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Abstract

Endometrial cancer is a ubiquitous gynecological disease with increasing global incidence.

Therefore, despite the lack of an established screening technique to date, early diagnosis of

endometrial cancer assumes critical importance. This paper presents an artificial-intelli-

gence-based system to detect the regions affected by endometrial cancer automatically

from hysteroscopic images. In this study, 177 patients (60 with normal endometrium, 21

with uterine myoma, 60 with endometrial polyp, 15 with atypical endometrial hyperplasia,

and 21 with endometrial cancer) with a history of hysteroscopy were recruited. Machine-

learning techniques based on three popular deep neural network models were employed,

and a continuity-analysis method was developed to enhance the accuracy of cancer diagno-

sis. Finally, we investigated if the accuracy could be improved by combining all the trained

models. The results reveal that the diagnosis accuracy was approximately 80% (78.91–

80.93%) when using the standard method, and it increased to 89% (83.94–89.13%) and

exceeded 90% (i.e., 90.29%) when employing the proposed continuity analysis and combin-

ing the three neural networks, respectively. The corresponding sensitivity and specificity

equaled 91.66% and 89.36%, respectively. These findings demonstrate the proposed

method to be sufficient to facilitate timely diagnosis of endometrial cancer in the near future.

Introduction

Endometrial cancer is the most common gynecologic malignancy, and its incidence has

increased significantly in recent years [1]. Patients demonstrating early symptoms of the dis-

ease or suffering from low-risk endometrial cancer can be prescribed a favorable prognosis.
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However, patients diagnosed with endometrial cancer in its later stages have very few treat-

ment or prognosis options available at their disposal [2]. Additionally, patients demonstrating

conditions, such as atypical endometrial hyperplasia (AEH), precancerous condition of endo-

metrial cancer, or stage 1A endometrial cancer without muscle invasion, are eligible for pro-

gestin therapy. Accordingly, they might potentially be able to preserve their fertility [3].

Therefore, early diagnosis of endometrial cancer assumes paramount importance. Cervical

cytology through pap smear is a common screening method employed in cervical cancer diag-

nosis [4]. However, endometrial cytology is not a reliable screening technique because its

underlying procedure comprises a blind test, results of which may lead to a large number of

false negatives. Although the standard diagnostic procedure for endometrial cancer involves

endometrial biopsy performed via dilation and curettage, a clinically established screening for

endometrial cancer does not exist to date [5]. Hysteroscopy is, in general, considered the stan-

dard procedure for examining endometrial lesions by directly evaluating the uterine cavity. It

is noteworthy that recent studies have suggested that hysteroscopy can be considered an effec-

tive technique for accurate endometrial-cancer diagnosis [6,7]. We have previously reported

the usefulness of biopsy through office hysteroscopy with regard to endometrial cancer [8].

Artificial intelligence (AI) enables computers to perform intellectual actions, such as lan-

guage understanding, reasoning, and problem solving, on behalf of humans. Machine learning

is a cutting-edge approach for developing AI models based on the scientific study of algorithms

and statistical models used by computer systems to perform tasks efficiently. The use of an

appropriate AI model also enables computers to learn patterns in available datasets and make

inferences from given data without the need for providing explicit instructions [9]. The deep

neural network (DNN) facilitates realization of deep-learning concepts. Additionally, it is a

machine-learning method that focuses on the use of multiple layers of neural networks [10–

12]. From the machine-learning perspective, a neural network comprises a network or circuit

of artificial neurons or nodes [13]. Deep learning has garnered much interest in the medical

field because deep-learning techniques are particularly suitable for image analysis. They are

used for classification, image quality improvement, and segmentation of medical images. Con-

versely, shallow machine learning is not suitable for image recognition [14]. Recently, several

systems developed for use in medical applications, such as image-based diagnosis and radio-

graphic imaging of breast and lung cancers [15,16], have adopted AI models based on the

implementation of DNN technology. Numerous examples of such systems employing endo-

scopic images in the diagnosis of gastric and colon cancer have been reported. However, no

such system has been developed with specific focus on endometrial cancer [17,18]. In general,

a voluminous amount of data is required for training a model to be highly accurate; this can be

possible only if a large number of participants is considered. With the development of deep

learning, it is expected that the accuracy rate will be high when the number of samples is large.

