST and miR-
133a by dual-luciferase reporter assay. The predicted binding
mode was shown in Figure 3A. Results showed that the luciferase
activity was significantly increased when cells were transfected
with miR-133a inhibitor and was significantly decreased when cells
were transfected with miR-133a mimics in WT-XIST (Figure 3B).
However, no significant difference was found in MUT-XIST.
Further experiments also showed that the overexpression of
XIST significantly downregulated the miR-133a level, and inhibi-
tion of XIST remarkably upregulated the miR-133a level (Figure 3C
and 3D), suggesting that XIST directly targeted and negatively
regulated miR-133a.

Overexpression of miR-133a Promoted Cell Viability and

Inhibited Apoptosis and Autophagy through Regulation of

SOCS2

The effects of miR-133a and SOCS2 were then further investigated
by overexpression of miR-133a and SOCS2 in H9C2 cells. As shown
in Figures 4A and 4B, the expression of SOCS2 was significantly
increased when cells were transfected with pcDNA3.1-SOCS2, and
the expression of miR-131a was remarkably upregulated when
transfected with miR-131a mimics, suggesting the successful trans-
fection. When the miR-131a was overexpressed, the cell viability
was significantly upregulated and cell apoptosis was remarkably
reduced compared with the NC control (Figures 4C and 4D). How-
ever, overexpression of SOCS2 dramatically reversed these effects.
Moreover, the ratio of LC3 II/I and the expression of Beclin1
were both significantly downregulated when miR-133a was overex-
pressed (Figures 4E and 4F), which was remarkably reversed by co-
transfection with pcDNA3.1-SOCS2. All of these results suggested
that overexpression of miR-133a could reduce the H/R-induced
cell injury and autophagy, and the process might be through regu-
lation of SOCS2.

miR-133a Directly Targeted on SOCS2

By using dual-luciferase reporter assay, we evaluated whether miR-
133a could target on SOCS2. The predicted binding mode was
shown in Figure 5A. The luciferase activity was significantly
increased when miR-133a was suppressed by miR-133a inhibitor
and was remarkably decreased when miR-133a was overexpressed
by miR-133a mimics in WT-SOCS2 (Figure 5B). However, no
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Figure 2. Inhibition of XIST Promoted Cell Viability and Inhibited Apoptosis and Autophagy through Regulation of miR-133a

(A) Expression of miR-133a and XIST in different groups of cells by qRT-PCR. (B) Cell viability of different groups of cells by MTT. (C) Cell viability by MTT assay. (D) Cell

apoptosis by flow cytometry. (E) Immunofluorescence of LC3 B in different groups of cells. (F) Protein levels of LC3 II/I and beclin1 by western blotting. ***p < 0.001, **p < 0.01.
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significant difference was found in MUT-SOCS2. It was also
observed that the expression of SOCS2 was significantly upregu-
lated by inhibition of miR-133a and was remarkably downregu-
766 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
lated by overexpression of miR-133a (Figures 5C and 5D), indi-
cating that miR-133a directly targeted and negatively regulated
SOCS2.



Figure 3. XIST Directly Targeted on miR-133a

(A) Predicted binding region between miR-133a and XIST.

(B) Relative luciferase activity in WT-XIST and MUT-XIST.

(C) Expression of XIST in different groups of cells. (D)

Relative miR-133a expression in different groups of cells.

**p < 0.01.
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Inhibition of XIST Suppressed Cell Apoptosis and Autophagy in

Myocardial Tissues of I/R InjuryMice throughRegulation ofmiR-

133a

Then, we used an in vivo mouse I/R model to further investigate the
role of XIST and miR-133a in I/R injury by tail injection of lenti-si-
XIST and lenti-miR-133a-inhibitor. Results showed that XIST and
SOCS2 were significantly upregulated, whereas miR-133a was
remarkably downregulated in myocardial tissues of I/R mice (Fig-
ures 6A and 6B). The apoptosis of myocardial cells was then evalu-
ated by TUNEL assay, and it was observed that inhibition of XIST
significantly reduced cell apoptosis rate, whereas inhibition of
miR-133a remarkably reversed this effect (Figure 6C). Similarly,
both LC3 II/I ratio and Beclin1 level were dramatically downregu-
lated by inhibition of XIST, which was reversed by inhibition of
miR-133a (Figure 6D). All of these results indicated that inhibition
of XIST could improve I/R injury, and these effects might be through
regulation of miR-133a.

