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Challenges in diagnosing primary immunodeficiency are numerous and diverse, with 
current whole-exome and whole-genome sequencing approaches only able to reach 
a molecular diagnosis in 25–60% of cases. We assess these problems and discuss 
how RNA-focused analysis has expanded and improved in recent years and may now 
be utilized to gain an unparalleled insight into cellular immunology. We review how 
investigation into RNA biology can give information regarding the differential expression, 
monoallelic expression, and alternative splicing—which have important roles in immune 
regulation and function. We show how this information can inform bioinformatic analysis 
pipelines and aid in the variant filtering process, expediting the identification of causal 
variants—especially those affecting splicing—and enhance overall diagnostic ability. We 
also demonstrate the challenges, which remain in the design of this type of investigation, 
regarding technological limitation and biological considerations and suggest potential 
directions for the clinical applications.
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INTRODUCTION
Primary immunodeficiency disorders (PID) result from altered, poor, or absent function in one 
or more components of the immune system, rendering the affected individuals with increased 
susceptibility to immune-related ailments including increased frequency and severity of infection, 
autoimmunity, aberrant inflammation, and malignancy (McCusker et al., 2018). The understanding 
of the genetic heterogeneity of PID has expanded greatly over the last decade, now encompassing 
a list of over 350 distinct disorders arising from at least 344 gene defects, demonstrative of the 
complexity of the immune system (Bousfiha et al., 2018; Picard et al., 2018). This plethora of 
genetic causes has brought about a need to categorize the disorders for expedited diagnosis and 
treatment protocols. Some broader methods simply classify the disorders into groups of innate and 
adaptive immunity linked to the clinical phenotype (McCusker and Warrington, 2011). The Inborn 
Errors of Immunity Committee (previously the International Union of Immunological Societies 
PID Expert Committee) has now devised a precise and useful system, which classifies disorders 
by the immunological pathway affected. In addition, it now has corresponding phenotypical 
classification systems for clinicians at the bedside to help identify the disorders. These briefly 
comprise nine categories: immunodeficiencies affecting cellular and humoral immunity, combined 
immunodeficiency disorder (CID) with associated or syndromic features, predominantly antibody 
deficiencies, diseases of immune dysregulation, congenital defects of phagocyte, defects in intrinsic 
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and innate immunity, auto-inflammatory disorders, complement 
deficiencies, and phenocopies of PID (Bousfiha et al., 2018).

The most common form of PID is selective immunoglobulin 
A deficiency, which is usually typically asymptomatic but can 
manifest with a variety of clinical presentations including coeliac 
disease, type 1 diabetes mellitus, and increased infections. 
With an estimated prevalence of 1 in 300–500 persons (Boyle 
and Buckley, 2007), and while individually rare (>1 in 2,000), 
the remaining disorders considered in the wider scope of PID 
together represent a significant burden on the health and economy 
of a nation. Current diagnostic levels suggest an incidence of 
5.90/100,000 (Shillitoe et al., 2018); however, underdiagnsosis of 
PID may mean the true incidence is as high as 1:250 (Europe 
PIPDDfOCi.).

The importance of early diagnosis In PID cases is high, with 
relation to both the patient’s qualitative experience and the 
economic cost to healthcare services. Sources vary in cost analysis 
of undiagnosed PID. Some say that while a diagnosed US patient 
costs healthcare services over US$250,000 per annum, largely 
due to treatment costs, an early diagnosis of the disorder can 
save as much as US$6,500 per patient, per annum (Abolhassani 
et al., 2015). An alternate source suggests an undiagnosed 
patient might cost the healthcare system US$102,552 annually. 
Once diagnosed, these costs may drop by as much as US$79,942 
(Condino-Neto and Espinosa-Rosales, 2018). In a patient survey, 
45% of patients reported a diagnostic wait time of between 1 and 
6 years; around 1/6th reported waiting 10–20 years. Other key 
findings of the same survey confirmed undiagnosed patients 
bring about a dramatically increased burden on National Health 
Service (NHS) resources (UK,). Identification of the precise 
molecular origins for each patient’s case of PID leads to improved 
patient care (Walter et al., 2016) and improved prognosis. The 
importance of correct genetic cause for a PID phenotype is 
demonstrated by the different treatment preferences which exist 
for conditions which may present with similar clinical phenotypes 
(Heimall et al., 2012). Precision therapeutic diagnostics can help 
to achieve this in part, by allowing targeted intervention to the 
specific molecular causes (Bonilla et al., 2015; Lenardo et al., 
2016; Ramakrishnan et al., 2016).