However, when deep learning is applied to the medical field, some diseases must be analyzed

with a small number of samples. Therefore, the challenge for medical AI research is to develop

a system analysis method to improve accuracy with a small number of samples.

Therefore, the proposed study aims at developing a DNN-based automated endometrial-

cancer diagnosis system that can be applied to hysteroscopy. Hysteroscopy has not yet found

widespread utilization in diagnostic applications for endometrial cancers. This further limits

the availability of training data for DNNs. Thus, the objective of this study is to develop a

method that facilitates high-accuracy endometrial-cancer diagnosis, despite the limited num-

ber of cases available in the training dataset. In addition, the purpose of this research is to

establish a system for shifting to large-scale research in the future. Because no standard method

has been established for use in such scenarios to date, this study focuses on the determination

of an optimum method.
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In this study, we have achieved a high accuracy for diagnosis of endometrial cancer by hys-

teroscopy with such a small sample in using deep learning.

Materials and methods

Dataset overview

The data utilized in this study were extracted from videos of the uterine lumen captured

using a hysteroscope. The breakdown of the extracted data is presented in Table 1 and Fig

1. The shortest video lasted 10.5 s, whereas the longest lasted 395.3 s. The corresponding

mean and median durations equaled 77.5 s and 63.5 s, respectively. Because the videos

were captured using different hysteroscopic systems with no consistency in terms of the

resolution and image position, only parts of the captured images were extracted with the

resolution reduced to 256 × 256 px for Xception [19] and 224 × 224 px for MobileNetV2

[20] and EfficientNetB0 [21]. Representative hysteroscopic images pertaining to each con-

dition are depicted in Fig 1. The said hysteroscopic data were collected from 177 patients

recruited in this study. These patients had a history of hysteroscopy, and they were catego-

rized into five groups—those demonstrating conditions of a normal endometrium (60),

uterine myoma (21), endometrial polyp (60), AEH (15), and endometrial cancer (21) (S1

Table). The above-mentioned data collection was performed at the University of Tokyo

Hospital between 2011 and 2019 after obtaining prior patient consent and approval from

the Research Ethics Committee at the University of Tokyo (approval no. 3084-(3) and

2019127NI-(1)).

The consent was obtained by allowing the patients to opt-out. Patients were identified as

those showing symptoms such as abnormal bleeding or menorrhagia, which required them to

visit the outpatient department for the diagnosis of intrauterine lesion via hysteroscopy. The

pathological diagnosis of AEH and endometrial cancer was obtained by biopsy or surgery.

Normal endometrium, hysteromyoma, and endometrial polyp were diagnosed based on endo-

metrial cytology, histology, hysteroscopic findings by a gynecologist, imaging findings such as

MRI and ultrasound findings, and clinical course.

Training and evaluation data

The prepared videos were divided into four groups at random—three groups were used for

training, and the remaining group was used for evaluation. The four groups were denoted

pair-A, pair-B, pair-C, and pair-D and used for cross validation. S2 Table presents the number

of training and evaluation videos for each pair. The accuracy of the trained model was evalu-

ated based on image and video units. Owing to the limited number of cases available for this

study, we defined two classes—"Malignant" and "Others"—for training and prediction. The

"Malignant’ class included AEH and cancer, whereas the "Others" class included uterine

Table 1. Images extracted from hysteroscopy videos per each disease category.

