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Abstract

The mechanisms by which different microbes colonize the healthy human gut versus other

body sites, the gut in disease states, or other environments remain largely unknown. Identi-

fying microbial genes influencing fitness in the gut could lead to new ways to engineer

probiotics or disrupt pathogenesis. We approach this problem by measuring the statistical

association between a species having a gene and the probability that the species is present

in the gut microbiome. The challenge is that closely related species tend to be jointly present

or absent in the microbiome and also share many genes, only a subset of which are involved

in gut adaptation. We show that this phylogenetic correlation indeed leads to many false dis-

coveries and propose phylogenetic linear regression as a powerful solution. To apply this

method across the bacterial tree of life, where most species have not been experimentally

phenotyped, we use metagenomes from hundreds of people to quantify each species’ prev-

alence in and specificity for the gut microbiome. This analysis reveals thousands of genes

potentially involved in adaptation to the gut across species, including many novel candidates

as well as processes known to contribute to fitness of gut bacteria, such as acid tolerance in

Bacteroidetes and sporulation in Firmicutes. We also find microbial genes associated with a

preference for the gut over other body sites, which are significantly enriched for genes linked

to fitness in an in vivo competition experiment. Finally, we identify gene families associated

with higher prevalence in patients with Crohn’s disease, including Proteobacterial genes

involved in conjugation and fimbria regulation, processes previously linked to inflammation.

These gene targets may represent new avenues for modulating host colonization and dis-

ease. Our strategy of combining metagenomics with phylogenetic modeling is general and

can be used to identify genes associated with adaptation to any environment.
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Author summary

Why do certain microbes and not others colonize our gut, and why do they differ between

healthy and sick people? One explanation is the genes in their genomes. If we can find

microbial genes involved in gut adaptation, we may be able to keep out pathogens and

encourage the growth of beneficial microbes. One could look for genes that were present

more often in prevalent microbes, and less often in rare ones. However, this ignores that

related species are more likely to share an environment and also share many unrelated

phenotypes simply because of common ancestry. To solve this problem, we used a method

from ecology that accounts for phylogenetic relatedness. We first calculated gut preva-

lence for thousands of species using a compendium of shotgun sequencing data, then

tested for genes associated with prevalence, adjusting for phylogenetic relationships. We

found genes that are associated with overall gut prevalence, with a preference for the gut

over other body sites, and with the gut in Crohn’s disease versus health. Many of these

findings have biological plausibility based on existing literature. We also showed agree-

ment with the results of a previously published high-throughput screen of bacterial gene

knockouts in mice. These results, and this type of analysis, may eventually lead to new

strategies for maintaining gut health.

Introduction

Microbes that colonize the human gastrointestinal (GI) tract have a wide variety of effects on

their hosts, ranging from beneficial to harmful. Increasing evidence shows that commensal gut

microbes are responsible for training and modulating the immune system [1, 2], protecting

against inflammation [3] and pathogen invasion (reviewed in Sassone-Corsi and Raffatellu

[4]), affecting GI motility [5], maintaining the intestinal barrier [6], and potentially even affect-

ing mood [7]. In contrast, pathogens (and conditionally-pathogenic microbes, or “patho-

bionts”) can induce and worsen inflammation [8, 9], increase the risk of cancer in mouse

models [10], and cause potentially life-threatening infections [11]. Additionally, the transplan-

tation of microbes from a healthy host (fecal microbiota transplant, or FMT) is also a highly

effective therapy for some gut infections [12], although it is still an active area of investigation

why certain microbes from the donor persist long-term and others do not [13], and how pre-

existing inflammatory disease affects FMT efficacy [14]. Which microbes are able to persist in

the GI tract, and why some persist instead of others, is therefore a question with consequences

that directly impact human health.

Because of this, we are interested in the specific mechanisms by which microbes colonize

the gut, avoiding other potential fates such as being killed in the harsh stomach environment,

simply passing through the GI tract transiently, or being outcompeted by other gut microbes.

Understanding these mechanisms could yield opportunities to design better probiotics and to

prevent invasion of the gut community by pathogens. In particular, creating new therapies,

whether those are drugs, engineered bacterial strains, or rationally designed communities, will

likely require an understanding of gut colonization at the level of individual microbial genes.

We also anticipate that these mechanisms may vary in health vs. disease, since, for example,

different selective pressures are known to be present in inflamed versus healthy guts [15, 16].

One approach that has been used to link genetic features to a phenotype is to correlate the

two using observational data. Most typically, this approach is applied in the form of genome-

wide association mapping, in which phenotypes are correlated with genetic markers across

individuals in a population. While we are interested in comparing phenotypes and genetic
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features across, rather than within species, the approach we take in this paper is conceptually

similar. In order to perform association mapping, it is necessary to account for population

structure, that is, dependencies resulting from common ancestry; otherwise, spurious discov-

eries can be made in genome-wide association studies [17]. Analogously, we expected it to be

important to choose a method that can account for the confounding effect of phylogeny when

testing for associations across species.

There is increasing interest in using phylogenetic information to make better inferences

about associations between microbes and quantities of interest. For example, co-conservation

patterns of genes (“correlogs”) have been used to assign functions to microbial genes [18],

and genome-wide association studies have been applied within a genus of soil bacteria [19] as

well as across strains of Neisseria meningitidis [20]. Recent publications have also described

techniques that use information from the taxonomic tree to more accurately link clades in

compositional taxonomic data to covariates [21, 22, 23]. However, so far, only one study has

attempted to associate genes with a preference for the gut [24]. That study introduced a valu-

able method based on UniFrac and gene-count distances, which compares how well gut- vs.

non-gut-associated microbes cluster on the species tree compared to a composite gene tree.

This study also provides an important insight in the form of evidence of convergence of glyco-

side hydrolase and glycosyltransferase repertoires among gut bacteria, suggesting horizontal

gene transfer within the gut community to deal with a common evolutionary pressure. The

method described in that study, though, requires a binary phenotype of gut presence vs.

absence. Deciding which microbes are “gut” vs. “non-gut” requires manual curation and can

be somewhat subjective, as microbes have a continuous range of prevalences and can appear in

multiple environments; this binarization could also potentially decrease power by excluding

microbes with intermediate phenotypes. The method also requires multiple sequence align-

ments and trees to be built for every gene family under analysis, which are computationally

intensive to generate over a large set of genomes.

We take a complementary approach and use a flexible technique, known as phylogenetic

linear modeling, to detect associations between microbial genotype and phenotype while

accounting for the fact that microbes are related to one another by vertical descent. Phyloge-

netic linear models have an extensive history in the ecology literature dating back to seminal

works by Felsenstein [25] and Grafen [26]. However, despite their power, genome-scale appli-

cations of these models are still few in number [27] and, with the exception of one recent study

that applied phylogenetic linear modeling to newly-sequenced isolate genomes from plant-

associated microbial communities [28], have typically been used to relate traits of macroorgan-

isms (e.g., anole lizards [29]) to their genotypes. While there is a growing appreciation for the

need to explicitly account for phylogeny in microbial community analyses [27, 30, 31], we

believe ours is the first study to directly apply this class of methods to metagenomic data.

This approach to accounting for phylogenetic relationships is general and could be applied

to measure association of any quantitative phenotype with genotypes or other binary or quan-

titative characteristics. In this study, we focus on phenotypes related to the ability of bacteria to

colonize the human gut: 1. overall prevalence in the guts of hosts from a specific population

(e.g., post-industrialized countries), which we expect to capture ease of transmission, how cos-

mopolitan microbes are, and how efficiently they colonize the gut; 2. a preference for the gut

over other human body sites in the same hosts, which we expect to capture gut colonization

more specifically; and 3. a preference for the gut in disease (e.g., Crohn’s disease) versus health.

We present a novel analytic pipeline in which we estimate these quantitative phenotypes for

thousands of bacterial species directly from existing shotgun metagenomics data, both obviat-

ing the need for us to draw a cutoff between “gut” and “non-gut” microbes, and also giving us

the necessary power to detect associations (S2 Fig). Coupling these phenotype estimates with
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phylogenetic linear models, we generate a compendium of thousands of bacterial genes whose

functions may be involved in colonizing the human gut.

Results

We present a phylogeny-aware method for modeling associations between the presence of spe-

cific genes in bacterial genomes and quantitative phenotypes that measure how common these

species are in the human microbiome. To apply phylogenetic linear modeling to the micro-

biome, we needed to solve three problems. First, we had to show that these models controlled

false positives and had reasonable power on large bacterial phylogenies. Second, we needed to

develop estimators that captured meaningful phenotypes related to bacterial colonization of

humans for thousands of diverse bacterial species, most of which have never been studied in

isolation, much less experimentally assayed for their abilities to colonize a mammalian body

site. The third problem was to estimate genotypes (e.g., gene presence-absence) for each spe-

cies. The analysis framework we describe is quite general and could be easily extended to link

other phenotypes to genotypes across the tree of life.

Phylogenetic linear models solve the problem of high false positive rates

when testing for associations on bacterial phylogenies

To test for associations between quantitative phenotypes and binary genotypes across species,

we use models with the following form:

~�x;E;DðAÞ ¼ b0;g þ b1;g
~I g þ~�g ð1Þ

~�x;E;DðAÞ is a vector of quantitative phenotypes of interest, assessed in one environment ex out

of a set of possible environments E, normalizing out a set of study effects D, estimated from

the dataset A. The elements of the vector~�x;E;DðAÞ are ϕm,x,E,D(A), the phenotype value for

microbem. β0,g is a baseline phenotype value, β1,g is the effect of gene g on~�,~I g is a vector

whose elements Im,g are 0 if gene g is absent in speciesm and 1 if present, and~�g is the remain-

ing unmodeled variation in~�. We fit one model per gene g. The distribution of the residuals~�g

is the key difference between standard and phylogenetic linear models. In the standard model,

the residuals are assumed to be independent and normally distributed. In the phylogenetic

model, however, the residuals covary, with more closely-related species having greater covari-

ance (see Methods, “Modeling gene-phenotype associations” and “Fitting linear vs. phyloge-

netic models”; for a glossary of notation, see S1 Appendix).

To explore the potential pitfalls of failing to correct for phylogenetic structure in cross-spe-

cies association tests, we generated a species tree for thousands of bacteria with genome

sequences (see Methods, “Phylogenetic-tree-construction”). In order to have a consistent oper-

ational definition of a microbial species, we used a set of previously defined bacterial taxo-

nomic units with approximately 95% pairwise average nucleotide identity across the entire

genome [32]. The methods we describe can be applied to other taxonomic levels or with other

species definitions. Using this species tree, we performed simulations (see Methods, “Worked

example.”) for each of the four major bacterial phyla in the human gut (Bacteroidetes, Firmi-

cutes, Proteobacteria, and Actinobacteria [33]). Specifically, we generated simulated pheno-

types along the species tree, and then, for each phenotype, simulated a binary genotype for

each species that covaried with the phenotype to varying degrees, including no association. We

used levels of covariation spanning those we observed empirically between prevalence of spe-

cies in gut metagenomes and presence-absence of genes (see below). (An effect size of 0.5
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corresponds approximately to a 50% increase in prevalence, while an effect size of 1.0 corre-

sponds approximately to a 72% increase in prevalence: see S8 Fig). These binary genotypes

also had varying levels of overall phylogenetic signal (as measured using Ives-Garland α [34]).

We then fit phylogenetic and standard linear models to the simulated data and tested for a

relationship between each binary genotype and its corresponding continuous phenotype. For

both standard and phylogenetic linear models, separate models were fit for each of the four

phyla. The results were used to estimate false positive rate (Type I error) and power (1—Type

II error) for the two methods across different effect sizes.

These analyses showed that standard linear models result in many false positive associa-

tions. When the binary genotype was specified to be wholly uncorrelated (i.e., under the null),

p-values from the linear model showed a strong anticonservative bias (Fig 1B and 1D) with

many more significant p-values than expected under no correlation. While lower levels of phy-

logenetic signal (larger Ives-Garland α) did result in less bias in the standard linear model, the

average false positive rate ranged between 20% and 68% at p = 0.05. In contrast, the phyloge-

netic linear model p-value distribution was flat and Type I error was controlled appropriately

(Fig 1A and 1C). This means that at the same p-value threshold, linear models will identify

many spurious relationships compared to phylogenetic linear models. Further, our simulations

with non-zero associations showed that the phylogenetic model has high power when applied

to gut bacterial phyla, even for small effect sizes (Fig 1E; see Methods, “Power-analysis”).

These results emphasize the importance of using models that account for phylogenetic rela-

tionships in cross-species association testing and demonstrate the feasibility of applying phylo-

genetic linear models to the human microbiome.

Estimating quantitative phenotypes from shotgun data

To apply phylogenetic linear modeling to the microbiome we sought to define meaningful

phenotypes for thousands of bacterial species, all of which have genome sequences but most of

which have never been experimentally tested for, e.g., their abilities to grow on particular sub-

strates or to colonize a model mammalian gut. We hypothesized that the prevalence and speci-

ficity of bacterial species in an environment, such as the human gut, should relate to their

ability to colonize that environment and to how well adapted they are to persist there. These

quantities can be thought of as phenotypes that can be estimated directly from shotgun meta-

genomics data. The precise taxonomic composition of a healthy gut microbiome can vary sig-

nificantly from person to person [35], indicating that the ability of a microbe to colonize the

gut is quantitative (and likely context-dependent, and stochastic). This phentoype can be con-

ceptualized differently depending on which aspects of colonization one wishes to capture. We

present metagenome-based estimators for two different types of colonization phenotpyes.

These are described in the context of our goal of studying the gut microbiome, but the

approach is general and could be used to quantify how well a given genotype discriminates

species found in or specific to any environment.

The first phenotype is the probability of observing a microbial speciesm in an environment

ex, that is, its overall prevalence P(m|ex). Both genes relating to survival in the GI tract and

genes relating to survival, persistence, and dispersal in the outside environment are expected

to correlate with overall prevalence. Prevalence can be estimated by the frequency with which

the species is observed in a sample from the environment, for example, using a logit transform

to enable linear modeling and pseudocounts to avoid estimates of 0 or 1 (see Methods, “Esti-

mating the prevalence phenotype”).