Diagnostic Challenges in PID
Challenges in diagnosing primary immunodeficiency are 
numerous and diverse. Studies which correlate the phenotype 
and genotype have been useful in diagnostics, developing 
an understanding of various PID disorders (Fischer, 1993). 
Additionally, these correlation studies have been useful for 
deconvoluting the pleiotropic nature of the involved genes, 
through which a single variant can bring about a variety of clinical 
phenotypes (Meyts et al., 2016). However, the development 
of a universal diagnostic pipeline for PID is hindered by the 
heterogeneity in the presentation of disease, even among patients 
with what appears to be the same pathogenic genetic variant 
(Richardson et al., 2018). Conversely, a number of genotypes 
can bring about even the most well-characterized phenotype 
(Meyts et al., 2016). Once a clinical diagnosis of PID is suspected, 
mainly based upon a compatible phenotype, a family history 

is usually taken and a number of subsequent laboratory tests 
performed to confirm the type of immune mechanism affected 
(Hernandez-Trujillo and Ballow, 2015). With the emergence of 
targeted sequencing of larger PID gene panels, clinical exomes, 
and complete exomes through short-read next-generation 
sequencing technologies, the inclusion of genetic testing 
within a PID diagnostic workup has become more widespread. 
This approach to both adult- and paediatric-onset disease 
has consolidated the importance of protein-based functional 
immune testing (cytokines, antibodies, etc.) for characterizing 
the nature of the phenotypic presentation, but furthermore to 
evaluate candidate genetic variants in such pathways that have 
been identified through parallel germline DNA testing.

DNA sequencing-based genetic testing is used where possible, 
as it provides the best diagnostic capability of existing clinically 
adapted methods (Condino-Neto and Espinosa-Rosales, 2018). 
Whole-exome sequencing (WES) has the highest success rate 
of the clinically adapted diagnostic methods (Gilissen et al., 
2011; Boycott et al., 2017), which it achieves despite the exome 
comprising only ~2% of the human genome (Bamshad et al., 
2011).This is in part due to 85% of currently annotated variants 
existing within the transcribed portion of the genome (Majewski 
et al., 2011). It has been hypothesized that this focus had likely 
led to the underestimation of the contribution to disease of non-
coding variants (Kremer et al., 2018).

Due to the improvement that WES and whole-genome 
sequencing (WGS) bring to diagnostics, researchers are calling 
for universal molecular gene testing for the diagnosis of primary 
immune deficiencies (Heimall, 2019). Evidence from existing 
literature, however, suggests that even this may be inadequate; 
currently, WES and WGS are only able to produce reliable 
diagnosis in 25–60% of cases (Yang et al., 2013; Moens et al., 
2014; Yang et al., 2014; Taylor et al., 2015; Meyts et al., 2016; 
Stray-Pedersen et al., 2017). Although many countries have 
undertaken whole-genome sequencing projects to evaluate this 
approach (Philippidis, 2018), the development of WGS as a 
clinically validated routine testing modality is still in its infancy. 
Within the UK’s 100,000 Genomes Project, PID was accepted as 
an indication for inclusion, and plans to incorporate WGS for 
PID into routine clinical pathways have been approved following 
the transition phase of 100K Project to WGS sequencing in 
routine NHS care across England.