Still image Video image

Total number 411, 800 images 177 videos

Clinical diagnosis n (%)

Normal 113,357 (27.5%) 60 (33.8.%)

Polyp 143,449 (34.8%) 60 (33.8%)

Myoma 45,037 (11.0%) 21 (11.8%)

Atypical endometrial hyperplasia 42,146 (10.2%) 15 (8.4%)

Endometrial cancer 67,811 (16.4%) 21 (11.8%)

https://doi.org/10.1371/journal.pone.0248526.t001
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myoma, endometrial polyps, and normal endometrium. As listed in S3 Table, the "Malignant"

class comprised 36 videos and 109,957 images, whereas the "Others" class comprised 141 vid-

eos and 301,843 images. The overall architecture of the model developed in this project is

depicted in Fig 2.

Training data. The training data pertaining to the malignant class were distributed into

the following two sets (Fig 3A).

Set X: comprising all frames included in the video stream.

Set Y: comprising images excluding the outside of the uterine cavity, such as the cervical

and extrauterine images from Set X.

The number of frames within each set is listed in S3 Table.

Evaluation methods. In this study, the accuracy of the trained model was evaluated in

two ways—image-by-image evaluation and video-unit evaluation. During image-by-

image evaluation, 100 images that clearly included the lesion site were extracted from the

hysteroscopic video of each patient diagnosed with a malignant tumor (Fig 3B). For

patients diagnosed with benign and normal tumors, all frames were used during evalua-

tion. In contrast, during video-unit evaluation, the judgment was made depending on the

number of consecutive frames classified as "Malignant" in a given video stream (Fig 3C)

(Continuity analysis). The threshold value of 50 was set for the number of consecutive

frames in accordance with the results of a pre-study we performed, as described in Fig 4A.

The threshold was taken from the points where the malignant score intersects with the

other scores rather than the point where the average of two scores was the best, because

the threshold should be set lower to reduce oversight cases in the actual clinical devices

(Fig 4A).

Fig 1. Representative images of detected lesions for conditions of (A) normal endometrium; (B) endometrial polyp; (C) myoma; (D) AEH, and (E) endometrial cancer.

https://doi.org/10.1371/journal.pone.0248526.g001
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Neural network types

As already stated, three different neural networks—Xception, MobileNetV2, and EfficientNetB0

—were adopted in this study to classify the images extracted from the video stream. These net-

works can exhibit relatively high accuracy with smaller size datasets and less expensive learning

costs. We built these models using Keras implemented on TensorFlow and then trained them on

an Intel core i7-9700 CPU + Nvidia GTX 1080ti GPU. The number of parameters used with

each network is shown in S4 Table. The time spent to learn 3,000,000 images is shown in Fig 4B.

The network structure of Xception is shown in S5 Table. The most unique feature of Xcep-

tion is that it divides the normal convolutional network layer into micro-networks called

Inception modules as much as possible and replaces them with “Depthwise Separable Convo-

lution.” The “Depthwise Separable Convolution” network structure divides the normal convo-

lutional network into two network segments, Depthwise Convolution and Pointwise

Convolution [19]. The network structure of MobileNetV2 is shown in S6 Table. The most

unique feature of MobileNet is the adoption of the network layers called “Inverted Residual”

widely to almost every network layer to reduce the total number of parameters [20]. The net-

work structure of EfficientNetB0 is shown in S7 Table. The most unique feature of EfficientNet

is the introduction of compound coefficients based on how the depth, width, resolution, etc. of

the network within a convolutional network affect the performance of the model [21].

Model generation—execution of training

Owing to the nature of neural networks, even when the same type of neural network is trained

using the same dataset, each model yields a different accuracy. Therefore, in this study, we

Fig 2. Overall architecture of the model developed in this project.

https://doi.org/10.1371/journal.pone.0248526.g002
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trained three types of DNN models six times using two datasets (Set X, Set Y), which were

grouped into four training and evaluation pairs—A, B, C, and D. Thus, 144 (3 × 6 × 2 × 4)

trained models were acquired.