The second type of quantitative phenotype is the environmental specificity of a microbial

species, which we define as the conditional probability that a sample is derived from one

Phylogenetic modeling of gut colonization
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Fig 1. Failing to account for tree structure results in an elevated false positive rate. Continuous phenotypes and

binary genotypes were simulated across the trees for the four phyla under consideration. A-D show results for the null

of no true phenotype-genotype correlation. A-B) Histogram of p-values for simulated phenotypes and genotypes on

the Bacteroidetes tree, using (A) phylogenetic or (B) standard linear models. The phylogenetic model distribution was

similar to a uniform distribution, while the standard model was very anticonservative, having an excess of small p-

Phylogenetic modeling of gut colonization
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environment in a set of environments, given that the species is present in the sample. This

parameter captures the power of a given microbe as a marker to discriminate between two or

more different environments, such as different body sites or types of hosts (see Methods, “Esti-

mating environmental specificity scores”). This is distinct from its overall prevalence in the

environment.

We developed an estimator for environmental specificity and applied it to two separate gut

microbial phenotypes. First, we considered a phenotype defined as the conditional probability

that a given body site is the gut and not another body site, given that a particular species is

present. The physical distance between body sites is much smaller than the distance between

hosts, and microbes from one body site are likely to be transiently introduced to others.

Hence, enrichment of a species in one body site over others is stronger evidence for selection

(versus dispersal) than is overall prevalence in that body site alone. We estimate this parameter

with a body-site specificity score that uses metagenomics data to measure how predictive a par-

ticular microbe is for the gut versus other body sites (e.g., skin, urogenital tract, oropharynx,

or lung).

The second type of environmental specificity we considered is the conditional probability

that a host has a disease given that a particular species is present. This disease-specific specificity
score is estimated in a similar way to the body-site specificity score (see Methods, “Estimating

environmental specificity scores”). We focus on Crohn’s disease, a type of inflammatory bowel

disease known to be associated with dramatic shifts in the gut microbiota and in gut-immune

interactions [36]. Genes associated with this disease-specific prevalence could illuminate dif-

ferences in selective pressures between healthy vs. diseased gut environments. Both scores are

based on maximum a posteriori (MAP) estimates of the conditional probability of a sample

being from the gut given that a microbe is observed in the sample. To account for sampling

noise, we use a shrunken estimate with a Laplace prior (see Methods, “Estimating environ-

mental specificity scores”).

Genes associated with species prevalence in healthy human gut

metagenomes

We assembled a compendium of published DNA sequencing data from healthy human stool

microbiomes across five studies in North America, Europe, and China (426 subjects total).

Using the MIDAS database and pipeline [32], we mapped metagenomic sequencing reads

from each run to a panel of phylogenetic marker genes, and from these, estimated the relative

abundances of species. Multiple runs corresponding to the same individual were averaged.

We then estimated the prevalence (probability of non-zero abundance) of each species across

these subjects, weighting each study equally and adding pseudocounts to avoid probabilities

of exactly 0 or 1 (see Methods, “Estimating the prevalence phenotype”). Finally, we deter-

mined whether genes (here, we take “genes” to mean members of a FIGfam protein family,

which are designed to approximate “isofunctional homologs” [37]) were present or absent in

the pangenomes of each species, based on sequenced genomes included in the MIDAS data-

base, such that any FIGfam annotated in at least one sequenced isolate was considered to be

present in the pangenome. This approach to genotyping could be extended to additionally

include single-amplified genomes and metagenome-assembled genomes (see Discussion).

Our analysis framework can also be applied to genotypes other than gene presence-absence

values. C-D) False positive rates (Type I error rates) at p = 0.05 for the C) phylogenetic and D) standard models, across

varying levels of true phylogenetic signal (Ives-Garland α). E) Traits with varying levels of “true” association spanning

values we observed in real data were simulated, and power (y-axis) was computed using phylogenetic linear models.

https://doi.org/10.1371/journal.pcbi.1006242.g001
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(e.g., nucleotide or amino acid changes). We note that while the FIGfam database does

include many hypothetical protein families of unknown function, many bacterial genes lack

even this level of annotation, so a more comprehensive grouping of genes into orthologous

or functionally homologous groups could reveal yet more novel associations.

As expected, the most prevalent species overall included Bacteroides vulgatus, Bacteroides
ovatus, and Faecalibacterium prausnitzii, while the least prevalent included halophiles and

thermophiles (S1 Table). Gut prevalence had a strong phylogenetic signal (Pagel’s λ = 0.97,

likelihood-ratio p< 10−22), meaning that it was strongly correlated with the evolutionary relat-

edness of species. This emphasizes the need for phylogeny-aware modeling so that signal link-

ing genes to prevalence will not be drowned out by shared variation in gene content between

closely-related species.

To demonstrate the effect of phylogenetic correlation empirically, we fit both a standard lin-

ear model and a phylogenetic linear model for each of the four common gut phyla and all

genes present in that phylum. These models relate logit-transformed estimates of the preva-

lence of different species in a phylum to a gene’s presence-absence in those species’ pangen-

omes. Recall that the residual variation in logit-prevalence is independent and normally

distributed in the standard linear model, but has a distribution encoding correlations propor-

tional to species relatedness in the phylogenetic linear model (see Methods, “Fitting linear vs.

phylogenetic models”). For both standard and phylogenetic linear models, separate models

were fit for each phylum. While this means that genes weakly-associated across the entire tree

of life may have been missed by this approach, it has the advantage of both reducing the mem-

ory needed to store the gene presence-absence matrix and allowing for phylum-specific rates

of evolution for our phenotype of interest. We modeled associations for 144,651 genes total

across the four phyla, fitting 190,923 models total (since some genes are present in multiple

phyla).

We used the parameter estimates and their standard errors from fitted models to test null

hypotheses of the formH0: β1,g = 0, meaning gene g is not associated with gut prevalence of

species in a particular phylum. The p-values were adjusted for multiple testing using the false

discovery rate (FDR) (see Methods, “Fitting linear vs. phylogenetic models”). We found 9,455

FIGfam gene families positively associated with logit-prevalence within at least one phylum

(FDR q� 0.05) using phylogenetic linear models, 47% of which had no annotated function.

We observed that 75% of the significant genes from these tests had effect sizes larger than (Bac-

teroidetes) 0.95, (Firmicutes) 1.09, (Proteobacteria) 0.35, and (Actinobacteria) 2.08, which are

within the range of effect sizes for which phylogenetic linear models showed good perfor-

mance in simulations (see above).

With standard linear models our tests identified 25,226 genes positively associated with gut

prevalence, substantially more than with phylogenetic linear models (17.4% versus 6.5% of

total). Based on our simulations, these likely included many false positives. The top results of

phylogenetic versus standard linear models (Fig 2) illustrate the pitfalls of not correcting for

phylogenetic correlation. Using the standard model, we recover associations such as those

seen in Fig 2A and 2B: a subunit of dihydroorotate dehydrogenase in Bacteroidetes (Fig 2B)

and in Firmicutes, a particular type of glutamine synthetase (Fig 2A). While these associations

might look reasonable at a first glance, on closer inspection, they depend on the fact that these

genes are near-uniformly present in entire clades of bacteria. These clades are, in general,

more prevalent in the gut compared to the rest of the species in the tree. However, any finer

structure relating to differences between close neighbors is lost. For example, dihydroorotate

dehydrogenase (Fig 2B) is found not only in the human gut commensal Bacteroides caccae, but

also in its relative Bacteroides reticulotermitis, which was not only low-prevalence in our sam-

ples but was indeed isolated from the gut of a subterranean termite [38].

Phylogenetic modeling of gut colonization
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While this alone does not necessarily constitute evidence against these genes having adap-

tive functions in the human gut, we do expect that matched pheno- and genotypic differences

between close phylogenetic neighbors offer stronger evidence for an association. An analogy

can be drawn with genome-wide association mapping in humans: models that do not account

for correlations between sites caused by population structure, as opposed to selective pressure,

will tend to identify more spurious associations. In contrast, because the phylogenetic null

model “expects” phenotypic correlations to scale with the evolutionary distance between spe-

cies, this approach will tend to upweight cases where phylogenetically close relatives have dif-

ferent phenotypes and where distant relatives have similar phenotypes. This leads to the

identification of candidate genes that capture more variation between close neighbors

Fig 2. Examples of hits from standard linear (blue highlights) and phylogenetic (orange highlights) models. In each panel, the tree on the left is colored by species

prevalence (black to orange), while the tree on the right is colored by gene presence-absence (blue to black). Selected species are displayed in the middle; lines link

species with the leaves to which they refer. The color of the line matches the color of the leaf. A-B) The standard model recovered hits that matched large clades but

without recapitulating fine structure. C-D) The phylogenetic model recovered associations for which more of the fine structure was mirrored between the left-hand

and right-hand trees, as exemplified by the species labeled in the middle. E) Violin plots of Ives-Garland α, a summary of the rate of gain and loss of a binary trait

across a tree, for genes significantly associated with prevalence in the standard (left, blue) and phylogenetic (right, orange) linear models. Horizontal lines mark the

median of the distributions. The phylogenetic (orange) and standard linear (blue) models were significantly different for each phylum (Wilcox test for Bacteroidetes:

8.2 × 10−41; Firmicutes: 7.6 × 10−279; Proteobacteria: 1.8 × 10−235; Actinobacteria: 9.0 × 10−133).

https://doi.org/10.1371/journal.pcbi.1006242.g002
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(Fig 2C and 2D). Thus, phylogenetic linear models will identify genes whose presence in

genomes is more frequently changing between sister taxa in association with a phenotype.

We provided further evidence that this trend is true in general by calculating the phyloge-

netic signal of the top hits from each model using Ives and Garland’s α [34]. This statistic cap-

tures the rate of transitions between having and not having a binary trait (here, a gene) across

a tree; higher values therefore correspond to more disagreement between closely related spe-

cies and lower values correspond to more agreement. Indeed, across all four phyla, the linear

model identified gene families with significantly lower Ives-Garland α than the phylogenetic

model (Fig 2E, linear model p< 10−16), indicating that these genes’ presence versus absence

tended to be driven more by clade-to-clade differences (i.e., shared evolution).

These results suggest that standard linear models can identify genes that are truly important

for colonizing an environment, such as the healthy human gut, but in addition will identify

other genes that may simply be common in clades associated with that environment. The latter

set will likely include many false positive associations from the perspective of understanding

functions necessary for living in the environment. Phylogenetic linear models overcome this

problem by adding the expectation that closely-related species will have similar phenotypes

and distantly-related species will have less similar phenotypes, effectively upweighting

instances where this is not the case. These conclusions are supported by our simulations and

by an in vivo functional screen (see Results, “Deletion of gut-specific genes lowers fitness in the

mouse microbiome”).

Gene families associated with gut prevalence provide insight into

colonization biology

Several of the gene families that we observed to be associated with gut prevalence have previ-

ously been linked to gut colonization efficiency. For example, in Firmicutes, we noticed that

several top hits were annotated as sporulation proteins (e.g., “Stage 0 sporulation two-com-

ponent response regulator”, Fig 2C). Sporulation is known to be a strategy for surviving

harsh environments (such as acid, alcohol, and oxygen exposure) that is used by many, but

not all, members of Firmicutes. Resistance to oxygen (aerotolerance) is particularly impor-

tant because many gut Firmicutes are strict anaerobes [39], sporulation is known to be an

important mechanism of transmission and survival in the environment (reviewed in Swick

et al. [40]), and sporulation ability has been linked to transmission patterns of gut microbes

[32]. Our result associating sporulation proteins to gut prevalence provides further evidence

for sporulation as a strategy that is generally important for the propagation and fitness of gut

microbes.

In Bacteroidetes, we observed an association between gut prevalence and the presence of a

pair of gene families putatively assigned to the GAD operon, namely, the glutamate decarbox-

ylase gadB and the glutamate/gamma-aminobutyric acid (GABA) antiporter gadC. These

genes show a complex pattern of presence that is strongly correlated with gut prevalence (Fig

2D, S5 Fig). Results from research in Proteobacteria, where these genes were first described,

shows that their products participate in acid tolerance. L-glutamate must be protonated in

order to be decarboxylated to GABA; export of GABA coupled to import of fresh L-glutamate

therefore allows the net export of protons, raising intracellular pH [41]. It was previously

hypothesized that this acid tolerance mechanism allowed bacteria to survive the harshly acidic

conditions in the stomach: indeed, if disrupted in the pathogen Edwardsiella tarda, gut coloni-

zation in a fish model is impaired [42]. Listeria monocytogenes with disrupted GAD systems

also become sensitive to porcine gastric fluid [43]. However, while it has previously been

shown that gut Bacteroides do contain homologs for at least one of these genes [41], their
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functional importance has not yet been demonstrated in this phylum. Our results provide

preliminary evidence that this system may be important in Bacteroidetes as well as in

Proteobacteria.

Using body sites as a control allows us to differentiate general dispersal

from a specific gut advantage

The previous analyses have focused on modeling the phenotype of overall prevalence in the

human gut. However, microbes could be prevalent in the gut for at least two main reasons.

First, they could be specifically well-adapted to the human gut; second, they could simply be

very common in the environment (i.e., highly dispersed). The presence or absence of a gene

family could enhance either of these properties. Some genes might, for example, confer

improved stress tolerance that was adaptive across a range of harsh conditions, while others

might allow, for example, uptake and catabolism of metabolic substrates that were more com-

mon in the human gut than in other environments.

With this in mind, we analyzed the relative enrichment of microbes in the gut over other

human body sites in 127 individuals from the Human Microbiome Project (HMP) study [35].

We chose other body sites as a control because the physical distance between sites within a

host is much smaller than the distance between people, and microbes from one body site are

likely to be commonly, if transiently, introduced to other body sites (e.g., skin to oral cavity).