Formal confirmed genetic diagnosis of PID relies heavily on 
existing knowledge pertaining to consequences of the variants 
in the genes of relevance to the presenting phenotype and 
assumed mechanism of disease resulting from such variants in 
a dominant or recessive manner genomic sequence (Rae et al., 
2018). The key to this task is the ability of bioinformatics tools 
to predict the significance of such variants. WES delivers around 
20,000–23,000 variants per individual, and WGS produces 3–5 
million per individual (Kremer et al., 2018), which makes the 
task of identifying a Mendelian disease variant vanishingly 
unlikely without a series of bioinformatics filters. Problems with 
the WGS/WES sequencing diagnostic methods arise when no 
variant, identified through a patient’s genome sequencing, can 
be reliably linked to the clinical presentation and cytological/
molecular manifestation of the disorder. Failure to identify a 
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definitive molecular cause occurs in about 70–75% of Mendelian 
conditions, according to a 2018 meta-analysis (Schwarze et al., 
2018), mirrored by examples from PID (Gallo et al., 2016). The 
types of variants which are not always identified by current next-
generation sequencing (NGS) approaches include exonic variants 
of unknown significance, variants in intronic and intergenic non-
coding DNA (Scacheri and Scacheri, 2015), variants in the cis-
acting regulatory elements of transcription (Bryois et al., 2014) 
imprinting disorders, and repeat expansions (Kremer et al., 2018).

Conventional clinical diagnostics, utilizing human phenotype 
ontology for integration of cases into specific diagnostic groups, 
and traditional genetic sequencing methods for diagnostics 
are still currently inadequate. While proteomic diagnostic 
methods are in development, they exist at a relatively early stage 
of development and can miss the potentially valuable RNA 
regulatory phenomena.

variants Affecting Differential Expression
Identification of definitive disease-causing mutations is 
confounded in some cases by expression levels being modulated 
by variants occurring in non-coding segments and those hiding 
in plain sight in genes not currently understood to be linked to 
the disease or phenotype. Often, these can be lost during the 
filtering process because of a lack of integrative understanding or 
supporting evidence (Thormann et al., 2019).

These expression quantitative trait loci (eQTLs) elicit a 
powerful, sometimes synergistic effect on the expression of 
a large number of genes. Single-nucleotide polymorphisms 
(SNPs) on eQTLs affect the transcriptional level of other RNAs, 
modifying protein expression and causing phenotypic changes to 
the abilities and behaviors of cells in some immunological cases 
(Fairfax et al., 2014). These eQTLs individually explain a fraction 
of the genetic expression of specific genes. The vast majority do 
not exist in the coding regions of genes and are predicted to be 
involved in gene regulation (Casamassimi et al., 2017). It is now 
understood that these eQTLs have a more pronounced effect on 
immune regulation than the effects of age and sex, and more 
interestingly exclusive effects only observable during immune 
stimulation have been identified for some of these eQTL variants 
(Piasecka et al., 2018). Epigenomic studies have helped to 
highlight the cis-regulatory nature of some non-coding regions 
of the genome. These suggest that the enrichment of disease-
risk variants in cell-specific regulatory sequences is indicative 
of their cell type and contextual effects (Roadmap Epigenomics 
et al., 2015). Large-scale investigation into the association 
between genetic variants and expression of genes in a tissue-
specific manner (including whole blood) was carried out by 
the Genotype—Tissue Expression Consortium (The Genotype-
Tissue (GTEX), 2015). This research did not extend to immune 
tissues specifically, although links between immune cell-specific 
gene expression levels and eQTLs have been investigated by the 
DICE Project (Database of Immune Cell Expression, Expression 
Quantitative Trait Loci and Epigenomics) (Schmiedel et al., 2018). 
The researchers on this project were able to positively identify a 
range of cis-eQTLs for 12,254 genes, demonstrative of the high 
abundance of these sites. Interestingly, many of these eQTLs had 

effects which were cell type-specific. The identification of these 
sites and interrogation for the existence of variants will likely play 
a crucial role in explaining the changes in expression of key genes 
which lead to PID.

The Role of RNA Splicing in the Immune 
System and PID
Alternative splicing is the method through which the cell can 
produce an array of transcript isoforms derived from a single 
gene or multiple genes spliced together (Ward and Cooper, 
2010). Introns are spliced out and exons are either ligated 
through transesterification reaction or, in many cases, spliced out 
in different combinations, leaving the remaining exons to form a 
mature mRNA (Ward and Cooper, 2010).