Results

Results of image by image evaluation

In this study, we first evaluated the accuracies of the predicted results obtained using each of

the above-mentioned 144 models to each individual image. Subsequently, we calculated the

average accuracy values by dividing the results into two groups based on the applicable data

class and neural network type. Comparisons between the average prediction accuracies

obtained for each dataset and network type are presented in Figs 4C and S1A and S8 Table. As

can be realized, the difference between the average accuracy values (0.7891 and 0.8093, respec-

tively) obtained for datasets X and Y equaled 0.0201, whereas that between the accuracy values

obtained using the different network types equaled 0.0047 (0.7969 (minimum) and 0.8016

(maximum)) (S8 Table). As observed in this study, MobileNetV2 demonstrated the shortest

learning time, whereas Xception required the longest learning duration—approximately thrice

that required by MobileNetV2, as described in Fig 4B.

Results of video-unit-based evaluation: Continuity analysis

As already stated, the continuity analysis method for use in hysteroscopy applications has been

developed in this study to increase the diagnostic accuracy realized when performing video-

Fig 3. (A) Schematic of the training method: The training data pertaining to the malignant class were separated into two sets, Set X and Set Y. (B) Schematic of the

evaluation method: image by image. (C) Schematic of the evaluation method: video unit. During image-by-image evaluation, 100 images that clearly included the lesion

site were extracted from the hysteroscopic video of each patient diagnosed with a malignant tumor (Continuity analysis).

https://doi.org/10.1371/journal.pone.0248526.g003
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unit-based evaluations. As mentioned in the Materials and methods section, hysteroscopy

video samples were considered representative of malignant tumors when 50 or more consecu-

tive image frames extracted from them were classified as "Malignant." Comparisons between

the average prediction accuracies obtained for each dataset and network type are presented in

Figs 4D and S1B and S9 Table. As can be seen, the difference between the average accuracy val-

ues (0.8394 and 0.8913, respectively) obtained for datasets X and Y equaled 0.0512, whereas

that between accuracy values obtained using the different network types equaled 0.0052

(0.8622 (minimum) and 0.8675 (maximum)) (Figs 4D and S1B and S9 Table).

Evaluation of accuracy improvements realized by combining multiple

models

Finally, we evaluated the improvement in diagnostic accuracy realizable by using a combina-

tion of multiple DNN models. The evaluation was performed using 72 models (6 iterations × 4

data pairs × 3 model types) trained using Set Y. The video-unit-based continuity-analysis

method was used owing to its demonstrated superior performance compared to the image-by-

image-based technique. The results of this evaluation (Fig 5 and Table 2) revealed that the

combination of 72 models could classify cancers and AEH as part of the malignant group accu-

racies of 0.8571 and 1.000, respectively. Likewise, the diagnostic accuracies for myomas, endo-

metrial polyps, and normal endometrium equaled 0.8571, 0.8500, and 0.9500, respectively.

Fig 4. (A) Trend depicting accuracy displacement of malignant and benign diagnoses in accordance with threshold value for continuity analysis. (B) Comparison between

learning times required by the three neural networks. The physical time depends on the computer specifications and image size; however, the ratio of the learning time

required by each network is independent of such conditions.(C) Average accuracy values obtained via image-by-image-based predictions grouped in terms of dataset and

network type. (D) Average accuracy values obtained via video-unit-based predictions grouped in terms of dataset and network type.

https://doi.org/10.1371/journal.pone.0248526.g004
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The overall average accuracy equaled 0.9029 with corresponding sensitivity and specificity val-

ues of 91.66% (95% confidence interval (CI) = 77.53–98.24%) and 89.36% (95% CI = 83.06–

93.92%), respectively (Table 2). In addition, the value of F-score was 0.757. These results con-

firm the realization of superior diagnostic accuracy when using the combination of prediction

models compared to their standalone utilization.

Discussion

In this study, we aimed to develop a DNN-based automated system to detect the presence of

endometrial tumors in hysteroscopic images. As observed in this study, an average diagnostic

Fig 5. Average diagnostic accuracies for different conditions obtained using combination of 72 trained deep neural network models.

https://doi.org/10.1371/journal.pone.0248526.g005

Table 2. Diagnosis results obtained using combination of 72 trained deep neural network models.