Overexpression of miR-133a Suppressed Cell Apoptosis and

Autophagy in Myocardial Tissues of I/R Injury Mice through

Regulation of SOCS2

At last, we determined effects of overexpression of miR-133a
in the I/R injury mouse model. Similar to above, the overexpres-
sion of miR-133a significantly decreased the cell apoptosis and
autophagy in myocardial tissues of I/R mice, whereas overexpres-
sion of SOCS2 remarkably reversed the effects (Figures 7A and
7B). All of these results suggested that overexpression of miR-
133a could reduce I/R-induced myocardial injury, and the effects
might be through inhibition of autophagy and regulation of
SOCS2.

DISCUSSION
Although there are advantages in both basic and clinical research for
cardiac ischemic-reperfusion injury, the underlying molecular
mechanisms for myocardial I/R injury are still unclear. In recent
years, both lncRNAs and miRNAs, as well as their interactions,
Molecular Therap
have been proven to play important roles in
many diseases, including I/R injury. However,
up to now, no studies reported the involvement
of XIST in the development of myocardial I/R
injury and its relationship between miR-133a/
SOCS2 axis. In the present study, we demon-
strated for the first time that XIST was upregu-
lated in myocardial I/R injury and the inhibi-
tion of XIST could improve I/R-induced
myocardial injury through suppressing auto-
phagy and regulation of the miR-133a/SOCS2 axis in both in vitro
and in vivo I/R models.

lncRNA XIST is considered to play important roles in several dis-
eases. Zhu et al.13 demonstrated that XIST could promote cervical
cancer development by upregulating Fus through sponging miR-
200a. Chen et al.14 showed that XIST was upregulated in gastric can-
cer and accelerated cancer development by spinal miR-101. In a
recent study, Zhou et al.10 found that XIST was upregulated in H/R
cells, and the increased XIST could promote cell apoptosis of H/R
cells through targeting miR-130a. However, up to now, no study re-
ported a relationship between XIST and miR-133a, and its effect on
autophagy in I/R injury. In this research, we found that XIST was
upregulated in myocardial I/R injury, and inhibition of XIST could
significantly improve I/R injury.

The relationship between miR-133a and improved myocardial I/R
injury has been reported in literature researches. Eitel et al.15

demonstrated that circulating miR-133a was correlated with prog-
nosis of myocardial infarction patients. Another study found that
miR-133a was downregulated in myocardial infarction compared
with healthy adult and fetal hearts.16 Chen et al.17 reported in a
recent study that miR-133a could promote the therapeutic efficacy
of mesenchymal stem cells on acute myocardial infarction. The
relationship between XIST and miR-133a was also reported in
other diseases. It was reported XIST promoted pancreatic cancer
proliferation by sponging miR-133a.18 In our study, we also found
that miR-133a could improve I/R-induced myocardial injury, and
moreover, this effect might be through regulation of SOCS2 and
autophagy.