Deep surveying on alternative splicing has shown that 95% of 
genes which contain multiple exons undergo alternative splicing, 
and even when only considering moderate to high abundance 
events, there are reportedly 100,000 individual splicing events in 
major tissues (Pan et al., 2008).

Alternative splicing occurs both co-transcriptionally and 
post-transcriptionally, and the action of transcription factors 
as well as splicing factors regulates and influences splicing 
events in some of the most crucial mechanisms of the adaptive 
immune system (Heyd et al., 2006; Orvain et al., 2008; Alkhatib 
et al., 2012). Important examples include RNA-polymerase II 
as a facilitator of splicing factor recruitment (Bentley, 2014), 
the alternative splicing of CD45 which is necessary for the 
production of a range of tyrosine phosphatases, imperative 
for the diverse set of lineage and stage-specific receptor signal 
transduction thresholds in immune tissues (Zikherman and 
Weiss, 2008), and FOXO1-induced Ikaros splicing, essential 
for the recombination of immunoglobulin genes. FOXO1 is a 
transcription factor which, through its effects on alternative 
splicing, allows the immune system to produce its diverse range 
of antibodies/immunoglobulins (Reynaud et al., 2008).

Activation of lymphocytes is a key component of the adaptive 
immune response to pathogens (Bonilla and Oettgen, 2010). Part 
of the central activation of these cells is the degradation of IκBα 
and release of NF-κB, which translocates to the nucleus to initiate 
maturation and activation of the cell. The “CBM” complex, which 
brings about the degradation of IκBα, is formed by CARMA1, 
BCL10, and MALT1 (Oeckinghaus et al., 2007). MALT1, a crucial 
component of this complex, undergoes alternative splicing of 
EXON 7 to produce mRNA isoforms with a differential function. 
The activation strength of CD4+ T cells is mediated by the relative 
abundance of the alternatively spliced isoforms of MALT1, 
which is in part controlled by the molarity of phosphorylated 
splicing factor hnRNPU in the nucleus (Meininger et al., 2016). 
Alternative splicing, then, is a key component of the normally 
functioning immune system, and perturbations in canonical 
function can likely lead to pathology.

variants Affecting Alternative Splicing
The impact of mutations that affect RNA processing/splicing 
is currently providing a diagnostic revolution. Variants which 
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affect splicing either occur in active splice sites, those which 
occur in regulatory elements, and those which occur in intronic 
or intergenic regions (Grodecká et al., 2017) see Figure 1.

Studies comparing variants affecting splicing in PID have 
determined that the variants which directly influence splice 
sites are more robustly linked to disease phenotypes than those 
which effect splicing regulatory elements (Grodecká et al., 
2017). Cis-mutations in the genome can affect splicing though 
altering the splice site recognition or altering exon splicing 
enhancer or silencer sites (Ward and Cooper, 2010). Splice 
sites usually comprise GT and AG dinucleotides at 5′ and 3′ 
sites, respectively. If a variant changes this sequence, or causes 
another one to appear, it can affect the ability of the splicing 
machinery to detect the canonical splice site (Krawczak et al., 
1992; Krawczak et al., 2007). Additionally, mutations in trans-
acting splice factors—the splicing machinery of the cell—can 
also bring about disease by preventing these factors from 
performing their function of generating the required isoforms 
(Ward and Cooper, 2010), although these are not covered in 
this review.

Due to the impact of these findings, interest in the 
detection of splice-altering variants and activated cryptic 
splice site has spurred on the development of a number of in 
silico tools for prediction of splice site usage (Grodecká et al., 
2017; Ohno et al., 2018). Unfortunately, these tools are often 
unable to discern the resulting transcripts exon use patterns 
(Jaganathan et al., 2019), and while their predictive ability 
can be enhanced by other orthogonal investigations such as 
mini-gene assays (Grodecká et al., 2017), the multiple facets 
of splicing control involve more than just the sequence of 
the splice site in question, as evidenced by the temporal and 
spatial differences in splicing patterns. Briefly, these include 
the activation of other splice sites within the gene, splicing 
quantitative trait loci, the relative abundance, phosphorylation 
status, and localization of different and often competing trans-
acting factors (Wang et al., 2015).