Truth Prediction Total Correct Sensitivity Specificity F-score Accuracy Average

Malignant Others

Cancer Malignant 18 3 21 18 0.8571

AEH Malignant 15 0 15 15 1

Myoma Others 3 18 21 18 0.8571 0.9029

Polyp Others 9 51 60 51 0.85

Normal Others 3 57 60 57 0.95

Total 48 129 177 159 0.9167 0.894 0.7857 0.8983

Correct 33 126

Precision 0.6875 0.9767

AEH: Atypical endometrial hyperplasia.

https://doi.org/10.1371/journal.pone.0248526.t002
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accuracy exceeding 90% was realized when using the combination of 72 trained DNN models.

Overall, we were able to realize a relatively high diagnostic accuracy, despite the consideration

of only a limited number of endometrial cancer and AEH cases.

As described in the Introduction section, several deep-learning models for use in image-

recognition applications have been developed in recent years. Additionally, their utilization in

medical applications has been thoroughly investigated. For example, Esteva et al. [22] devel-

oped a deep-learning algorithm trained on a dataset comprising more than 129,000 images of

over 2,000 different skin diseases. Subsequently, they evaluated whether their proposed classifi-

cation system could successfully distinguish skin-cancer cases from those corresponding to

benign skin diseases. They observed that their proposed system could demonstrate diagnostic

performance on par with that proposed by a group of clinical specialists [22]. Automated sys-

tems that perform disease diagnoses by applying deep-learning models to endoscopic images,

such as those captured by gastrointestinal endoscopes and cystoscopes, have been developed in

recent years [17,18]. Although colorectal neoplastic polyps represent the precancerous lesions

of colorectal cancer, their presence can be typically diagnosed by an endoscopist with the

naked eye. However, the presence of these polyps can remain undetected in cases where they

are either very small or possess shapes that make it difficult to identify them. Yamada et al.

[18] developed a convolutional neural network-based deep-learning model that they applied

to endoscopic images captured for approximately 5,000 cases; their proposed analysis yielded a

polyps and precancerous-lesion detection rate of 98%.

In general, the application of deep-learning techniques to image-recognition problems

requires collection of 100,000–1,000,000 images to constitute a viable training dataset. How-

ever, as described earlier, in the medical field it can be difficult to obtain such a large number

of samples depending on diseases and circumstances. Because the diagnosis of cancer by hys-

teroscopy is not a common method, it is difficult to obtain a large number of samples from a

single institution at present. Therefore, in recent AI research in the medical field, a major

focus is to achieve a high accuracy rate with a small sample size; there are some reports that

address this. For example, Sakai et al. [23] extracted small regions from a small number of

endoscopic images obtained during the early stages of gastric cancer. Data expansion technol-

ogy was utilized to increase the number of images to approximately 360,000. The application

of a convolutional neural network to the said image dataset yielded positive and negative pre-

dictive values of 93.4% and 83.6%, respectively. A major limitation of this study is that the

video stream contained a significant number of frames that did not capture the lesions to be

identified [23]. Therefore, we deleted all frames that did not capture lesions in the extracted

image in Set Y. However, even frames that do not depict lesions might include malignant-

tumor-specific features, such as cloudy uterine luminal fluid. Moreover, even when the degree

of cloudiness is too small to be recognized by the naked eye, it can be accurately recognized by

computers. Therefore, we divided the learning data into two datasets—Set X and Set Y. As

described in the Results section, the results obtained using Set Y yielded a higher diagnostic

accuracy compared to Set X. This suggests that the diagnostic accuracy can be improved by

exclusively analyzing the lesion sites instead of all extracted images comprising the dataset.

Moreover, given the limited use of hysteroscopy in medical practice and the need for consider-

ation of several training cases to leverage the existing deep-learning models for analysis of

medical images, we developed a continuity-analysis method based on a combination of neural

networks. The proposed method demonstrates the realization of high diagnostic accuracies,

despite the use of a limited training dataset.