Few studies focused on the role of SOCS2 in I/R injury. In a recent
study, SOCS2 was reported to facilitate the myocardial I/R injury in
diabetic mice and H9c2 cells, and the effects were through regulation
of JAK/STAT/IGF-1 signaling.19 Besides, it was also observed that
knockdown of SOCS2 reduced expression of inflammatory factors
y: Nucleic Acids Vol. 18 December 2019 767
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Figure 4. Overexpression of miR-133a Promoted Cell Viability and Inhibited Apoptosis and Autophagy through Regulation of SOCS2

(A) miR-133a and DAPK2 expression in different groups of cells by qRT-PCR. (B) Protein level of DAPK2 by western blotting. (C) Cell viability by MTT assay. (D) Cell apoptosis

by flow cytometry. (E) Immunofluorescence of LC3 B in different groups of cells. (F) Protein levels of LC3 II/I and beclin1 by western blotting. ***p < 0.001, **p < 0.01.
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of tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and IL-
10 in a murine model of heart damage.20 However, no study reported
a relationship between miR-133a and SOCS2 in I/R injury. In the pre-
768 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
sent study, we demonstrated that miR-133a could improve I/R injury
by directly targeting on SOCS2, and the effect might be associated
with regulation of autophagy.



Figure 5. miR-133a Directly Targeted on SOCS2

(A) Predicted binding region between miR-133a and SOCS2. (B) Relative luciferase activity in WT-SOCS2 and MUT-SOCS2. (C) Expression of miR-133a and SOCS2 in

different groups of cells. (D) Protein expression of DAPK2 in different groups of cells. **p < 0.01.
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The role of autophagy in I/R injury has been reported inmany studies.
Generally, it is considered that the moderate activation of autophagy
is protective for I/R injury, and the overactivation leads to damage for
organelle or protein clearance in the later phase of the I/R process.21

Wang et al.22 reported that lncRNA APF improved myocardial
infarction by inhibition of autophagy and targeting miR-188-3p. It
was also found that hesperidin protected the myocardial I/R injury
by inhibition of autophagy and activation of the phosphatidylinositol
3-kinase (PI3K)/Akt/mTOR pathway.23 In this study, we also found
that inhibition of XIST could improve I/R injury by inhibition of
autophagy, and the effects were through regulation of the miR-
133a/SOCS2 axis.

It was reported that inhibition of XIST enhanced the chemosensi-
tivity of non-small-cell lung cancer (NSCLC) cells via suppression
of autophagy.24 miR-133a was reported to inhibit autophagy in
gastric cancer.25 A study also showed that SOCS2 might be asso-
ciated with the autophagy process. It was found that overexpres-
sion of ATG5 could activate LC3 by interacting between LC3
and SOCS2; however, the relationship between SOCS2 was not
clear.26 In the present study, we also observed that inhibition of
XIST and overexpression of miR-133a could suppress autophagy,
and overexpression of SOCS2 reversed the effects. However,
further studies are still needed to illuminate deeper insights for
the interaction between the XIST/miR-133a/SOCS2 axis and
autophagy.

In conclusion, we conducted both in vitro and in vivo experiments to
investigate the role of lncRNA XIST in myocardial I/R injury and
found that the inhibition of XIST could improve myocardial I/R
injury by regulation of miR-133a/SOCS2 axis and inhibition of auto-
phagy. This study might give deeper insights for mechanisms of XIST
in myocardial I/R injury and provide novel potential therapeutic
targets.
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 769
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Figure 6. Inhibition of XIST Suppressed Cell Apoptosis and Autophagy in Myocardial Tissues of I/R Injury Mice through Regulation of miR-133a

(A) XIST, miR-133a, and DAPK2 mRNA expression by qRT-PCR. (B) Protein expression of DAPK2 in I/R and control by western blotting. (C) Protein levels of LC3 II/I and

beclin1 by western blotting. (D) Cell apoptosis of different groups of cells by TUNEL staining. ***p < 0.001, **p < 0.01.
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Figure 7. Overexpression of miR-133a Suppressed

Cell Apoptosis and Autophagy in Myocardial

Tissues of I/R Injury Mice through Regulation of

SOCS2

(A) Protein levels of LC3 II/I and beclin1 by western

blotting. (B) Cell apoptosis of different groups of cells by

TUNEL staining. **p < 0.01.
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MATERIALS AND METHODS
Cell Culture and Treatment

In brief, the myocardial cell line H9C2 cells, which were obtained
from ATCC (Manassas, VA, USA), were cultured in DMEM
(GIBCO, Gaithersburg, MD, USA) with 10% FBS (GIBCO) and
1% PS (100 mg/mL penicillin, 100 mg/mL streptomycin) at 37�C
and 5% CO2. The hypoxia/reoxygenation (HR) model was estab-
lished by the followingmethod: the cells were cultured in the hypoxia
cabin under 2% O2, 93% N2, and 5% CO2 for 2 h and then were
moved to a normoxic condition of 37�C and 5% CO2 for 4 h. The
control cells were cultured under the normoxic condition of 37�C
and 5% CO2 for 6 h.