To find specifically gut-associated genes, we used the phylogenetic linear model to regress

gene presence-absence on the logit-transformed conditional probability P(eGut|m), i.e., the

probability that a body site was the human gut given that a particular speciesm was observed,

which we estimated using Laplace regularization (see Methods, “Estimating-environmental-

specificity”). We identified 4,274 genes whose presence in bacterial genomes was positively

associated with those species being present in the gut versus other body sites in at least one

phylum (374 in Bacteroidetes, 1,515 in Firmicutes, 1,194 in Proteobacteria, and 1,255 in

Actinobacteria).

Overall, the effect sizes for genes learned from this body site-specific model correlated only

moderately with those learned from the “gut prevalence” models (median r = 0.26, range 0.14–

0.35), indicating that these two quantitative phenotypes describe distinct phenomena. Addi-

tionally, the overlap between significant (q� 0.05) hits for both models was usually small

(median Jaccard index 0.056, range 0.035–0.343). These results are not surprising given that

our regularized estimates of gut specificity were only moderately correlated with overall gut

prevalence (Spearman’s ρ = −0.06, Pearson’s r = 0.31, S1 Fig), even when prevalence was calcu-

lated only from HMP gut samples (Spearman’s ρ = 0.05, Pearson’s r = 0.40). This may arise

from different genes being involved in dispersal or adaptation to many different environments

versus those involved in adaptation specifically to the gut.

Indeed, when we compare the enrichments for genes significant in either the body site or

overall prevalence models, we observe large functional shifts (Fig 3). For example, in the gut

prevalence model, but not the body site-specific model, Firmicutes were strongly enriched for

“dormancy and sporulation” (q = 4.4 × 10−5). Because sporulation is likely useful in a wide

range of environments beyond the gut, this result seems intuitive. Body site-specific results for

Firmicutes were instead enriched for genes involved in “phosphorus metabolism” (q = 0.14)

and in particular the term “high affinity phosphate transporter and control of PHO regulon”

(q = 0.058).

We also observed biologically-justified individual gene families that were significant in the

body site-specific model (q� 0.05) but not the overall gut prevalence model (q> 0.5 and/or

wrong sign of effect size). In Firmicutes, for example, carnitine dehydratase and bile acid
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7-alpha dehydratase were both significant only in the body site-specific model, suggesting a

specific role for these genes within the gut environment. Indeed, bile acids are metabolites of

cholesterol that are produced by vertebrates and thus unlikely to be encountered outside of the

host. While the metabolite L-carnitine is made and used in organisms spanning the tree of life,

it is particularly concentrated in animal tissue and especially red meat, and cannot be further

catabolized by humans [44], making it available to intestinal microbes. Bile acid transforma-

tion by gut commensals is a well-established function of the gut microbiome, with complex

influences on health (reviewed in Staley et al. [45]).

In Bacteroidetes, we found that a homolog of the autoinducer 2 aldolase lsrFwas significant

only in the body site-specific model. Autoinducer 2 is a small signaling molecule produced by

a wide range of bacteria that is involved in interspecies quorum sensing. The protein lsrF, spe-

cifically, is part of an operon whose function in Escherichia coli is to “quench” or destroy the

AI-2 signal [46]. Further, an increase of the AI-2 signal has been shown to decrease the Bacter-

oidetes/Firmicutes ratio in vivo in the intestines of streptomycin-treated mice [47]. Degrading

this molecule is therefore a plausible gut-specific colonization strategy for gut Bacteroidetes.

These discovered associations make the genes involved, including many genes without known

functions or roles in gut biology, excellent candidates for understanding how bacteria adapt to

the gut environment.

Fig 3. Comparison of results from the overall prevalence and body-site specific models for Firmicutes. FDR-

corrected significance (as −log10(q)) of the overall model is plotted on the horizontal axis, whereas the same quantity

for the body-site-specific model is plotted on the vertical axis. All FIGfams significant (q� 0.05) in at least one of the

two models are plotted as contour lines: FIGfams significant in the overall prevalence model (and possibly also the gut

specific model) are plotted in orange, while FIGfams significant in the gut specific model (and possibly also the overall

prevalence model) are plotted in blue. Selected SEED subsystems are displayed as colored points (legend), and selected

individual genes are plotted as black points.

https://doi.org/10.1371/journal.pcbi.1006242.g003
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Deletion of gut-specific genes lowers fitness in the mouse microbiome

Beyond finding evidence for the plausibility of individual genes based on the literature, we

were interested in whether more high-throughput experimental evidence supported the associ-

ations we found between gut colonization and gene presence. To interrogate this, we used

results from an in vivo transposon-insertion screen of four strains of Bacteroides. This screen

identified many genes whose disruption caused a competitive disadvantage in gnotobiotic

mice, as revealed by time-course high-throughput sequencing; 79 gene families significantly

affected microbial fitness across all four strains tested [48]. Determining agreement with this

screen is somewhat complicated by the fact that we associated gene presence to gut specificity

across all members of the phylum Bacteroidetes, and not only within the Bacteroides genus.

Significance of overlap therefore depends on what we take as the null “background” set, the

cutoff used for significance, and the set of results from the screen we choose as true positives

(S3 Table).

Despite these complications, this analysis clearly showed that the 79 genes whose disruption

led to lower fitness in the murine gut across all four Bacteroides species were over-represented

among our predictions for gut-specific genes (odds ratio = 4.67, q = 6.7 × 10−3), and remained

so if we only considered the gene families that were present in all Bacteroides species (odds

ratio = 7.02, q = 3.4 × 10−3) (Table 1). Interestingly, we observed the opposite pattern for the

overall prevalence model: the prevalence-associated genes we identified were actually depleted

for genes found to be important in vivo (odds ratio = 0.18, q = 1.1 × 10−2). We believe that this

Table 1. Assessment of agreement between the in vivo results from Wu et al. [48] and gut-specific (“bodysite”) vs. gut prevalence (“overall”) phylogenetic models.

The background sets for enrichment tests were defined as follows: “all tested” (all gene families for which a phylogenetic model was fit), “Bacteroides (core or variable)” (all

gene families with at least one representative in Bacteroides genome cluster pangenomes), “Bacteroides (core only)” (gene families that were present in all Bacteroides
genome cluster pangenomes), “Bacteroides (variable only)” (gene families present in some but not all Bacteroides genomes clusters), and “Bacteroides thetaiotaomicron

only” (only gene families present in Bacteroides thetaiotaomicron). The “all tested” background sets are further classified as “all tested (overall)” and “all tested (body site)”

since the set of genes tested differed slightly. The p-values are from Fisher’s exact tests. These comparisons have been excerpted from the full set, which can be seen in S3

Table; q- values were calculated based on this full set of tests using the Benjamini-Hochberg method [89].

Background set FDR MODEL p -value odds ratio q -value significant

All tested 5% overall 4.86 × 10−3 0.18 1.12 × 10−2 TRUE

Bacteroides (core or variable) 5% overall 5.32 × 10−12 0.05 5.32 × 10−11 TRUE

Bacteroides (core only) 5% overall 1.00 0.00 1.00 FALSE

Bacteroides (variable only) 5% overall 8.03 × 10−4 0.14 2.54 × 10−3 TRUE

Bacteroides thetaiotaomicron only 5% overall 4.89 × 10−6 0.10 2.10 × 10−5 TRUE

All tested 25% overall 2.30 × 10−3 0.25 6.28 × 10−3 TRUE

Bacteroides (core or variable) 25% overall 2.85 × 10−15 0.06 3.43 × 10−14 TRUE

Bacteroides (core only) 25% overall 2.49 × 10−1 0.00 3.65 × 10−1 FALSE

Bacteroides (variable only) 25% overall 4.96 × 10−4 0.19 1.65 × 10−3 TRUE

Bacteroides thetaiotaomicron only 25% overall 4.20 × 10−8 0.12 2.80 × 10−7 TRUE

All tested 5% bodysite 2.67 × 10−3 4.67 6.68 × 10−3 TRUE

Bacteroides (core or variable) 5% bodysite 6.43 × 10−2 2.23 1.20 × 10−1 FALSE

Bacteroides (core only) 5% bodysite 1.14 × 10−3 7.02 3.43 × 10−3 TRUE

Bacteroides (variable only) 5% bodysite 1.00 0.00 1.00 FALSE

Bacteroides thetaiotaomicron only 5% bodysite 1.67 × 10−1 1.79 2.69 × 10−1 FALSE

All tested 25% bodysite 2.67 × 10−3 3.36 6.68 × 10−3 TRUE

Bacteroides (core or variable) 25% bodysite 1.80 × 10−1 1.69 2.77 × 10−1 FALSE

Bacteroides (core only) 25% bodysite 1.09 × 10−2 3.47 2.41 × 10−2 TRUE

Bacteroides (variable only) 25% bodysite 7.14 × 10−1 1.06 8.40 × 10−1 FALSE

Bacteroides thetaiotaomicron only 25% bodysite 5.56 × 10−1 1.23 7.41 × 10−1 FALSE

https://doi.org/10.1371/journal.pcbi.1006242.t001
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is because the body-site-specific model, like the experiment, focused specifically on coloniza-

tion efficiency, while the overall gut prevalence model would have included genes involved in

persistence and dispersal in the environment and transfer between hosts. This experimental

evidence supports the idea that environment-specific phylogenetic linear models truly identify

genes that are important for bacteria to colonize an environment.

We identify Proteobacterial gene families associated with microbes that are

more prevalent in Crohn’s disease

The above analyses were performed with respect to the gut of healthy individuals from the

mainly post-industrial populations of North America, Europe and China. However, we also

know that taxonomic shifts are common between healthy guts versus the guts of individuals

from the same population with diseases such as type 2 diabetes, colorectal cancer, rheumatoid

arthritis, and inflammatory bowel disease (reviewed in Wang et al. [49]). One explanation for

these results is that sick hosts select for specific microbial taxa, as with the links previously

observed between Proteobacteria and the inflammation that accompanies many disease states

[50]. Since gut microbes have also been implicated in altering disease progression (reviewed in

Lynch and Pedersen [51]), identifying genes associated with colonizing diseased individuals

may afford us new opportunities for intervention.

To identify microbiome functions that could be involved in disease-specific adaptation to

the gut, we looked for genes that were present more often in microbes that discriminated case

from control subjects. Specifically, we compared n = 38 healthy controls from the MetaHIT

consortium to n = 13 individuals with Crohn’s disease [52, 53]. Similar to our analysis of gut

versus other body sites, we used the conditional probability that a subject had Crohn’s disease

given that we observed a particular microbe in their gut microbiome P(eCD|M) (see Methods).

We identified 1,841 genes whose presence in bacterial genomes was associated with Crohn’s

after correcting for phylogenetic relationships in at least one phylum (796 in Bacteroidetes,

278 in Firmicutes, 467 in Proteobacteria, and 340 in Actinobacteria).

Eleven of our top Proteobacterial associations were annotated as fimbrial proteins, includ-

ing one predicted to be involved specifically in the biosynthesis of type 1 fimbriae, or pili

(FimI, association q = 2.8 × 10−3), cell surface structures involved in attachment and invasion.

Crohn’s pathology has been linked to an immune response to invasive bacteria, and adherent-

invasive E. coli (AIEC) appear to be overrepresented in ileal Crohn’s [54]. In an AIEC E. coli
strain isolated from the ileum of a Crohn’s patient, type 1 pili were required for this adherent-

invasive phenotype [55]. Chronic infection by AIEC strains was also observed to lead to

chronic inflammation, and to an increase in Th17 cells and a decrease in CD8+ T cells similar

to that observed in Crohn’s patients [56].

An additional striking feature of the results was the number of Proteobacterial proteins

associated with greater risk of Crohn’s that were annotated as being involved in type IV secre-

tion and conjugative transfer systems (Fisher’s test q = 4.9 × 10−4). Conjugative transfer is a

process by which gram-negative bacteria in direct physical contact share genetic material.

More specifically, many of these genes, including one annotated as TraR (Fig 4), were homo-

logs of those involved in an “F-type” conjugal system for transferring IncF plasmids, which

can be classified as a variety of type IV secretion system [57]. Previously, in a mouse model,

gut inflammation was shown to stimulate efficient horizontal gene transfer in Proteobacteria

by promoting blooms of Enterobacteriaceae and thus facilitating cell-to-cell contact [58].

Future work will be required to determine whether this increased conjugation is a neutral

consequence of inflammation, a causative factor, or provides a selective advantage in the

inflamed gut.
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Discussion

The present analyses represent a first look into what can be learned by combining shotgun

metagenomics with phylogenetically-aware models. Several extensions to our work could be

made in the future. First, in addition to modeling prevalence, for instance, we could model

abundance using a phylogenetic linear model with random effects [59], potentially allowing us

to learn what controls the steady-state abundance of species in the gut. Additionally, we could

also use these models to screen for epistatic interactions, which would be near-intractable even

in systems with well-characterized genetic tools, but for which a subset of hypotheses could be

validated by, e.g., comparing the fitness of wild-type microbes with double knockouts. While

controlling the total number of tests would still be important to preserve power, an automated,

computational approach to detecting gene interactions would still offer important savings in

time and expense over developing a genome-wide experimental library of multiple knockouts

per organism under investigation.

Currently, these analyses estimate species abundance and gene presence-absence from

available sequenced isolate genomes. However, it has been estimated that on average 51% of

genomes in the gut are from novel species [32]. Especially for case/control comparisons, using

information from metagenomic assemblies could enable quantification of species with no

sequenced representatives, and would yield a more accurate estimate of the complement of

genes in the pangenome for species that do have sequenced representatives. This would be par-

ticularly helpful in gut communities from individuals in non-industrialized societies that are

enriched for novel microbial species [32]. In fact, genes then could be treated as quantitative

variables (e.g., coverage or prevalence) rather than binary, which is possible for covariates in

phylogenetic linear models and simply changes the interpretation of the association coefficient

β1,g.