Further complicating this process, seemingly benign, 
synonymous exonic variants can disrupt splicing to cause 
disease. Using RNA sequencing (RNASeq) to complement 
genomic sequencing, Cummings et al. evidenced this in 
the POMGNT1 and RYR1 genes, finding variants which 
were demonstrated to be causative of Mendelian diseases in 
muscle (Cummings et al., 2017). Part of the normal filtering 
process which many bioinformaticians adopt is to filter out 
synonymous variants very early on, but investigation using 
deep learning has led to the understanding that between 9% 
and 11% of rare genetic disorders are caused by synonymous 
or intronic splice-altering mutations (Jaganathan et al., 2019). 
Indeed, much as gene expression can be influenced by multiple 
loci, so too can multiple loci contribute to the occurrence of 
splicing events. These loci are appropriately termed splicing 
quantitative trait loci (sQTLs) (Jia et al., 2015). Analysis of 
sQTLs has been improved by RNASeq methodologies, but 
remains a difficult challenge as the isoform expression has 
to be estimated using statistical methods (Patro et al., 2017). 
These sQTLs are not necessarily in close proximity to the splice 
junction. Characterization of these sites in humans has shown 

SNPs demonstrating tangible sQTL activity at 100 kb from the 
relative splice site (Takata et al., 2017).

Non-protein-coding genes are a significant source of disease-
causing variation (Scacheri and Scacheri, 2015). Examples 
within the PID research and diagnosis space include a recently 
discovered variant occurring in coding regions for genes 
comprising RNA components of the minor spliceosome, which is 
used for the splicing of at least one exon in ~800 genes (Turunen 
et al., 2013). Specifically, the non-coding gene RNU4ATAC that 
produces a small nuclear RNA (snRNA) termed U4atac was 
discovered to cause Roifman syndrome (Merico et al., 2015; 
Heremans et al., 2018) by preventing canonical minor intron 
splicing. Compound heterozygous variants were first discovered 
in an affected family after traditional filtering methods had not 
detected viable variants; the link was confirmed by the detection 
of intron retention during curated splicing analysis of RNASeq 
data (Merico et al., 2015).

The importance of alternative splicing in the immune system 
has been further demonstrated in mouse models. The ImmGen 
Project was set up specifically to investigate gene expression 
and regulation in mice using microarray profiling. It found 
that, in mice, around 60% of genes are expressed as multiple 
isoforms in T or B cells, and 70% of these had an impact on 
the lineage differentiation (Ergun et al., 2013). Compound 
heterozygous mutations in MALT1, mentioned earlier, which is 
heavily implicated in the activation of T cells, have been shown 
to bring about profound combined immunodeficiency. One of 
these variants was indeed a splice site acceptor change from the 
consensus AG to GG, identified by whole-exome sequencing 
(Punwani et al., 2015).

To further complicate the already complex nexus of control 
mechanisms contributing to PID, a range of epigenetic 
mechanisms leading to primary Immunodeficiencies have 
been observed and reviewed (Campos-Sanchez et al., 2019). 
In principle, the majority of genes identified to be susceptible 
to variants in PID may also be subject to heritable epigenetic 
modifications which could lead to the same or similar symptoms, 
acting as a further coefficient value when calculating the 
potential number of disorders, including those disorders affected 
by splicing, which can cause PID (Zhu et al., 2018).

RNA in Diagnostics
RNA investigation technology and its literature has experienced 
great leaps forward in recent years in terms of technological 
advancement and cost reduction (Muir et al., 2016). RNA 
sequencing is now largely replacing microarrays as the most 
used quantitative method of mapping gene expression profiles 
(Lowe et al., 2017). The transcriptome—or RNA expression 
profile—of a given tissue can give unparalleled insights into the 
elegant inner workings of the cell. Through capture of all internal 
RNA species, it characterizes the cellular gene transcription 
architecture and can deliver an instantaneous picture of 
environment–cell interaction or response program (Lowe et al., 
2017; Wirka et al., 2018).

