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Abstract

Cell of origin classification of diffuse large B-cell lymphoma (DLBCL) identifies subsets with biological and clinical
significance. Despite the established nature of the classification existing studies display variability in classifier
implementation, and a comparative analysis across multiple data sets is lacking. Here we describe the validation of a cell
of origin classifier for DLBCL, based on balanced voting between 4 machine-learning tools: the DLBCL automatic classifier
(DAC). This shows superior survival separation for assigned Activated B-cell (ABC) and Germinal Center B-cell (GCB) DLBCL
classes relative to a range of other classifiers. DAC is effective on data derived from multiple microarray platforms and
formalin fixed paraffin embedded samples and is parsimonious, using 20 classifier genes. We use DAC to perform a
comparative analysis of gene expression in 10 data sets (2030 cases). We generate ranked meta-profiles of genes showing
consistent class-association using $6 data sets as a cut-off: ABC (414 genes) and GCB (415 genes). The transcription factor
ZBTB32 emerges as the most consistent and differentially expressed gene in ABC-DLBCL while other transcription factors
such as ARID3A, BATF, and TCF4 are also amongst the 24 genes associated with this class in all datasets. Analysis of
enrichment of 12323 gene signatures against meta-profiles and all data sets individually confirms consistent associations
with signatures of molecular pathways, chromosomal cytobands, and transcription factor binding sites. We provide DAC as
an open access Windows application, and the accompanying meta-analyses as a resource.
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Introduction

Diffuse large B-cell lymphomas (DLBCL), the commonest

human lymphoma type, can be separated into distinct categories

based on gene expression signature, and relationship to normal

stages of B-cell differentiation [1,2,3]. The success of the ‘‘cell of

origin’’ classification lies in the ability to both predict differences in

patient outcome with standard immuno-chemotherapy regimens,

and provide insight into the fundamental biology of the disease

[4,5]. An extensive body of work has linked the two major

categories of this classification, the Germinal Center B-cell (GCB)

and Activated B-cell (ABC) types of DLBCL, to different

molecular pathogenesis [6]. Further validation of this paradigm

has been provided recently in the context of global analysis of

coding region mutations in DLBCL, which link different spectra of

somatic mutations to cell of origin class [7,8].

Since the inception of the cell of origin classification [1], several

variations have been used. The definitive formulation, by Wright

et al., employed 27-features present on the Lymphochip custom

array to assign cases as ABC, GCB or Type-III/unclassified [2].

Classes were assigned using a linear predictive score (LPS) derived

from the expression values of these features, with the resulting

score for each case assessed using a Bayesian predictor against

training data set distributions. ABC or GCB class was assigned

where the respective class prediction was over 90% certain, with

cases falling between these extremes assigned to the unclassified

(also known as Type-III) category. Application in subsequent work

has seen the gradual expansion of the classifier gene set; a process

that accompanied extension to encompass the distinction of

DLBCL from Burkitt Lymphoma and Primary Mediastinal B-cell

Lymphoma by Dave et al. [9] (a 2-stage classifier, the 2nd stage

using 100 genes to differentiate Burkitt Lymphoma from each

subgroup of DLBCL), and the application to patients treated with

chemotherapy regimes supplemented by anti-CD20 monoclonal

antibody therapy by Lenz et al. [5] (183 genes). In parallel other

studies have applied the original Wright algorithm in a ‘‘truncat-

ed’’ form to reflect the variable representation of classifier genes on

more recent platforms. This is exemplified in the work of Monti

et al. (23 genes), who identified DLBCL subtypes characterised by

B-cell receptor, oxidative phosphorylation and host response

signatures [10], and Hummel et al. [11] (15 genes) describing the

molecular identification of Burkitt lymphoma concurrent with

Dave et al. [9]. Despite the variation in classifier gene number, a

unifying feature of these, and other studies [12,13,14], has been
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the use of a Bayesian predictor as described by Wright et al. and

extended in subsequent work [2,5,9]. However no published

studies share an identical approach to classification with variations

in classifier gene number or precise detail of classifier implemen-

tation such as the way in which probes for individual genes are

selected or normalized.