Another potential extension would be to model prevalence and environment-specific prev-

alence for taxa other than the species clusters analyzed in this study. We focused on four prev-

alent and abundant phyla of bacteria, but our methods could be applied more broadly as long

Fig 4. Genes involved in conjugative transfer are associated with Crohn’s disease-enriched species. The

conjugation transcriptional regulator traR is plotted as an example. The left-hand tree is colored by each species’

disease specificity score, i.e., the conditional probability of Crohn’s given the observation of a given species (grey,

which represents the prior, to red, which represents a higher conditional probability). The right-hand tree is colored by

gene presence-absence (grey, meaning absent, or blue, meaning present). The mirrored patterns drive the phylogeny-

corrected correlation.

https://doi.org/10.1371/journal.pcbi.1006242.g004
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as quantitative phenotypes and genotypes could be accurately estimated. Phylogenetic linear

modeling could also be applied directly to genera or higher taxonomic groups, although both

phenotypes and genotypes would be averaged over more diverse sets of genomes, which could

result in associations with different signs canceling out. As more genome and metagenome

data is generated for microbial populations over time, extensions of phylogenetic linear

modeling (e.g., with random effects [59]) may also be useful for studying associations between

phenotypes and evolving gene copy number and single nucleotide variants at the strain level.

This application would require accurate trees with strains as leaves, each with estimates of a

phenotype and genotype. Additionally, our current definition of species approximates a 95%

average nucleotide identity (ANI) cutoff; while this approach is a standard bioinformatic

approach [60], and appears to be a “natural boundary” in analyses of genome compendia [61],

the precise definition of a bacterial species remains a matter of active debate, and in the future

may include phenotypic information [62] or information about gene flow [63]. Beyond preva-

lence, other phenotypes will also be interesting to investigate, especially experimentally mea-

sured phenotypes from high throughput screens and other techniques that complement

genomics.

In summary, using phylogenetic linear models, we were able to discover thousands of spe-

cific gene families associated with quantitative phenotypes calculated directly from data: over-

all gut prevalence, a specificity score for the gut over other body sites, and a specificity score

for the gut in Crohn’s disease versus health. Importantly, we have shown through simulation

and real examples that standard linear models are inadequate for this task because of an unac-

ceptably high false-positive rate under realistic conditions. Furthermore, many of the results

we found also have biological plausibility, both from the literature on specific microbial path-

ways and from a high-throughput in vivo screen directly measuring colonization efficiency. In

addition to these expected discoveries, we also found thousands of novel candidates for under-

standing and potentially manipulating gut colonization. These results illustrate the potential of

integrating phylogeny with shotgun metagenomic data to deepen our understanding of the

factors determining which microbes come to constitute our gut microbiota in health and

disease.

Methods

A graphical overview of our statistical methods can be found in S2 Fig. Additionally, we pro-

vide a glossary of mathematical notation used in this section in S1 Appendix.

Species definition

We utilized the previously published clustering of 31,007 high-quality bacterial genomes into

5,952 species from the MIDAS 1.0 database [32] (http://lighthouse.ucsf.edu/MIDAS/midas_

db_v1.0.tar.gz). These species clusters are sets of genomes with high pairwise sequence similar-

ity across a panel of 30 universal, single-copy genes. The genomes in each species clustering

have approximately 95% average genome-wide nucleotide identity, a common “gold-standard”

definition of bacterial and archaeal species [64]. These species-level taxonomic units are simi-

lar to, but can differ from, operational taxonomic units (OTUs) defined solely on the basis of

the 16S rRNA gene.

Taxonomic annotations for each species were drawn from the MIDAS 1.0 database. Some

taxonomic annotations of species in the MIDAS database were incomplete; these were fixed by

searching the NCBI Taxonomy database using their web API via the rentrez package [65]

and retrieving the full set of taxonomic annotations.
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Pangenomes

Pangenomes for all species used in this study were downloaded from the MIDAS 1.0 data-

base. As previously described [32], pangenomes were constructed by clustering the DNA

sequences of the genes found across all strains of each species at 95% sequence identity using

UCLUST [66]. Pangenomes were functionally annotated based on the FIGfams [37] which

were included in the MIDAS databases and originally obtained from the PATRIC [67] data-

base. Thus, each pangenome represents the set of known, non-redundant genes from each

bacterial species with at least one sequenced isolate.

Phylogenetic tree construction

The tree used for phylogenetic analyses was based on the tree from Nayfach et al. [32] based

on an approximate maximum likelihood using FastTree 2 [68] on a concatenated alignment

(using MUSCLE [69]) of thirty universal genes. Thus, each tip in the tree represents the phylo-

genetic placement for one bacterial species. For the current analyses, the tree was rooted using

the cyanobacterium Prochlorococcus marinus as an outgroup, and the tree was then divided by

phylum, retaining the four most prevalent phyla in the human gut (Bacteroidetes, Firmicutes,

Actinobacteria, and Proteobacteria). One Actinobacterial species cluster, the radiation-resis-

tant bacterium Kineococcus radiotolerans, was dropped from the tree because it had an

extremely long branch length, indicating an unusual degree of divergence. Finally, phylum-

specific trees were made ultrametric using the chronos function in the R package ape [70],

assuming the default “correlated rates” model of substitution rate variation. We performed

this step because first, our taxa were contemporaneously sampled, and second, we assumed

that our phenotypes of interest varied with divergence time, as opposed to the number of sub-

stitutions per site separating marker gene sequences [71].

Estimating species abundance across human associated metagenomes

Metagenome samples were drawn from subjects in the Human Microbiome Project (HMP)

[35], the MetaHIT consortium [52, 53], a study of glucose control [72], and a study of type 2

diabetes [73]. Accession numbers were identified using the aid of SRAdb [74] and downloaded

from the Sequence Read Archive (SRA) [75]. The relative abundance of bacterial species in the

metagenomes was estimated using MIDAS v1.0 [32], which maps reads to a panel of 15 phylo-

genetic marker genes. Species relative abundances are computed as previously described [32]

(“Species abundance estimation”): essentially, they are normalized counts of reads mapping to

bacterial species, with non-uniquely mapped reads assigned probabilistically.

Accession IDs used can be found in S4 Table. For prevalence estimates, we used healthy

subjects from all four cohorts; for body site comparisons, we used only healthy subjects from

HMP [35], and for the Crohn’s case-control comparison, we used only subjects from the Meta-

HIT consortium [52, 53].

Modeling gene-phenotype associations

The basic design is the same for all models that we fit: we model the effect of a categorical vari-

able, gene (specifically, FIGfam family) presence vs. absence, on a particular phenotype esti-

mated for many microbes from data.

Here, let~�x;E½;D�ðAÞ refer to a vector whose elements ϕm,x,E[,D](A) refer to an estimate of

the phenotype ϕ for a microbem, in an environment ex from a set of k environments

E = {e1, . . .ek}, optionally also adjusting for potential dataset effects D, based on a matrix of

microbial presence-absence data A. We then model the effect on this phenotype of having vs.
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lacking each particular gene g, fitting one model per gene:

~�x;E½;D�ðAÞ ¼ b0 þ b1;g
~I g þ~�g

where β0 is a baseline intercept value, β1,g is the effect size of gene g,~I g is a binary vector whose

elements Ig,m are 1 when microbem’s pangenome contains the gene g and 0 otherwise, and~�g

are the residuals. We then test the null hypothesis H0: β1,g = 0, yielding one p-value per gene;

the resulting genewise p-values are finally corrected for multiple testing using an adaptive false

discovery rate approach (q-value estimation).

The differences in the models we fit concern only how we obtain phenotype estimates

~�x;E½;D�ðAÞ, and our assumptions about how the residuals~�g are distributed.

Fitting linear vs. phylogenetic models

The phylogenetic and standard linear models are very similar, except for the assumptions

about the distribution of the residuals. In the standard linear model, the residuals are assumed

to be independently and identically distributed as a normal distribution, i.e., �g;m � N ð0; s2Þ

or using multivariate notation~�g � N ð0; s2IÞ. In the phylogenetic model, in contrast, the

residuals are not independent: rather, they are correlated based on the phylogenetic relatedness

of the species. They are therefore distributed � � N ð0;SÞ, with the following covariance

matrix:

S ¼

s2 s1;2 � � � s1;i

s2;1 s2

..

. . .
.

si;1 s2

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

where i is the number of species, σ2 is the overall variance, and σ1,2 is the covariance between

species 1 and species 2. Under the assumption of the phylogenetic model (evolution of a con-

tinuous phenotype according to Brownian motion), this covariance is proportional to the dis-

tance between the last common ancestor of species 1 and 2 and the root of the tree. Thus,

very closely-related species have a common ancestor that is far from the root, while the last

common ancestor of two unrelated species is the root node itself. This method was first

described in Grafen [26]; for this study, we use the implementation in the phylolm R package

[76].

β1 parameters were tested for a significant difference from 0 and the resulting p-values were

converted to q-values using Storey and Tibshirani’s FDR correction procedure [77, 78].

Metagenomic presence-absence data

We use binary presence-absence data to calculate the phenotypes of interest. More formally,

we conceptualize the metagenomic data as a matrix A of microbial presence-absence with

dimensions i × j, where i is the number of microbes and j is the number of samples, and am,n is

1 if the relative abundance of microbem (calculated using MIDAS’s taxonomic profiling [32])
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is greater than 0, and 0 otherwise:

A ¼

a1;1 a1;2 � � � a1;j

a2;1 a2;2 a2;j

..

. . .
. ..

.

ai;1 ai;2 � � � ai;j

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

We conceptualize each e1, e2, . . ., ek 2 E as a set of indices, referring to samples collected

from that environment, e.g., the oropharynx in healthy subjects, or the gut in subjects with

Crohn’s disease, such that for all ex 2 E, ex� {1, 2, . . ., j}. Because one environment may be

tested in multiple studies, for our prevalence estimates, we also define a similar mapping of

samples to datasets d1, d2, . . ., dl 2 D such that for all dy 2 D, dy� {1, 2, . . ., j}. (For calculating

environmental specificity scores, to avoid having to correct for unbalanced designs, we only

use single datasets that measured all environments to be compared.) We also assume that E
and D are partitions of {1, 2, . . ., j}, such that every sample is covered and no sample belongs to

multiple ex or dy.

Estimating the prevalence phenotype

The first phenotype we consider is prevalence, p. Prevalence is usually defined as the fraction

of samples in which a particular taxon is observed. Using the formulation above, the preva-

lence of microbem in environment ex and study dy would be equal to:
P

n2ðex\dyÞ
ðam;nÞ

kex \ dyk

where we denote the quantity
P

n2ðex\dyÞ
(1), yielding the number of samples in the intersection

of environment ex and study dy, as ||ex \ dy||.
We now take a slightly more general definition, such that a particular taxon’s true prevalence

pm,(ex \ dy) is the probability of observing a particular microbem in a set of samples (ex \ dy),
P(m|(ex \ dy)). More specifically, we can say that pm;ðex \ dyÞ is the probability parameter of the

Bernoulli random variable am,n, n 2 (ex \ dy), which generates the values in our data matrix A:

am;n � Bernoulliðpm;ðex\dyÞÞ ; n 2 ex \ dy

pm;ðex\dyÞ ¼ Pðmjex; dyÞ

The maximum likelihood estimator of pm;ðex\dyÞ given the data matrix A is then, as above, the

fraction of subjects in F in which microbemwas observed:

p̂MLm;ðex\dyÞðAÞ ¼

P
n2ðex\dyÞ

ðam;nÞ

kex \ dyk

Because p is a proportion or probability, it is bounded between 0 and 1. The distribution of p is

therefore highly non-normal, potentially violating assumptions of our regression model. We

will therefore use logit(p) as our phenotype. However, this now introduces a problem because

p̂MLEm;ðex\dyÞ
can take the values 0 and 1, leading to infinite estimates of logitðp̂m;ðex\dyÞÞ. We therefore

instead use a shrunken estimate of p̂m;ðex\dyÞ.
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Shrinkage estimators reduce the variance in the estimate of a parameter by combining it

with prior information. These priors can be estimated from data (as in empirical Bayes

approaches), estimated from independent information about the distribution of the parameter,

or selected to be uninformative. Here, we use an uninformative prior, in this case a uniform

distribution:

am;n � Bernoulliðpm;ðex\dyÞÞ; n 2 ex \ dy

pm;ðex\dyÞ � Betað1;1Þ

Mechanistically, this is equivalent to performing additive smoothing, which effectively adds

one pseudocount to the numbers of absences and presences:

p̂ADDm;ðex\dyÞ
ðAÞ ¼

1þ
P

n2ðex\dyÞ
am;n

2þ kex \ dyk

Finally, we note that this estimate of prevalence is only valid within a single study dy. However,

what we really want is an estimator of prevalence that depends only on the environment ex.
We therefore marginalize out the effect of dy:

PðmjexÞ ¼
X

y

Pðmjex; dyÞPðdyÞ ¼
X

y

Pðmjðex \ dyÞÞPðdyÞ

where we let the prior probability P(dy) simply be the inverse of the number of datasets pres-

ent:

PðdyÞ ¼
1

kDk

Effectively, this weights each dataset inverse-proportionally to the number of samples, so that

the study with the largest number of samples does not dominate our estimates of prevalence.

(An alternative weighting could use, for example, the square root of the sample size, as is some-

times performed in fixed-effect meta-analyses.)

To avoid effects from additive smoothing dominating our estimates (as might happen if the

same smoothing were applied to samples with different numbers of samples), we first obtain a

marginalized version of the maximum-likelihood estimator, then perform additive smoothing

on these marginalized estimates:

p̂ADDWm;x;E;DðAÞ ¼

P
yp̂

ML
m;ðex\dyÞ

1

kDk

� �
P

ykex \ dyk
� �

þ 1

P
ykex \ dyk

� �
þ 2

Finally, we use the logit of this estimate, i.e., logitðp̂ADDWm;x;E;DðAÞÞ, as the elements �
Prev
m;x;E;DðAÞ of

our first phenotype~�Prev
x;E;DðAÞ:

�
Prev
m;x;E;DðAÞ ¼ logit

P
yp̂

ML
m;ðex\dyÞ

1

kDk

� �
P

ykex \ dyk
� �

þ 1

P
ykex \ dyk

� �
þ 2

0

B
B
@

1

C
C
A

To recapitulate, we use a logit-transformed, shrunken estimate of prevalence in a given

environment, weighted so that each study contributes equally.
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Estimating environmental specificity scores

Formulating the specificity score. Prevalence gives us information about how commonly

a microbe is seen in a particular environment. While useful, this concept does not address the

difference between microbes that are specific for a given environment and those that have a

cosmopolitan distribution. We therefore wanted to design a statistic capturing this environ-

mental specificity. We define this statistic in terms of how predictive a particular microbe is for

one out of a set of possible environments. (For simplicity, we only consider cases in which all

environments were measured within a single study, and therefore drop D from these equa-

tions. This estimator could be extended in the future to account for study effects as above.)