A range of technologies exist for conducting RNA 
sequencing, each with its own strengths and limitations. 
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Long-read sequencing provides reliable structural information, 
but can have suboptimal reliability in base calling (Feng et al., 
2015) or is more expensive for high-throughput analysis 
(Rhoads and Au, 2015). Short-read NGS RNASeq involves 
sonication or enzymatic degradation of RNA into smaller 
fragments, selection of fragments using one of a number of 
methods, cDNA synthesis, the construction of a library, and 
subsequent sequencing followed by realignment (Kukurba and 
Montgomery, 2015). This technology has been the currently 
favored approach for high-throughput analysis.

Currently, this technology generates a mixture of both 
quantitative and qualitative analysis opportunities of RNA 
species: qualitative transcriptome profiling outcomes include 
identification of sequence variants at the level of the genome 
(Neums et al., 2017), somatic cell mosaics, non-canonical 
splice variants, occurring either due to cis- or trans-acting 
factor aberrations (Ward and Cooper, 2010). Quantitative 
outcomes of transcriptional profiling include differentially 
expressed genes, alternative splicing events, and allele-specific 
expression quantification (Kukurba and Montgomery, 2015). 
Previous studies have demonstrated that when compared with 
large control datasets, identification of expression outliers 
in peripheral whole blood can contribute to the detection of 
disease-causing variants (Zeng et al., 2015; Zhao et al., 2016). 
As well as gene expression levels, perturbations in the relative 
abundance of specific isoforms is a driving force in the genesis 
of many diseases (Chen et al., 2010; Kim et al., 2018) as 
isoforms can have differential function (Takeda et al., 2010), 
or, in some cases, can be antagonistic (Eshel et al., 2008). 
Through RNASeq or exon junction spanning probe-based 
capture, changes in isoform balance can also be resolved. 
The sensitivity suitability of RNASeq in transcriptomic 
investigation and splicing was demonstrated in mouse and 
human models and has enabled the discovery of ~7,600 
novel isoforms in mouse immune cells (Ergun et al., 2013) 
and detected 100,000 splicing events with at least moderate 
abundance (Pan et al., 2008).

Transcriptome profiling can also give insights into control 
mechanisms exhibited by the non-coding RNA species, such 
as long non-coding RNA (lncRNA) and microRNA (miRNA), 
the significance of which is continually being elucidated in the 
molecular pathology of disease (Kramer et al., 2015; DiStefano, 
2018). Indeed, such examples exist in PID; miR-6891-5p 
accumulation is demonstrated to contribute to selective IgA 
deficiency, the most common form of PID (Chitnis et al., 
2017). Thanks to the increasing ability of technology and 
steady reduction in costs, we are also able to cast a winder net. 
Through RNASeq-based investigation, instead of concentrating 
on a priori, system-specific gene panels that many studies 
target, it is possible to examine all the mRNA species destined 
for translation. Through these hypothesis-free methods, it is 
possible to create profiles of normal transcription and disease 
transcription in a tissue-specific manner (Gonorazky et al., 
2019). Subsequent use of follow-up analysis tools can be used 
to generate filtering process for causal variants or for biomarker 
identification (Han and Jiang, 2014). It is also possible to 
quantify the relative expression of those genes coding for the 

splice factors themselves, which can directly bring about 
pathological processes specific to PID, such as those observed 
in Roifman’s syndrome, mentioned earlier (Merico et al., 2015; 
Heremans et al., 2018).