It is noteworthy that accuracies of 90% or more can be obtained with such a small sample

size. The proposed system is our original idea and is the most significant aspect of this

research. The method can also be applied to other types of medical images with fewer samples,

PLOS ONE Diagnosis of endometrial cancer by hysteroscopy using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0248526 March 31, 2021 9 / 13

https://doi.org/10.1371/journal.pone.0248526


as well as hysteroscopic images. While gastrointestinal endoscopy is commonly used in the

diagnosis of gastric and colorectal cancers, in general, hysteroscopy is seldom used in the diag-

nosis of endometrial cancer. However, our previous study [8] demonstrates the usefulness of

hysteroscopy in the diagnosis of endometrial cancer. Therefore, if a hysteroscopy-based auto-

mated system employing deep-learning models is established for clinical diagnosis of endome-

trial cancer, an increase in the use of hysteroscopes, can be expected as well.

As already mentioned, early diagnosis of endometrial cancer can help patients retain their

fertility, and it may even eliminate the need for post-therapy, which involves the use of anti-

cancer drugs and radiation therapy, despite a surgery being performed [1,3,24]. The diagnostic

system presented in this paper demonstrates the potential to be an effective system for accurate

diagnosis of endometrial cancer in future. In the future, a large-scale study will be conducted

using the algorithm established in this study. Therefore, the current study is a pilot to deter-

mine whether large-scale research is possible. Notably, implementation of the proposed system

in its entirety is necessary to improve the positive and negative predictive values to around

100%. To facilitate high-accuracy diagnosis, it is necessary to (1) use a large number of images

as well as add notations to all existing and new images and (2) develop a high-accuracy engine.

Another limitation of this study is that although the use of the combinational model facilitated

realization of a high diagnostic accuracy, the capacity was large when considering medical

device development. Thus, the development of a more compact system must be pursued to

accommodate a large number of cases. However, as mentioned before, it is difficult to signifi-

cantly increase the number of hysteroscopic images in a single facility, and as future study, we

aim to increase the number of samples by using this system in a multi-facility joint research

collaboration.

To the best of our knowledge, this study represents the first attempt toward the diagnosis of

endometrial cancer using a combination of deep learning and hysteroscopy. Although two

studies [25,26] concerning hysteroscopy and deep learning have been previously reported,

they exclusively concern uterine myomas and in vitro fertilization, respectively, and they have

not yet been used in endometrial-cancer diagnosis.

As described in the Materials and methods section, three neural networks—Xception [19],

MobileNetV2 [20], and EfficientNetB0 [21]—were used in this study to classify frame images

extracted from video samples. These networks were selected because they are computationally

inexpensive and demonstrate high accuracy, thereby facilitating real-time diagnosis while

incurring low manufacturing costs. Therefore, it is important to clarify the relationship

between the execution speed and neural network accuracy. From the viewpoint of the future

development of deep-learning-based medical devices, it is necessary to compare real-time and

post-hysteroscopy analyses. Additionally, we examined the images for which the deep-learning

algorithms considered in this study could not perform an accurate diagnosis. The following

two features were identified—(1) the flatness of the tumor and (2) difficulty in tumor identifi-

cation due to excessive bleeding. The issues can be resolved by increasing the number of

images in the training dataset. However, the size of the tumor cannot be considered a cause of

error. In the future, when considering a large number of cases, it is necessary to perform sub-

group analysis in accordance with the patient’s age, stage of the disease, histology, etc. More-

over, it is necessary to make a comparison with hysteroscopic specialists.

Conclusion

The challenge in medical AI research is to develop a system analysis method for improving the

accuracy with a small number of samples. It is noteworthy that a high accuracy for diagnosis of

endometrial cancer can be obtained with such a small sample in this study and we believe that
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the capability of the basic system has been established in this study. The accuracy rate of con-

ventional diagnostic techniques, such as pathological diagnoses by curettage and cytology, is

low, and screening for endometrial cancer has not been established. In the future, multi-insti-

tutional joint research should be conducted to develop this system. If this system is properly

developed, it can be utilized for the screening of endometrial cancer.
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