Recall that prevalence can be defined as the probability P(m|ex), i.e., the probability of

observing microbem in environment ex. To avoid potential sources of confounding error, we

only consider environments both measured within the same study. We therefore let the envi-

ronmental specificity score sm,x,E equal the probability of observing a particular environment

ex out of a set of k environments E = {e1, e2, . . ., ek}, given that we observe microbem:

sm;x;E ¼ PðexjmÞ

which, by application of Bayes’ rule and then marginalization, becomes:

PðexjmÞ ¼
PðmjexÞPðexÞ

PðmÞ
¼

PðmjexÞPðexÞ
Pk

y¼1
PðmjeyÞPðeyÞ

¼
pm;exPðexÞ

Pk
y¼1
pm;eyPðeyÞ

where P(m|ex) is the prevalence pm;ex of microbem in environment ex 2 E, and P(ex) is the

prior probability of observing environment ex. The priors P(e) can be uninformative, in which

case P(ex) = 1/k for all x, meaning that all environments are equally likely. This is the approach

we take for body site comparisons. Alternatively, for a disease state, they could be drawn from

actual epidemiological data about the frequency of that disease in the population of interest.

This is the approach we take for the Crohn’s disease comparisons, taking P(eCD) = 0.002 [79],

since in a Crohn’s case-control study, the fraction of individuals with Crohn’s will be much

higher than the true prevalence of this disease in the population. In either case, the P(ex) values

do not depend on the values in the dataset A. An intriguing third possibility that would depend

on A would be to estimate the priors P(ex) based on the average observed α-diversity within

environment ex, such that more diverse environments would be modeled as a priorimore

likely to contain any particular microbe.

Motivating a shrunken estimator of sm,x,E(A). One simple way to estimate ŝm;x;EðAÞ
would be to simply plug in our estimates of p̂ADDm;ex

ðAÞ, yielding:

ŝADDm;x;EðAÞ ¼
p̂ADDm;ex
ðAÞ � PðexÞ

Pk
y¼1
p̂ADDm;ey
ðAÞ � PðeyÞ

However, for cases in which the number of total observations of a microbe
P

n2ey
am;n is low

(imagine, e.g., a microbe that is observed once in environment e1 and zero times in e2), even

the shrunken estimate p̂ADDm;ex
ðAÞ will have relatively high variance. This is particularly problem-

atic here because both the numerator and denominator of ŝADDm;x;EðAÞ depend on p̂ADDm;x;EðAÞ, so as

pm,1,E! 0, the standard error of ŝADDm;x;EðAÞ will tend to increase. This means that the microbes

with the least-confidently estimated prevalences will tend to have high leverages in the regres-

sion, distorting the results. The confounding between the magnitude of ŝADDm;x;EðAÞ and its stan-

dard error also leads to heteroskedasticity, or unequal variance across the residuals, violating

one of the main linear model assumptions.

Phylogenetic modeling of gut colonization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006242 August 9, 2018 21 / 41

https://doi.org/10.1371/journal.pcbi.1006242


To account for these issues, we construct a more aggressively-shrunk estimator of sm,x,E.

We assume that most microbes do not differ substantially between environments, and there-

fore shrink estimates of sm,x,E = P(ex|m) towards the prior probability P(ex), indicating that that

this microbe is uninformative about the environment. To accomplish this, we use a maximum

a posteriori (MAP) estimator, ŝMAPm;x;EðAÞ, with a Laplace prior centered on P(ex). Laplace priors

are also used in the Bayesian lasso to make parameter estimates more sparse, by shrinking

them to zero. However, critically, we are not using the Laplace prior to perform model selec-

tion, since the exact same model is fit as in Eq (1); we are only using it to reduce the variance

in estimating ŝm;x;E; unlike the Bayesian lasso, we therefore use no information about the inde-

pendent variable (gene presence-absence) in obtaining estimates of ŝm;x;E.
An estimator of sm,x,E using Laplace shrinkage. We are interested in estimating the spec-

ificity score sm,x,E of a microbem in environment ex, given observations of microbial presence

or absence am,n where n is a sample, a mapping of samples to environments E, and the prior

probability P(ex) of choosing the environment ex 2 E. In order to do this, we construct a model

of the data that depends on sm,x,E, then maximize the posterior probability of observing the

data given the model.

Previously, we modeled the presence-absence data am,n in terms of prevalence pm;ex . It is

therefore useful to define a function of our parameter of interest sm,x,E that yields pm;ex . We first

restate the definition of the specificity score sm,x,E, noting that it depends on the prevalences

pm;ey of microbem across all k environments ey 2 E, ||E|| = k, and the prior probabilities of

these environments P(ey):

sm;x;E ¼
pm;exPðexÞ

Pk
y¼1
pm;eyPðeyÞ

Rearranging this equation to get the prevalence in an environment pm;ex in terms of specificity

sm,x,E, we get:

pm;ex ¼
ðsm;x;EÞ

Pk
y¼1
pm;eyPðeyÞ

PðexÞ

We then define the function h(sm,x,E) as the function that transforms specificity scores into

prevalences:

hðsm;x;EÞ ¼ pm;ex ¼
ðsm;x;EÞ

Pk
y¼1
pm;eyPðeyÞ

PðexÞ

Next we consider the Laplace distribution that we use as the prior for our specificity score

sm,x,E. This distribution has two parameters, a mean and a width. The mean is given by the

prior probability of environment ex, P(ex). For the moment, we assume that we have chosen a

width b, which governs the amount of shrinkage. We can then model the environmental speci-

ficity score as follows:

logitðsm;x;EÞ � LaplaceðPðexÞ; bÞ

am;n � Bernoulliðhðsm;x;EÞÞ; n 2 ex

We can then obtain an estimate of sm,x,E given the prior probability of environment ex (P(ex)),
our observed data am,n, and a Laplace width b, by maximizing the posterior probability of our
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data am,n. This maximum a posteriori (MAP) estimate takes the following form:

ŝMAPm;x;EðA; bÞ ¼ argmaxsm;x;ELðAjhðsm;x;EÞÞ � f ðAjbÞ ð2Þ

where ŝ is the parameter being estimated, A represents our data matrix with elements am,n, L
represents the likelihood function of the distribution from which the data is assumed to be

drawn, f represents the density function of our Laplace prior on s (without which the estimator

reduces to the maximum-likelihood estimator), and b is the given width parameter as above.

In order to calculate h(sm,x,E), we need to know the prevalences across all environments

pm;ey ; ey 2 E, which are not given. However, we can estimate them as before from am,n. We let

hML be the function h where the values of pm;ey come from the maximum-likelihood estimates

p̂MLm; ey , so that:

hMLðsm;x;E;AÞ ¼
ðsm;x;EÞ

Pk
y¼1
p̂MLm;y;E;APðeyÞ

PðexÞ

We can now expand this to give the final maximization:

ŝMAPm;x;EðA; bÞ ¼ argmaxsm;x;E

�
kexk
nobs

� �
ðhMLðsm;x;E;AÞÞ

nobsð1 � hMLðsm;x;E;AÞÞ
kexk� nobs

� �
�

1

2b
expð�

jlogitðsm;x;EÞ � logitðPðexÞÞÞj
b

� �� ð3Þ

where nobs refers to
P

n2ex
am;n, i.e., the number of times microbem was observed in environ-

ment ex.
Choosing the Laplace width parameter. We have assumed above that we are given the

Laplace width parameter b. To choose appropriate, dataset-specific values of b, which controls

how much ŝMAPm;x;EðA; bÞ is shrunk back to the prior, we performed simulations. We chose a sim-

ulation-based approach instead of, for example, cross-validation because we lacked labeled

examples of microbes that truly differed between environments. Instead, we constructed data-

sets A0 with elements a0m;n where we “knew” that some microbes (m 2M0) were not informative

about the environment and others (m =2M0) had “true” differences, by simulating data with

the following model:

a0m;n � Bernoulliðpm;y;EÞ; n 2 ey

pm;y;E ¼

( qm ðy 6¼ xÞ

logisticðlogitðqm þ zmÞÞ ðy ¼ xÞ

zm �

( z � ð2 � ðBernoulliðrÞÞ � 1Þ ðm =2M0Þ

0 ðm 2 M0Þ

qm � Betaða; bÞ

In other words, for each speciesm in different environments ey 2 E, presence-absence a0m;ey
was modeled as a Bernoulli random variable. The success parameter from this Bernoulli was

drawn from a Beta distribution with parameters a and b, which were fit from a single environ-

ment in the corresponding real dataset using maximum-likelihood, thus ensuring that the sim-

ulated species had similar baseline prevalences as real species. In species with no difference

between environmentsm 2M0, the true prevalence pm,x,E was set to be equal between the envi-

ronment of interest ex and all other environments; in species with true differences between
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environments (m =2M0), in contrast, the effect size z was either added or subtracted from the

logit-prevalence (with the parameter r controlling the proportion of positive true effects). The

number of null species ||M0|| was set to 25% of the total number of simulated species ||M||,

which was matched to the real dataset.

For a given simulated dataset and value of b, the false positive rate (FPRb) and the true posi-

tive rates for F> 0 and F< 0 (TPRpos and TPRneg, respectively) were calculated:

FPRb ¼ #ðjPðexjðm 2 M0ÞÞ � PðexÞj > �Þ=kM0k

TPRposb ¼ #ðPðexjðzm > 0ÞÞ � PðexÞ > �Þ=#ðzm > 0Þ

TPRnegb ¼ #ðPðexÞ � Pðexjðzm < 0ÞÞ > �Þ=#ðzm < 0Þ

Since we are using numerical optimization, posterior probabilities are not always shrunk

exactly to the prior; we therefore use a tolerance parameter δ set at P(ex) � 0.005 to account

for numerical error. The tuning parameter b was then optimized according to the following

piecewise continuous function, which increases from 0 to 1 until the false positive rate

drops to 0.05 or lower (in order to guide the optimizer), and then increases above 1 in pro-

portion to the average (geometric mean) of the positive and negative effect true positive

rates:

boptim ¼ argmaxb
1 � FPRb FPRb > 0:05

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPRposb � TPRnegb

p
FPRb � 0:05

8
<

:

Given z = 2 and r = 0.5, for Crohn’s disease, boptim was estimated at b = 0.16 and for the

body site specificity, boptim was estimated at b = 0.282. (Changing z to 1 or 0.5, or changing r to

0.1 or 0.9, resulted in very similar estimates of boptim. Additionally, boptim estimates were con-

sistent across several orders of magnitude of �; see S4 Fig).

Worked example. An example showing the effect of this procedure on real data can be

seen in S3 Fig. The microbe Bacillus subtilis is detected once in the healthy cohort and once

in the Crohn’s cohort, while Bacteroides fragilis is present in 24/38 healthy subjects but 13/13

Crohn’s subjects (S3A Fig). The maximum-likelihood values of p̂m;CD;EðAÞ and ŝm;CD;EðAÞ are

therefore much higher for B. subtilis than for B. fragilis, even though the evidence for a differ-

ence across environments in the prevalence of B. subtilis is much weaker (S3B and S3C Fig).

In contrast, the Laplace prior (S3D Fig) successfully shrinks the estimate of the B. subtilis
specificity score back to the baseline (P(eCD) = 0.002), while the evidence for B. fragilis over-

comes this prior and yields an estimate close to the maximum-likelihood value (0.0031; S3E

Fig).

Alternatives to shrinkage estimation of environmental specificity scores

An alternative to using the Laplace shrinkage estimator would be to allow all taxa to contribute

to the regression, but to downweight taxa with less-confidently measured phenotypes. In gen-

eralized least squares (GLS), this is typically accomplished by scaling the variance-covariance

matrix of the residuals by the variances of the estimators. This in effect says that the residuals

are expected to be more dispersed around the regression line when the variance of the estima-

tor is high: equivalently, this procedure weights each point in least-squares by the inverse of

the estimator’s variance. We represent these variances as vm � ðSEðŝm;x;EðAÞÞÞ
2
. The covariance
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matrix is then:

SWLS ¼

s1v1 s1;2

ffiffiffiffiffiffiffiffiv1v2

p
� � � s1;m

ffiffiffiffiffiffiffiffiffiv1vm
p

s2;1

ffiffiffiffiffiffiffiffiv2v1

p
s2v2

..

. . .
.

sm;1
ffiffiffiffiffiffiffiffiffivmv1

p
smvm

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

where σ values are as above. (Off-diagonal elements are weighted by the geometric mean of the

variances, thus giving the same correlation structure as before.)

Because we have the data matrix A from which ŝADDm;x;E was estimated, we can estimate the var-

iances of these estimates by bootstrapping. Denoting the ŝ estimates derived from bootstrap

sample c as ŝcm;x;E, where c 2 {1, C} and C is the number of bootstraps, and letting the mean

across bootstrap samples be �sm;x;E, then vm ¼ ð 1

C� 1

PC
c¼1
ðŝcm;x;E � �sm;x;EÞ

2
Þ

2
.