Microfluidic technology adaptations have allowed the 
development of robust, single-cell transcriptomic profiling 
(Kimmerling et al., 2016). In combination with NGS-based 
technologies, the single-cell technology provides a method for 
profiling the transcriptomes of individual cells, giving unparalleled 
insights into the heterogeneity of cell populations and their 
transcriptional profiles (Hwang et al., 2018). Adaptations such 
as the SMART-seq2 or fluidigm C1 library preparation methods 
also now allow the production of full-length cDNAs, giving 
transcript isoform-level resolution. However, these methods do 
not yet allow multiplexing, massively increasing overall costs 
and labor in large cohorts (See et al., 2018). The ability to profile 
the entire transcriptome of a peripheral blood mononuclear cell 
(PBMC) culture individually would give a dramatically increased 
ability to understand the cell–cell interactions taking place in an 
immune challenge, and this approach could be utilized in those 
patients suspected to be genetic mosaics.

DISCUSSION
The early and accurate diagnosis of primary immunodeficiencies 
is important to ensure the attainment of positive patient outcomes, 
through minimizing the time to diagnosis, identifying molecular 
pathways for targeted therapy, and reducing the economic cost 
of ill health or inappropriate treatment options. Diagnosis 
of the disorders remains difficult due to clinical challenges 
in identifying the presence of a primary immune system 
disorder, stratifying the phenotype to a myriad of overlapping 
candidate genes and then the laborious task of variant filtering, 
interpretation, and lack of knowledge pertaining to variants, 
especially those residing in the non-coding segments of the 
DNA. Functional validation of a candidate variant is currently 
undertaken with protein-based ex vivo tests, which are difficult 
to standardize and mostly available in research laboratories. 
RNA profiling to identify alternative splicing, gene expression-
level variation monoallelic expression may contribute a further 
insight into candidate variants derived from proband or 
family-based WES/WGS sequencing results. We propose the 
introduction of RNASeq-based analysis for patients who have 
a clinical presentation of PID, but who, despite normal baseline 
immune testing, cellular analysis, and having undergone WES/
WGS remain undiagnosed (see Figure 2).

RNASeq is an emerging technology which, when combined 
with WES/WGS, provides unprecedented insights into 
differential gene expression, splicing activity, and allelic specific 
expression and can inform regarding other phenomena such as 
genetic mosaicism. However, RNASeq remains relatively novel as 
a diagnostic testing tool in rare diseases and the control datasets 
and cellular contributions to complex tissue profiles (i.e., whole 
blood) will require further dissection.

Utilizing candidate gene lists and large control datasets 
for comparison enhances the power of the transcriptional 
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FIGURE 1 | Shows the various effects which variants can have on the splicing process. I) Variants in regulator elements such as exon splicing enhancers resulting 
in for example, exon skipping. II) Variant in splice acceptor OR splice donor site causes skipping of one or more exons. III) Branch point and Poly pyrimidine tract 
sequence variants causing exon skipping. IV) Exonic variants causing exon skipping. V) Variant in splice donor site induces activation of an alternative, cryptic splice 
donor site in exon. VI) Intronic variants producing new cryptic exon or retained intron.

FIGURE 2 | Demonstration of the current diagnostic pathway (blue) for the majority of patients after a diagnosis of PID is suspected. We also outline the proposed 
intervention point of RNASeq and the associated enhanced variant detection (coming about through assessment of differential expression, changes to alternative 
splicing) and the increased diagnostic yield.
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profiling through RNASeq and improves resolution for 
differential gene expression. Existing projects have developed 
these datasets for whole blood and immune cells, which 
provide a starting point for the interrogation of clinical 
samples for diagnostic research.

Immune responses to pathogenic challenges are exceptionally 
variable, and the variability in these responses is not easily 
elucidated. Environmental influences such as age, sex, 
seasonality, nutrition, and lifestyle all have effects on the specific 
response profile exhibited by individuals (Piasecka et al., 2018). 
These factors that influence responses can have a greater degree 
of significance in specific cell types. CD8+ T cells, for example, 
show a high degree of heterogeneity in the context of temporal 
changes through the life course of the individual, and CD4+ T 
cells and monocytes are heavily influenced by sex (Piasecka et al., 
2018). It is therefore useful to be able to discern transcripts from 
different cell types within a culture. Utilizing flow cytometry to 
separate cell types or utilizing single-cell RNASeq is becoming an 
attractive option.