Transfection

For cell transfection, the XIST small interfering RNA (siRNA) (si-
XIST) and si-negative control (NC), miR-133 mimics, inhibitor,
and corresponding negative controls, as well as overexpressing
Molecular Therap
SOCS2 and XIST recombinant plasmids and
NC, were all designed and synthesized by
GeneChem (Shanghai, China). Cells were
transfected with si-XIST, miR-133 mimics, in-
hibitor, pcDNA3.1-SOCS2, pcDNA3.1-XIST,
or corresponding NCs (5 nM for all) using Lip-
ofectamine 2000 (Invitrogen) in serum-free
Opti-MEM medium (GIBCO) according to the
manufacturer’s instruction. The transfection
efficiency was determined by quantitative real-
time PCR after 48 h.

Measurement of Cell Apoptosis

Cell apoptosis was measured by flow cytome-
try analysis. In brief, cells with a density of
2 � 105/well were seeded into six-well plates
and stained with Annexin V/PI double-staining
kit (BD Biosciences, MA, USA). The cell
apoptosis was then determined using a FSCAN
flow cytometer (BD Biosciences).

Measurement of Cell Viability

Cell viabilities were evaluated using MTT
assay. In brief, after 48 h of transfection, cells
were seeded at a density of 2 � 105 in 96-well
plates, and 10 mL MTT solution (5 mg/mL)
was added. Then cells were cultured for 4 h
at 37�C and 5% CO2, and MTT was replaced
with 180 mL DMSO. The optical density (OD) value was evaluated
under 490 nm.

Immunofluorescence

The expression of LC3 was evaluated using an immunofluorescence
method. In brief, the cells were collected, fixed, and permeabilized.
Then cells were incubated with anti-LC3B antibody (Abcam, Cam-
bridge, MA, USA) at 4�C overnight and were incubated with a corre-
sponding secondary antibody at room temperature for 1 h. DAPI was
used for counterstaining the nucleus. Pictures were taken by using a
Leica TCS-SP laser scanning confocal microscope.

Dual-Luciferase Reporter Assay

The predicted binding sites between XIST and miR-133a, as well as
miR-133a and SOCS2, were obtained from bioinformatic software
TargetScan 7.2 and starbase. The XIST (or SOCS2) 30 UTR with the
predicted wild-type (WT) miR-133a binding site region or mutant
y: Nucleic Acids Vol. 18 December 2019 771
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(MUT) was amplified and sub-cloned into a pGL4.10 luciferase re-
porter vector. The cells were co-transfected with either the vectors,
miR-133a mimics, or NC using Lipofectamine 2000. After 48 h of
transfection, the luciferase activity was determined by luciferase assay
using a Bright-Glo Luciferase Assay System (Promega, USA).

Animals and Treatment

The C57BL/J6 mice (�8–10 weeks, 20–30 g) were obtained from
Beijing Children’s Hospital, Capital Medical University, National
Center for Children’s Health. All animals were kept in a light-
controlled room under a 12 h/12 h light/dark cycle and controlled
temperature (23�C–25�C), and had free access to food and water ac-
cording to the Guide for the Care and Use of Laboratory Animals. In
particular, any effort was put forth to avoid unnecessary pain of the
animals. The whole study was approved by the Institutional Animal
Care Committee at Beijing Children’s Hospital, Capital Medical Uni-
versity, National Center for Children’s Health.