Both approaches (Laplace shrinkage estimation and WLS) account for variability in the

accuracy of estimating sm,x,E, but in different ways. We would expect them to agree more when

sm,x,E values were more confidently estimated (meaning the evidence for difference from the

prior would be stronger and the extent of downweighting would be lower), and when more of

the sm,x,E values diverged substantially from the prior (leading to less sparsity in ŝLaplacem;x;E ). Indeed,

when comparing body site specificities, which are based on higher numbers of samples and

involve comparisons across highly divergent environments, both approaches yield more simi-

lar estimates, and become more concordant when the effect sizes are calculated only over sig-

nificantly-different gene families. In contrast, for the Crohn’s disease comparison, in which

the environments (healthy vs. diseased gut) are more closely related and the number of sam-

ples is smaller, the two methods tend to disagree more, especially in phyla where most taxa are

shrunk back to the prior (S2 Table). (We implemented WLS using the gls function provided

by the nlme R package [80].)

These results reflect the different underlying assumptions of each estimator: Laplace

shrinkage assumes that taxa are not truly varying across environments without strong evi-

dence, while WLS uses information from all taxa but downweights less-confidently-observed

species. For the purposes of this manuscript, we focused on the results based on Laplace

shrinkage estimation, since we believe the assumption that most taxa do not change is appro-

priate when comparing the same body site in health and disease. However, either approach

may be preferable depending on the precise scenario being studied. It could also be possible to

combine the two approaches by, for example, using the full posterior distribution of ŝm;x;E to

derive weights.

Power analysis

To test the power and false positive rate of our method, we used parametric simulations, either

under the null hypothesis in which a gene had no effect on the phenotype, or under the alter-

native hypothesis in which it had a defined effect. These involved generating one binary geno-

type and one continuous phenotype per simulation. These were parameterized as follows:

• The continuous phenotype~�Sim is simulated according to a Brownian motion model with

parameters β0 corresponding to the ancestral state of the phenotype and σ2 corresponding to

the phenotype’s overall variance (i.e., the diagonal of S in the phylogenetic model).
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• The binary genotype~I Sim is generated from a Markov process as in Ives and Garland [34],

with parameters α and β1. α gives the sum of the transition probabilities going from 0 to 1

and from 1 to 0. β1 gives the effect size: that is, how much the simulated phenotype influences

the binary genotype (in logit space).

We perform the following process, given a choice of α and β1, for each phylum h:

1. Estimate the parameters b̂Prev
0

and bs2 by fitting the following intercept-only phylogenetic

model to the real prevalence phenotype:

~�Prev
x;E ðAÞ ¼ b

Prev
0
þ~�

where � � N ð0;SÞ and Diag(S) = σ2.

2. For each of B simulations:

a. Generate a continuous phenotype~�Sim according to a Brownian motion process, evolv-

ing along the tree of phylum h, with parameters b̂Prev
0

and bs2 .

b. Generate a binary genotype~I Sim according to an Ives-Garland Markov process with

parameters α and β1 and a covariate~�Sim
x;E .

c. Fit the following regression equation:

~�Sim ¼ b
Test
0
þ b

Test
1
~I Sim þ �

using either a standard linear model or the phylogenetic model (as specified in Methods,

“Fitting linear vs. phylogenetic models”).

d. Return the p-value for the test of the null hypothesis b
Test
1
¼ 0.

3. The fraction of p-values� 0.05 yields the power (when given β1 > 0) or the false positive

rate (when given β1 = 0) of the test.

The binary genotype effect size β1 is not a linear function of the effect of the gene on preva-

lence. A more intuitive description of the effect size might be the (average) fold-change in

prevalence associated with a gene’s presence. Because the parameters βTest are on a logit scale,

this quantity would be equal to:

F ¼
logisticðbTest

1
þ b

Test
0
Þ

logisticðbTest
0
Þ

This quantity will depend on the amount of phylogenetic signal in the binary genotype α, the

tree along which genotypes and phenotypes are simulated, and the “input” effect size β1.

Accordingly, we simulated sets of 50 binary genotypes with given effect sizes β1 2 {0, 0.5, 0.75,

1.0, 1.25} and values of α 2 {0, 25, 50}. While there is substantial variation, in general an

“input” effect size (i.e., β1) of 1.0 approximately corresponds to F� 1.72, a 72% increase in

prevalence, and an “input” effect size of 0.5 corresponds to F� 1.5, a 50% increase (S8 Fig).

Assessing the potential impact of sampling with left-censoring

One potential pitfall with applying linear methods occurs when the distribution of the

response variable (here, our phenotype) has a minimum value. This arises because, within a

particular dataset, the lowest possible value of p̂ADDm;x;EðAÞ is equal to (||ex|| + 2)−1, where ||ex|| is

the number of samples in environment ex. This phenomenon is referred to as “left-censoring.”
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(Some may have encountered the term “left-censoring” in the context of participants who join

a study having already experienced an event of interest. The time they experienced this event is

therefore lower by an unknown amount than the lowest-possible measured value. While the

domain and application are different, the statistical phenomenon is the same.) Left-censoring

can result in inaccurate p-values because the variance is mis-estimated for the data points

below the limit of detection. We therefore empirically assessed the impact of left-censoring in

simulation, and also created extensions of the method to be used when its impact is noticeable.

Empirically, our prevalence phenotype~�Prev
x;E ðAÞ displays substantial left-censoring (S6A

Fig). The distribution of this phenotype fits well to a normal with left-censoring at the limit of

detection, in this case approximately −0.50 standard deviations below the mean (AIC using

truncated normal and censoring: 20844.82; AIC using standard normal: 21833.38).

We therefore repeated the simulation process above, but after using our continuous pheno-

type to generate the binary genotype in step 2.b, we truncated the continuous phenotype~�Sim

artificially at a specified number of standard deviations K below the mean, yielding~�Cens. We

then replaced~�Sim with~�Cens in the regression in step 2.c.

Using this simulation framework, we benchmarked three different ways to test the signifi-

cance of b
Test
1

in the phylogenetic model. We computed p-values in one of the following three

ways:

1. T-STATISTIC: Return the p-value of a t-test of the null hypothesis that b
Test
1
¼ 0, as in Methods,

“Modeling gene-phenotype association”.

2. PARAMETRIC BOOTSTRAP: Simulate a number C of null binary genotypes~I c with β1 = 0, where

c 2 {1, . . ., C0}, and collect the estimates b̂c
1

based on the following phylogenetic linear

model:

~�Sim ¼ b
c
0
þ b

c
1
~I c þ �

Then compute the fraction that are at least as extreme as the test statistic b̂Test
1

and return

this as a p-value:

1

C

XC

c¼1

1 ððb̂c
1
� �bC

1
Þ

2
Þ � ððb̂Test

1
� �bC

1
ÞÞ

2

0 ððb̂c
1
� �bC

1
Þ

2
Þ < ððb̂Test

1
� �bC

1
ÞÞ

2

8
<

:

where �bC
1

is the mean of b
c
1

values. To save computation time on high p-values, we use

early stopping: after every 25 such simulations, if the resulting p-value would already be

guaranteed to exceed 0.05, we stop and return the p-value based on the current number of

simulations.

3. MOCK-UNCENSORED BOOTSTRAP: As #2, simulate a number C of additional binary genotypes

with β1 = 0. Instead of calculating p-values as in #2, however:

a. Simulate the same number C of “uncensored” versions of the continuous phenotype

~�Uncc , in effect “filling in” or imputing the censored values with random values from the

predicted tail of the distribution (see S6B and S6C Fig for an illustration):

i. First, fit a left-truncated normal distribution to the part of~�Cens that is above the

lowest value (assumed to be the limit of detection) by maximum likelihood (using

fitdistcens in R package fitdistrplus [81]), yielding mean μTrunc, standard

deviation s2Trunc , and lower truncation point min ð�Censm Þ statistics (e.g., S6B Fig).
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ii. Next, for c 2 {1, . . ., C}, generate a vector ~Tc whose elements Tcm are realizations of

the random variable T � NRTruncðmTrunc; s2Trunc ; min ð�Censm ÞÞ. Here, NRTrunc represents

a right-truncated normal distribution, having mean μTrunc, variance s2Trunc , and upper

truncation point min ð�Censm ). Then generate the “uncensored” vector~�Uncc with ele-

ments �
Uncc
m as follows:

�
Uncc
m ¼

�
Cens
m �

Cens
m > min ð�Censm Þ

Tm �
Cens
m ¼ min ð�Censm Þ

8
<

:

(An example can be seen in S6C Fig).

b. For each c 2 {1, . . ., C}:

i. estimate a test statistic b̂Testc
1

by fitting the following phylogenetic linear model:

~�Uncc ¼ b
Testc

0
þ b

Testc

1
~I Sim þ �

ii. estimate a null test statistic b̂c
1

by fitting the following phylogenetic linear model:

~�Uncc ¼ b
Testc

0
þ b

c
1
~I c þ �

c. Calculate p-values as follows:

1

C

XC

c¼1

1 ððb̂c
1
� �bC

1
Þ

2
Þ � ðð�bTestC

1
� �bC

1
ÞÞ

2

0 ððb̂c
1
� �bC

1
Þ

2
Þ < ðð�bTestC

1
� �bC

1
ÞÞ

2

8
<

:

where �bC
1

is the mean of the b
c
1

values and �bC
1

is the mean of the b
c
1

values.

Intuitively, the second method generates a null distribution via simulation, while the

third method additionally reduces the impact of data points at the limit of detection, by ran-

domly imputing them from the best-fit normal distribution. We then calculated power and

FPR for each of these three methods, varying the amount of censoring K and the effect size

β1 (see S7 Fig). Interestingly, for the level of censoring in our data (K = −0.50), the false-posi-

tive rate in all three methods remained well-controlled, although power dropped. The mock-

uncensored bootstrap had lower power overall and became more conservative, especially in

the case where the phylogenetic signal was highest (α = 0) and where the level of censorship

K was highest.

Another common approach to this problem is the tobit model: the true value of the

response variable is treated as a hidden variable, and expectation-maximization is used to fit

the regression parameters based on the observed censored values. Given that the degree of cen-

soring we observed did not appear to inflate the false positive rate in any of the methods we

tested, we opted not to construct a phylogenetic tobit model; however, this could be an inter-

esting area of future research.

Assessing the impact of compositionality

Because relative abundances are compositional (i.e., sum to 1), changes in highly abundant

taxa combined with read sampling can lead to skewed estimates of relative abundance. For
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example, if a very abundant microbe exhibits large changes in relative abundance across sam-

ples, other microbes will appear to become less abundant simply because they make up a

smaller proportion of the total reads, regardless of whether their level has actually changed

[82]. This necessitates the use of compositional data analysis methods such as fitting intrinsi-

cally compositional distributions to the data (e.g., multinomial [83]) or transforming them

such that they no longer lie on a simplex (e.g., the clr-transform [84]). However, the impact of

compositionality on prevalence was a priori less clear, because while prevalences are based on

presence versus absence, which could be affected by sampling, prevalences themselves do not

have to sum to any particular value. Nonetheless, since we compute prevalence from relative

abundance, we undertook a simulation based investigation of prevalence estimation accuracy

as a function of various study design and biological parameters.

To directly compare the degree to which spurious correlation in prevalence and relative

abundance could be induced by compositionality, we simulated correlated absolute abun-

dances of microbes with no true correlations between them, then converted these uncorrelated

absolute abundances to relative abundances. To look for spurious correlation, we plotted the

distribution of pairwise microbial correlations in absolute and relative abundances. We next

used relative abundance to compute prevalence. Since there is only one prevalence measure-

ment per microbe per data matrix, we repeated the simulation multiple times with the same

parameters, then assessed microbial correlations across simulation runs, again starting from

both absolute and relative abundances.

Simulating data. For each of 25 simulations i 2 I, we assumed each of 1000 simulated

microbesm 2M had absolute abundances bAbs
ðm;nÞi

, over a set of 100 simulated samples n 2 N.

These were independently log-normally distributed, centered on microbe-specific average val-

ues μm that were themselves log-normally distributed. We also assumed a microbe-specific

prevalence zm drawn from a logistic-normal distribution:

bAbs
ðm;nÞi

� logN ðmmÞ � cðm;nÞi
cðm;nÞi � Bernoullið1 � zmÞ

logðmmÞ � N ð1; 3Þ

logitðzmÞ � N ð� 4; 2Þ

We converted the resulting absolute abundance matrices BAbsi to relative abundances in two

different ways. First, we simply column-normalized, yielding a matrix BrelCNi with elements

brelCN
ðm;nÞi
¼ bAbs

ðm;nÞi
=
P

m2Mb
Abs
ðm;nÞi

. Second, we first generated compositional count data BCountsi , with

column vectors~bCountsni
¼ ½bCounts

1;ni
; bCounts

2;ni
; . . . ; bCounts

kMk;ni
�
t

simulated as follows:

~bCountsni
� Multinomialðrn; yniÞ

yni � DirichletðbAbs
ð1;nÞi

; bAbs
ð2;nÞi

; . . . ; bAbs
ðkMk;nÞi

Þ

rn � DiscreteUniformð105; 106Þ

We then converted these counts to relative abundances BrelDMi such that

brelDM
ðm;nÞi
¼ bCounts

ðm;nÞi
=
P

m2Mb
Counts
ðm;nÞ .

Evaluating extent of spurious correlation for relative abundance. For each ||M|| × ||N||

matrix B, we obtained a set of correlations LðBÞ ¼ frðx;yÞB : x; y 2 M; y < xg, where rðx;yÞB is

the Pearson correlation between the row-vectors~bðx;n2NÞ and~bðy;n2NÞ. L(A) can also be thought

of as the entries in the lower-triangular part of the correlation matrix of a given B.
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To show that compositionality is enough to induce spurious correlation in abundances,

we computed the correlations from absolute abundances LðBAbsi Þ and compared them with

the correlation matrices derived from relative abundances, LðBrelCNi Þ and LðBrelDMi Þ. Because

discrete sampling introduces many more zeros into the matrix BrelDMi , we also made the

further comparison of pairwise correlations calculated using only non-zero elements of

BrelDMi . We denote this non-zero correlation as LZðBÞ ¼ frZ
ðx;yÞB

: x; y 2 M; y < xg. Here,

rZ
ðx;yÞB

is the Pearson correlation between the row-vectors~bx;v2V and~by;v2V , and V is the set

of samples in which both microbes x and y have non-zero abundance, i.e., V = {v: (bx,v> 0,

by,v> 0)}.