In order to assess the impact of genomic variation on the 
unstimulated immune system, the normal immune response 
and the immune-deficient responses, it is important to 
experimentally “tune out” the variations in signal arising from 
environmental factors. It has been established that a high 
degree of the cellular variation in CD8+ cell populations can be 
attributed to environmental factors, which makes them a poor 
model for genetic variant impact. CD4+ T cells display a large 
degree of heritability in these assays, and as such should provide 
a good level of transcriptomic heritability also. This will allow for 
clearer elucidation of the effects of variants on differential gene 
expression (Brodin et al., 2015).

The immune system’s response to pathogen-based 
challenges is highly dynamic, and observing this response is 
more informative when identifying impaired response (Duffy 
et al., 2017). Indeed, it has been shown in innate immune 
system studies that the effects on differential expression of 
some variants can only be observed in a dynamic fashion 
(Fairfax et al., 2014; Lee et al., 2014). Co-culture of PBMCs 
provides a greater insight into activation pathways as it allows 
for the cell–cell communication response programs and 
produces similar results in terms of ranked gene expression 
response networks, with a few notable exceptions (Duffy et al., 
2017). Studies of dynamic immune responses to challenges, in 
concert with machine learning, can be used to identify small 
groups of stimulation pathway-specific genes (Urrutia et al., 
2016). Comparing the expression profiles of these genes in 
healthy cohorts with PID patients can potentially be utilized 
to identify candidate genes, which may then harbor a disease-
causing variant or indicate some anomaly in the pathway for 
further investigation.

The transcriptomic landscape provides an excellent opportunity 
for advancement of diagnostic yield, and transcriptional profiling 
is already being utilized across a range of disorders to help build 
a “molecular fingerprint” of disease and better inform variant-
filtering processes. The immunology community has made a 
case for PID diagnosis to be supported using transcriptional 
profiling using whole-transcriptome sequencing (Moens et al., 

2014), and these are being answered with examples in primary 
immunodeficiency cases such as Dock8 CID, GATA2 deficiency, 
and X-linked reticulate pigmentary disorder (XLPDR) (Hsu 
et al., 2013; Khan et al., 2016; Starokadomskyy et al., 2016). 
Over the coming years, an extended diagnostic approach to 
PID testing may develop that builds on a clinical module of 
phenotype, family history, and baseline immunological testing. 
This will be complemented by a DNA module of coding and non-
coding variant analysis, utilizing sophisticated bioinformatic 
pipelines to prioritize candidate genetic variants of new loci 
that would be consistent with the clinical phenotype and family 
segregation. These candidate variants for monogenic disease may 
then be functionally interrogated via RNAseq for an influence 
within the gene itself and possibly the network within which 
it operates. In parallel, functional testing of candidate genes 
through protein-based assays may be undertaken to characterize 
the impact of a putative monogenic pathogenic variant within 
a reductionist model at the protein level. The sharing of these 
modular assessments across the international community will 
incrementally improve the standardized analysis of novel variants 
that will continue to grow over the next few years.
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GLOSSARY OF TERMS

Term Description

NGS (next-generation 
sequencing)

Next-generation sequencing describes the 
massively parallel, high-throughput modern 
evolution of sequencing.

WES (whole-exome 
sequencing)

Whole-exome sequencing is the process of 
reading and recording the nucleotide sequence 
of all the protein coding regions of a subject’s 
genome (termed the exome).

WGS (whole-genome 
sequencing)

Whole-genome sequencing is the process of 
reading and recording the nucleotide sequence of 
the entirety of a subject’s genome.

RNASeq (RNA sequencing) RNA sequencing is the process of capturing and 
sequencing the available RNA from a tissue or 
cell. This can include all transcribed RNAs, or just 
the messenger RNA, depending on the capture 
method.

Short-read sequencing Short-read sequencing is the process of 
sequencing a pre-fragmented library of nucleic 
acid, typically 75–300 bp in size.

Long-read sequencing Long-read sequencing in the process of 
sequencing full-length nucleic acid fragments.
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