For establishment of the myocardial I/R model, mice were anaesthe-
tized using 4% isoflurane, and an 8-mm skin incision was made at the
fourth intercostal space. The myocardial I/R injury was induced by
temporary ligation of the left anterior descending coronary artery.
Occlusion was confirmed by balancing of the left ventricular (LV)
myocardium below the suture after removing the ligature. The tran-
sitory ligation was maintained for 45 min followed by 3 h of reperfu-
sion. For the control group, sham operation was conducted, but no
placement of the ligature.

The construction of lentivirus vectors to inhibit XIST or miR-133a
was conducted by GeneChem. For inhibition of XIST in mice, the
lentivirus vector transfected with si-XIST (lenti-si-XIST, 100 mL, virus
titer 2� 107 transduction unit [TU]/mL) was given by tail vein injec-
tion, and the control mice received a tail vein injection of lenti-si-NC.
For inhibition or overexpression of miR-133a in mice, mice received
tail vein injection of lenti-miR-133a-inhibitor (or lenti-miR-133a-
mimics, 100 mL, virus titer 2 � 107 TU/mL) or the NC. For overex-
pression of SOCS2, adenovirus vector to overexpress SOCS2 (ad-
SOCS2, 0.5 mL of 4 � 108 plaque-forming units [PFUs]/mL) was
used for tail vein injection of the mice, and the control received irrel-
evant sequence control.

TUNEL Assay

The TUNEL assay was used for measuring the apoptosis of mouse
myocardial cells. The cells were stained with an Apoptosis In Situ
Detection Kit (Abcam), and the number of TUNEL-positive cells
was calculated as percent of total number of cells. The staining was
observed and photographed using a Leica TCS-SP laser scanning
confocal microscope (Leica Microsystems).

RNA Extraction and qRT-PCR Assay

The expression levels of XIST, miR-133a, and SOCS2 were measured
using qRT-PCR. In brief, the extraction of total RNA was conducted
using the TRIzol reagent (Tiangen Biotech, Beijing, China), and the
mirVana miRNA isolation kit (Ambion, Austin, TX, USA) was
772 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
used to extract the miRNA. A PrimeScript One Step RT-qPCR kit
(Takara Biotechnology, Dalian, China) was used to convert RNA to
cDNA for mRNA, and a TaqMan MicroRNA Reverse Transcription
Kit (Applied Biosystems Life Technologies) was used to convert RNA
to cDNA for miRNA, respectively. The PCR analysis was performed
in an Applied Biosystems 7500 Real Time PCR system (Applied
Biosystems, Thermo Fisher Scientific). All primers used in PCR
were designed and synthesized by GeneChem. GAPDH and U6 small
nuclear RNA (U6 snRNA) were used as internal references for mRNA
and miRNA, respectively. The relative expression level was calculated
by the 2�DDCq method.27

Western Blotting

Western blotting was used to test the protein expression levels of LC3
I/II, Beclin1, and SOCS2, with GAPDH as a loading control. In brief,
the extracted proteins were subjected to 10% SDS-PAGE, transferred
to polyvinylidene fluoride (PVDF) membranes, and blocked by 5%
non-fat milk at room temperature for 1 h. After incubation with a
primary antibody anti-LC3 I/II (ab128025; Abcam), anti-Beclin1
(ab210498; Abcam), or anti-SOCS2 (ab3692; Abcam) at 4�C over-
night, the membranes were incubated with a goat anti-rabbit immu-
noglobulin G secondary antibody (ab205718; Abcam) at 37�C for
45 min. An EasySee Western Blot Kit (Beijing TransGen Biotech,
Beijing, China) was used to scan the films.

Statistical Analysis

The measurement data were expressed by mean ± SD. Comparison
between two groups was performed using the Student’s t test. Com-
parison among three or more groups was conducted using one-way
ANOVA followed by Tukey’s post hoc test. p < 0.05 was considered
as statistically significant. All calculations were made using SPSS 20.0.
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