The correlation matrices of simulated absolute abundance data, as expected, are centered

on zero. In contrast, the correlation matrix for the relative abundances LðBrelCNi Þ is shifted

markedly to the right (S9A Fig). While this seems to improve when plotting the results of the

Dirichlet-Multinomial simulations, LðBrelDMi Þ, when correlations are calculated over only

non-zero elements, we see that they once again are shifted to the right by the same degree.

These simulations show that relative abundance estimates are biased due to compositionality,

consistent with previous work [85, 86], but that a high proportion of zeros (i.e., microbe not

detected) can reduce this effect.

Evaluating extent of spurious correlation for prevalence. While relative abundance can

be measured for each microbe in each sample, prevalence must be measured over a set of sam-

ples. To assess the impact of compositionality on prevalence, we therefore repeated the above

simulation for 100 simulations i 2 I, but this time held μm and zm constant across runs of the

simulation to make them comparable.

Mirroring the procedure we used to estimate prevalence in real data, we binarized our Bi
abundance matrices to yield corresponding presence-absence matrices Ai, and then calculated

estimated prevalence of each microbem, p̂ADDm;N ðAiÞ, from our absolute abundances AAbs
i and

from the derived relative abundances ArelDM
i . We performed this for every simulation i 2 I,

forming two matrices of prevalences PAbs and PrelDM, each with ||M|| rows, ||I|| columns, and

elements pm;i ¼ p̂ADDm;N ðAiÞ. We also investigated the impact of defining prevalence as absolute

abundance over a low but non-zero threshold of detection, which we defined as PAbsThresh.

We chose a threshold of bAbsm;n > 0:5. We then plotted densities of the lower-triangular part of

the microbial correlation matrices L(PAbs), L(PAbsThresh), and L(PrelDM), analogously to

above. (We did not compute L(PrelCN) because it should always be equal to L(PAbs).)

In contrast to what we observed for relative abundance, the distributions of prevalences

were almost identical when based on absolute abundances versus resampled relative abun-

dances (S9B Fig). This strongly suggests that compositionality does not induce spurious corre-

lations between taxon prevalences in the same way, or to the same degree, as it does for relative

abundances.

Other sources of error in prevalence. Another source of error in prevalence estimates,

which is related to our discussion of left-censoring, is the distinction between “structural” ver-

sus “sampling” zeros in relative abundance data [87]. Structural zeros arise from samples in

which a microbe is really not present, whereas sampling zeros arise when a microbe is present

but does not happen to be sampled. The fewer the number of samples, and the fewer reads per

sample, the more likely sampling zeros are to occur.

To get a better sense of when prevalence estimates are likely to be reliable, we simulated rel-

ative abundance data, varying the number of samples and reads, and then calculated the corre-

lation between the true and the estimated prevalences. Our simulation framework can be

thought of as a zero-inflated multinomial, with details as follows (using� to mean element-
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wise multiplication):

~bn � Multinomialðrn; yÞ �~cM;n
cm;n � Bernoullið1 � zmÞ

logitðzmÞ � Nð� 4; 2Þ

yn � Dirichletða1; . . . ; akMkÞ

am � DiscreteUniformð1; 105Þ

logðrnÞ � Nðq; 0:5Þ

In other words, we randomly simulate one Dirichlet “meta-community” with ||M|| = 6000 uni-

formly-distributed α parameters (matching the approximate number of taxa measured in

MIDAS). For each sample n, we then draw a multinomial θn from this Dirichlet, then draw

reads from that multinomial, given a number of total reads rn. These total reads are log-nor-

mally distributed around a central value q. We then draw random prevalences zm with a logit-

normal distribution, then draw structural zeros cm,n based on these (sampling zeros arise from

the sampling inherent in the multinomial distribution). Element-wise multiplication with the

vector of structural zeros therefore leads to counts from a multinomial with excess zeros.

Our simulation varies q, the average (geometric mean) number of reads across samples,

and ||N||, the total number of samples. After constructing a simulated abundance matrix BCountsi

from each simulation, we binarize it to obtain a presence-absence matrix Ai, then compute

estimated prevalences for each microbem, p̂ADDm;N ðAiÞ. We finally calculate the correlation of

logit(zm) and logitðp̂m;NÞ, as well as the fraction of censoring that we observe (i.e., the fraction

of values of logitðzmÞ � minðlogitðp̂m;NÞÞ), and the correlation over only the non-censored val-

ues (i.e., for fm : p̂m;N > 1

Nþ2
g).

In these simulations, the factor with the greatest effect on prevalence reliability is the num-

ber of samples, not read depth (S10 Fig). While this might initially seem counter-intuitive, we

are assuming in this simulation that most taxa have low prevalences (the mean of logit(zm) is

−4, corresponding to *2% prevalence), much like what we observed in real data. In this set-

ting, structural zeros will tend to outweigh sampling zeros, so increasing the sampling depth

will not necessarily improve estimates of prevalence. In this setting, having fewer than 50 sam-

ples increases the level of censoring above approximately 50%; this amount of censoring (zero

standard deviations below the mean in S7 Fig) does not increase the false discovery rate in our

simulations, but does lower the power to detect associations. However, the taxa that were not

left-censored remained reliably-measured even at the shallowest total read depths (r> 0.9) for

||N||� 100.

We were curious as to whether read depth became more important when the ratio of struc-

tural to sampling zeros was lowered. To this end, we repeated this simulation with a distribu-

tion of prevalences centered on 0.5, so that logitðzmÞ � N ð0; 1Þ. Since it would probably not

be realistic for nearly every microbe in the MIDAS database to have a prevalence above 5%,

we lowered the number of taxa ||M|| to 1000. Indeed, under these assumptions, read depth

became significantly more important (S11 Fig). This is not surprising, since with these

assumptions true structural zeros should be less common than above. With these assumptions,

censoring does not vary substantially across conditions (censored percentage� 1%), but at

least 50,000 reads per sample, on average, were necessary to reach a correlation of r> 0.9 for

those microbes whose prevalences were above the limit of detection.

Taken together, these simulations suggest that read depth, sample size, and true prevalence

values affect the accuracy of prevalence estimates. Read depth becomes most important when
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most true prevalences are relatively large (5 − 95%). In contrast, when most prevalences are

low, sample size is likely the most important consideration. Finally, when the sample size is

sufficiently high (||N||> 100) and most prevalences are low, microbes with prevalences above

the limit of detection tend to be estimated accurately. These results provide guidelines for

when the methods in this manuscript will be most accurate if applied to metagenomes from

environments with different characteristics from human stool samples.

Enrichment analysis

Enrichment analysis was performed using SEED subsystem annotations for FIGfams [88, 37].

Each subsystem was tested for a significant overlap with significant hits from the linear models

(q� 0.05), given the set of FIGfams tested, by Fisher’s exact test. For each gene set, a 2 × 2 con-

tingency table was constructed with the following form:

kðsubsys \ signifÞ \ BGk kðsubsysnsignifÞ \ BGk

kðsignifnsubsysÞ \ BGk kBGnðsubsys [ signifÞk

" #

where “subsys” is the set of FIGfams in a given SEED subsystem, “signif” is the set of FIGfams

in a particular phylum that were significant hits, and “BG” is the set of all FIGfams tested in

that phylum. Two-tailed p-values were corrected using the Benjamini-Hochberg procedure

[89] and an FDR of 25% was set for detecting significant enrichment and depletion (only

enrichment is reported). We used this significance threshold in accordance with accepted

practice for gene set enrichment analysis [90]. We used the Benjamini-Hochberg procedure

since unlike the q-value method it does not require the estimation of the proportion of true

nulls, which is more difficult with small numbers of tests.

Overlap with in vivo results

Results of the screen were obtained from the Supplemental Material of Wu et al. (downloaded

on 2017 May 3) [48]. Genes were mapped to FIGfams by matching identifiers in the Supple-

mental Material to genome annotations from PATRIC [67]. Significance of overlap between

these genes and the results for the Bacteroidetes phylum from the body-site-specific or overall

models was determined by Fisher’s exact test.

This test depends both on how we determine which genes from the in vivo screen count as

true positives, and on the choice of the “background set,” i.e., which genes would be possible to

find in the in vivo study. Rather than committing to one method of picking the “true positive”

and “background” sets, we instead enumerated several possibilities, performed all possible

combinations (S3 Table), and corrected for multiple comparisons. The options we tested for

true positive sets were 1. genes in the screen that were significantly associated with fitness in all

four Bacteroides strains tested, 2. Bacteroides thetaiotaomicron genes significantly associated

with diet-independent fitness effects, and 3. B. thetaiotaomicron genes associated with either

diet-dependent or -independent effects. The background sets we tested were 1. all gene fami-

lies for which a phylogenetic model was fit, 2. all gene families appearing at least once in a Bac-
teroides genome cluster pangenome, 3. all gene families present in all Bacteroides pangenomes,

4. gene families present in some but not all Bacteroides pangenomes, and 5. gene families pres-

ent in Bacteroides thetaiotaomicron. Similarly to our approach to gene set enrichment analysis,

for each test we assembled a 2x2 contingency table as follows:

kfpos\ signifg \ BGk kfposnsignifg \ BGk

kfsignifnposg \ BGk kBGnfpos[ signifgk

" #
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where “pos” refers to the true positive FIGfam set, “signif” refers to the set of significant FIG-

fam hits from the phylogenetic model, and “BG” refers to the background FIGfam set. The full

results are depicted in S3 Table, with the results for true positive set 1 excerpted from this full

comparison in Table 1.

Codebase

The analyses were carried out using R [91]. The code used to perform these analyses is avail-

able at http://www.bitbucket.com/pbradz/plr in the form of an Rmarkdown notebook [92].

Other R packages used include phylolm [76], phyloseq [93], rentrez [65], pbap-
ply [94], XML [95], qvalue [77], magrittr [96], compiler [91], phytools [97],

ggtree [98], gridExtra [99], MASS [100], nlme [80], fitdistrplus [81], trunc-
norm [101], ape [102], geiger [103], MCMCpack [104], knitr [105], data.table
[106], parallel [91], and dplyr [107].

Supporting information

S1 Appendix. Glossary of terms. Reference material giving definitions of mathematical sym-

bols used in the Methods.

(PDF)

S1 Table. Species prevalences, gut specificities, and Crohn’s disease specificities for all

genome clusters (species) tested. logit.Prevalence, logit.BodySite, and logit.Crohns column

titles refer to our estimates of~�Prev
x;E;DðAÞ,~�

Spec
Gut;EðAÞ, and~�

Spec
CD;EðAÞ, respectively. Row labels

(5-digit numbers) correspond to MIDAS taxon IDs.

(CSV)

S2 Table. Concordance of β1,g estimates for weighted least squares vs. Laplace shrinkage

procedures. Pearson’s correlation coefficient r comparing estimates of β1,g for the weighted

phylogenetic least squares procedure with the unweighted phylogenetic least squares using

Laplace-shrunken estimates of specificity scores were computed across: all tested genes (all),

all genes significant in either the weighted or shrunken phylogenetic model (one significant),

or all genes significant in both models (both significant). Comparisons were performed for

both body site environmental specificity scores (bodysite) and Crohn’s disease (Crohn’s).

Additionally, the number of taxa not shrunk back to the prior by Laplace shrinkage for each

environmental specificity score are given (non-shrunk).

(XLSX)

S3 Table. Full assessment of whether genes linked to microbial fitness in an in vivo experi-

ment [48] were enriched for significant hits of the body site-specific and overall gut preva-

lence models. The different sets of true positives were defined as: “Bacteroides” (genes in the

screen significantly associated with fitness in all four strains), “BthetaDietIndep” (genes pres-

ent in Bacteroides thetaiotaomicron that had diet-independent fitness effects in the screen),

and “BthetaAny” (same, but for diet-dependent as well as -independent effects). The “back-

ground sets” were defined as follows: “all tested” (all gene families for which a phylogenetic

model was fit), “Bacteroides (core or variable)” (all gene families with at least one representa-

tive in Bacteroides genome cluster pangenomes), “Bacteroides (core only)” (gene families that

were present in all Bacteroides genome cluster pangenomes), “Bacteroides (variable only)”

(gene families present in some but not all Bacteroides genomes clusters), and “Bacteroides the-

taiotaomicron only” (only gene families present in Bacteroides thetaiotaomicron). Two false

discovery rates for each model were tested (5% and 25%). Fisher tests yielded p-values that
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were then converted to q-values using the Benjamini-Hochberg approach [89].

(XLSX)

S4 Table. SRA accession IDs used to estimate prevalence and environmental specificity

scores.

(CSV)

S1 Fig. Estimates of logit-gut prevalence (x-axis) vs. logit-gut environmental specificity

score (y-axis), showing only modest correlation.

(PDF)

S2 Fig. Method overview. Using MIDAS, we calculate species relative abundances from shot-

gun sequencing data. These are binarized to yield a matrix of microbial presence/absence, with

rows corresponding to microbes and columns corresponding to samples. Samples are orga-

nized into environments (i.e., the environments from which the sample was collected) and

into datasets (corresponding to samples collected as part of the same project). Using the pres-

ence/absence matrix together with these metadata, we estimate phenotype vectors~�ðAÞ,
whose elements are estimates of microbial phenotypes. These phenotypes fall into two groups:

prevalence (~�Prev
x;E;DðAÞ) and environmental specificity scores (~�

Spec
x;E ðAÞ). Separately, we use the

whole genomes incorporated into the MIDAS database to assemble a matrix of gene presence/

absence in the pangenome of microbes, and to construct a phylogenetic species tree based on

previously-validated single-copy marker genes. We subset this tree to yield four phylum-spe-

cific trees. The inputs to our phylogenetic models are a phenotype vector, a gene presence-

absence vector, and a phylogenetic tree. Based on these models, we estimate p-values for a

non-zero effect of the gene on the phenotype, then convert these p-values into q-values to

obtain predicted gene-phenotype interactions at a given false discovery rate (here, 5%).

(PDF)

S3 Fig. Laplacian regularization reduces noise in estimating ŝm;CD;EðAÞ. Two species are

compared, one that was infrequently observed in both Crohn’s disease cases and controls

(Bacillus subtilis, left) and one with a significant bias for Crohn’s disease cases (Bacteroides fra-
gilis, right). A) Total counts across subjects for Bacillus subtilis and Bacteroides fragilis. B) Like-

lihood function for ŝm;CD;EðAÞ, or prevalence in Crohn’s disease. The maximum-likelihood

value is given in the inset. C) Unregularized likelihood for logitð̂sm;CD;EðAÞÞ, or the environ-

mental specificity of the microbe. Note that the maximum-likelihood value (inset) was actually

almost twice as large for Bacillus subtilis as for Bacteroides fragilis despite the relative paucity of

data for B. subtilis (compare Y-axes, which show that the distribution for B. subtilis is flatter).

D) Laplace prior around P(eCD) = 0.002 with width parameter b = 0.16 (optimized using simu-

lation). E) Log-likelihood plot for the posterior PðeCDjmÞ ¼ ŝMAPm;CD;EðAÞ, obtained by taking the

product of the prior distribution and the unregularized distribution. The maximum a posteri-
ori (MAP) estimates are the modes of these distributions (inset).

(PDF)

S4 Fig. Sensitivity plot for � tolerance parameter in Laplace shrinkage. Y-axis gives the best

boptim value obtained given a particular log10(�) selected when performing Laplace shrinkage

of ŝMAPm;CD;EðAÞ estimates. The value of � used in the manuscript (0.005) is highlighted with a verti-

cal dashed line.

(PDF)

S5 Fig. Illustration showing logit-prevalence vs. the pattern of glutamate-GABA decarbox-

ylase (gadC) inheritance in Bacteroidetes. As in Fig 2, the tree on the left is colored by species

Phylogenetic modeling of gut colonization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006242 August 9, 2018 34 / 41

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006242.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006242.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006242.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006242.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006242.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006242.s010
https://doi.org/10.1371/journal.pcbi.1006242


prevalence (black to orange), while the tree on the right is colored by gene presence-absence

(blue to black), with selected species called out in the middle, and lines linking species labels to

leaves that match leaf color.

(PDF)

S6 Fig. Distribution of estimated logit-prevalence~�Prev
x;E;DðAÞ, showing impact of censoring.

A) Density of estimated logit-prevalence distribution,~�Prev
x;E;DðAÞ, showing pile-up of values at

the limit of detection K. B) Density of a normal distribution with mean and standard deviation

obtained from best-fit of truncated normal to~�Prev
x;E;DðAÞ. C) “Uncensored” version of~�Prev

x;E;DðAÞ.
Data points at or below K have been replaced by random sampling from a truncated normal,

with mean and standard deviation as in B and with K as upper truncation point.

(PDF)

S7 Fig. Impact of left-censoring on the false positive rate and power of phylogenetic tests.

Bars give replicate measurements of false positive rate (left, effect size of 0) and power (right,

effect size of 0.75) across the different phyla (colors), based on simulating binary genotypes

and continuous phenotypes as in Methods, “Power analysis”, with varying levels of left-censor-

ing (“censoring point”), and obtaining p-values with the three methods described in Methods,

“Assessing the potential impact of sampling with left-censoring.” Horizontal dashed lines give

a rate of 0.05. Binary genotypes had varying levels of Ives-Garland α (0, 25, 50), representing

high to low phylogenetic signal.

(PDF)

S8 Fig. Simulations showing the prevalence ratios F corresponding to various effect sizes.

To give a more intuitive sense of scale for simulated effect sizes, simulations were performed as

in Methods, “Power analysis”, with effect sizes β1 ranging from 0 to 1.25. After fitting phyloge-

netic models to the simulated phenotypes and genotypes, the average prevalences with the sim-

ulated gene, logistic(β1,g + β0,g), and without, logistic(β0,g), were computed, and their ratio F
was taken. log2(F) is plotted here, such that a value of 1 means the gene conferred (on average)

a 2-fold change in prevalence. Violin plots were made of 50 simulations.

(PDF)

S9 Fig. Results of simulations illustrating compositionality artifacts in relative abun-

dances, but not prevalence estimates. Lines are density plots of all pairwise correlations

(either over all samples or over only non-zero values) for (A), the relative abundance of

microbes within a simulation, and (B), the prevalence of simulated microbes across simula-

tions with the same μm (mean) and zm (zero-inflation) values. A) Pairwise correlations for

absolute abundances LðBAbsi Þ (black), column-normalized relative abundances LðBrelCNi Þ (blue),

and relative abundances obtained through Dirichlet-Multinomial sampling LðBrelDMi Þ are

shown, along with pairwise correlations over non-zero elements of relative abundances

obtained through Dirichlet-Multinomial sampling LZðBrelDMi Þ. B) Pairwise correlations for true

prevalences LðPAbs
i Þ, for true prevalences above a sampling floor LðPAbsThresh

i Þ, and for preva-

lences calculated from relative abundances obtained through Dirichlet-Multinomial sampling

LðPrelDM
i Þ are compared.

(PDF)

S10 Fig. Reliability of prevalence estimates, assuming that most microbes are low-preva-

lence in the given environment. We simulated microbiome data using Dirichlet-Multinomial

sampling combined with zero inflation. Here, we assumed that true prevalences were distrib-

uted logitðzmÞ � N ð� 4; 2Þ. We then plotted (blue contours) the true logit-prevalence zm (x-
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axis) versus the calculated logit-prevalence from the simulation logitðp̂m;NÞ, for varying geo-

metric-mean read depths rn (columns) and sample sizes ||N|| (rows). The values given for each

sample size and read depth are the Pearson correlation r, the Pearson correlation over non-

censored microbes only runc, and the percent of microbes with censored prevalences (“cens”).

(PDF)

S11 Fig. Reliability of prevalence estimates, assuming that microbial prevalence is centered

on 50% in the given environment. As in S10 Fig, but with logitðzmÞ � N ð0; 1Þ.
(PDF)
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76. si Tung Ho L, Ané C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models.

Systematic Biology. 2014; 63(3):397–408. https://doi.org/10.1093/sysbio/syu005

77. Storey JD, Bass AJ, Dabney A, Robinson D. qvalue: Q-value estimation for false discovery rate con-

trol; 2015. Available from: http://github.com/jdstorey/qvalue.

78. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proceedings of the National

Academy of Sciences. 2003; 100(16):9440–5. https://doi.org/10.1073/pnas.1530509100

79. Kappelman MD, Rifas-Shiman SL, Kleinman K, Ollendorf D, Bousvaros A, Grand RJ, et al. The preva-

lence and geographic distribution of Crohn’s disease and ulcerative colitis in the United States. Clinical

Gastroenterology and Hepatology. 2007; 5(12):1424–1429. https://doi.org/10.1016/j.cgh.2007.07.012

PMID: 17904915

80. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects

Models; 2018. Available from: https://CRAN.R-project.org/package=nlme.

81. Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. Journal of Statisti-

cal Software. 2015; 64(4):1–34. https://doi.org/10.18637/jss.v064.i04

82. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional:

and this is not optional. Frontiers in Microbiology. 2017; 8:2224. https://doi.org/10.3389/fmicb.2017.

02224 PMID: 29187837

83. Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis

of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and

selective growth experiments by compositional data analysis. Microbiome. 2014; 2(1):15. https://doi.

org/10.1186/2049-2618-2-15 PMID: 24910773

84. Aitchison J. The statistical analysis of compositional data. Journal of the Royal Statistical Society,

Series B (Methodological). 1982; 44(2):139–177.

85. Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol.

2012; 8. https://doi.org/10.1371/journal.pcbi.1002687

Phylogenetic modeling of gut colonization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006242 August 9, 2018 40 / 41

https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
https://doi.org/10.1093/nar/gkt1099
http://www.ncbi.nlm.nih.gov/pubmed/24225323
https://doi.org/10.1371/journal.pone.0009490
http://www.ncbi.nlm.nih.gov/pubmed/20224823
https://doi.org/10.1093/nar/gkh340
http://www.ncbi.nlm.nih.gov/pubmed/15034147
https://doi.org/10.1093/bioinformatics/btg412
http://www.ncbi.nlm.nih.gov/pubmed/14734327
http://link.springer.com/10.1007/978-3-662-43550-2_2
https://doi.org/10.1038/nature12198
http://www.ncbi.nlm.nih.gov/pubmed/23719380
https://doi.org/10.1038/nature11450
http://www.ncbi.nlm.nih.gov/pubmed/23023125
https://doi.org/10.1186/1471-2105-14-19
http://www.ncbi.nlm.nih.gov/pubmed/23323543
https://doi.org/10.1093/nar/gkq967
https://doi.org/10.1093/nar/gkq967
http://www.ncbi.nlm.nih.gov/pubmed/20972220
https://doi.org/10.1093/sysbio/syu005
http://github.com/jdstorey/qvalue
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1016/j.cgh.2007.07.012
http://www.ncbi.nlm.nih.gov/pubmed/17904915
https://CRAN.R-project.org/package=nlme
https://doi.org/10.18637/jss.v064.i04
https://doi.org/10.3389/fmicb.2017.02224
https://doi.org/10.3389/fmicb.2017.02224
http://www.ncbi.nlm.nih.gov/pubmed/29187837
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.1186/2049-2618-2-15
http://www.ncbi.nlm.nih.gov/pubmed/24910773
https://doi.org/10.1371/journal.pcbi.1002687
https://doi.org/10.1371/journal.pcbi.1006242


86. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strat-

egies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016; 10(7). https://doi.

org/10.1038/ismej.2015.235 PMID: 26905627

87. Xu L, Paterson AD, Turpin W, Xu W. Assessment and selection of competing models for zero-inflated

microbiome data. PLoS ONE. 2015; 10(7):e0129606. https://doi.org/10.1371/journal.pone.0129606

PMID: 26148172

88. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems

approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids

Research. 2005; 33(17):5691–5702. https://doi.org/10.1093/nar/gki866 PMID: 16214803

89. Hochberg Y, Benjamini Y. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 1:289–300.

90. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrich-

ment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2005; 102(43):15545–

50. https://doi.org/10.1073/pnas.0506580102 PMID: 16199517

91. R Core Team. R: A language and environment for statistical computing; 2017. Available from: https://

www.R-project.org/.

92. Allaire J, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, et al. rmarkdown: Dynamic Documents

for R; 2018. Available from: https://CRAN.R-project.org/package=rmarkdown.

93. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of

microbiome census data. PLoS ONE. 2013; 8(4):e61217. https://doi.org/10.1371/journal.pone.

0061217 PMID: 23630581

94. Solymos P, Zawadzki Z. pbapply: Adding Progress Bar to’*apply’ Functions; 2018. Available from:

https://CRAN.R-project.org/package=pbapply.

95. Lang DT, the CRAN Team. XML: Tools for Parsing and Generating XML Within R and S-Plus; 2018.

Available from: https://CRAN.R-project.org/package=XML.

96. Bache SM, Wickham H. magrittr: A Forward-Pipe Operator for R; 2014. Available from: https://CRAN.

R-project.org/package=magrittr.

97. Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods in

Ecology and Evolution. 2012; 3:217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x

98. Yu G, Smith D, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of

phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution.

2017; 8:28–36. https://doi.org/10.1111/2041-210X.12628

99. Auguie B. gridExtra: miscellaneous functions for “grid” graphics; 2017. Available from: https://CRAN.

R-project.org/package=gridExtra.

100. Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer; 2002. Avail-

able from: http://www.stats.ox.ac.uk/pub/MASS4.

101. Mersmann O, Trautmann H, Steuer D, Bornkamp B. truncnorm: truncated normal distribution; 2018.

Available from: https://CRAN.R-project.org/package=truncnorm.

102. Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioin-

formatics. 2004; 20:289–290. https://doi.org/10.1093/bioinformatics/btg412 PMID: 14734327

103. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radia-

tions. Bioinformatics. 2008; 24:129–131. https://doi.org/10.1093/bioinformatics/btm538 PMID:

18006550

104. Martin AD, Quinn KM, Park JH. MCMCpack: Markov Chain Monte Carlo in R. Journal of Statistical

Software. 2011; 42(9):22. https://doi.org/10.18637/jss.v042.i09

105. Xie Y. knitr: A comprehensive tool for reproducible research in R. In: Stodden V, Leisch F, Peng RD,

editors. Implementing reproducible computational research. Chapman and Hall/CRC; 2014. Available

from: http://www.crcpress.com/product/isbn/9781466561595.

106. Dowle M, Srinivasan A. data.table: Extension of ‘data.frame‘; 2018. Available from: https://CRAN.R-

project.org/package=data.table.

107. Wickham H, Francois R, Henry L, Müller K. dplyr: a grammar of data manipulation; 2017. Available

from: https://CRAN.R-project.org/package=dplyr.

Phylogenetic modeling of gut colonization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006242 August 9, 2018 41 / 41

https://doi.org/10.1038/ismej.2015.235
https://doi.org/10.1038/ismej.2015.235
http://www.ncbi.nlm.nih.gov/pubmed/26905627
https://doi.org/10.1371/journal.pone.0129606
http://www.ncbi.nlm.nih.gov/pubmed/26148172
https://doi.org/10.1093/nar/gki866
http://www.ncbi.nlm.nih.gov/pubmed/16214803
https://doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=rmarkdown
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pubmed/23630581
https://CRAN.R-project.org/package=pbapply
https://CRAN.R-project.org/package=XML
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://doi.org/10.1111/j.2041-210X.2011.00169.x
https://doi.org/10.1111/2041-210X.12628
https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=gridExtra
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=truncnorm
https://doi.org/10.1093/bioinformatics/btg412
http://www.ncbi.nlm.nih.gov/pubmed/14734327
https://doi.org/10.1093/bioinformatics/btm538
http://www.ncbi.nlm.nih.gov/pubmed/18006550
https://doi.org/10.18637/jss.v042.i09
http://www.crcpress.com/product/isbn/9781466561595
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=dplyr
https://doi.org/10.1371/journal.pcbi.1006242