In routine practice most diagnostic material is formalin-fixed

and paraffin embedded (FFPE), which may not yield comparable

gene expression data to that obtained from fresh material. While

approaches have been developed to circumvent this issue,

immunohistochemical surrogates fail to recapitulate the success

of the gene expression based classifier on a consistent basis [15,16].

Targeted assessments of individual genes by quantitative PCR

[17,18] or by RNAse protection assays [19,20] have been shown

to be effective as classifier tools. However the initial selection of

target genes imposes inherent restrictions on downstream analysis

and development of new classifiers in the context for example of

clinical trials, which is not the case in the context of global gene

expression analysis on microarray platforms. FFPE based gene

expression profiling of DLBCL has now been tested in several

experimental settings [21,22,23], including the demonstration that

FFPE samples processed entirely as conventional diagnostic

material can provide meaningful data for prediction of survival

[22].

The segregation of DLBCL into cell of origin classes has led to

profound insight into disease biology [6]. This is reflected in the

fact that extended patterns of gene expression associated with cell

of origin class link to underlying molecular abnormalities. When

considering an individual data set the primary criteria for ranking

the association of a gene with disease class are the significance and

magnitude of differential expression. Comparison of multiple

equivalently classified data sets can generate an important

additional variable: the consistency with which a gene is associated

with disease class across the data sets considered. Determining

such consistency of association provides an approach for

comparative analysis of gene expression that avoids issues related

to merging expression values from different data sets prior to

classification. This approach depends on a classifier implementa-

tion that is robust to variation between microarray platforms and

data sources. Multiple individual data sets of DLBCL have now

been generated [5,10,11,12,21,23,24,25,26], providing the poten-

tial basis for such a comparative analysis. In parallel extensive

databases have been established encompassing thousands of gene

lists (referred to as gene signatures or gene sets) that identify

differentially expressed genes from prior microarray experiments

from a wide array of cell types and conditions [27,28]. These

include lists of genes defined by other parameters such as

chromosomal distribution (cytobands) or association with con-

served transcription factor binding sites in promoter regions and

39UTRs [29]. Combining a comparative analysis of gene

expression with a comprehensive assessment of gene signature

enrichment generates a resource and provides a tool for assessing

classifier performance.

Here we describe a systematic analysis of tools for implemen-

tation of the cell of origin classification of DLBCL. We establish a

platform robust classifier based on balanced voting between four

machine-learning tools. This is effective on FFPE material, and

provides improved survival separation for ABC and GCB classes

for the majority of data sets analyzed. We make this tool available

as open source software. The development of this tool allows the

first comparative analysis of gene expression across 10 DLBCL

data sets encompassing 2030 cases uniformly classified with the

same implementation. We define meta-profiles of genes consis-

tently associated with ABC- and GCB class, assess consistent

molecular signature enrichments and provide these data as a

resource.

Materials and Methods

Datasets
A formalin-fixed paraffin embedded (FFPE) data set was

produced by the Haematological Malignancy Diagnostic Service

(HMDS; St. James’s Institute of Oncology, Leeds) and details of

preparation, epidemiology and outcome data are described in

detail elsewhere [22]. The data is available from the NCBI Gene

Expression Omnibus (GEO: GSE32918). For training the

machine learning tools the Lymphochip-based data set of Wright

et al. was downloaded (http://llmpp.nih.gov/DLBCLpredictor/)

[2]. In addition 9 diffuse large B-cell lymphoma (DLBCL) datasets

were downloaded from the GEO and elsewhere: GSE10846,

GSE12195, GSE19246, GSE22470, GSE22895, GSE31312,

GSE34171, GSE4475, and the data of Monti et al. (Table S1)

[5,10,11,12,21,23,24,25,26]. The data set, GSE10846, was split

into treatment groups (CHOP/R-CHOP) yielding two data sets

that were then analyzed independently (referred to as

GSE10846_CHOP and GSE10846_R-CHOP) thus giving a total

of 11 data sets.

Normalization and Re-annotation of Data
Each dataset was quantile normalized using the R Limma

package [30]. To maximise integration of data, spanning different

resources and from different sources (e.g. expression arrays, gene

ontology annotations, gene lists etc), all genes across all used

resources were re-annotated to HUGO Gene Nomenclature

Committee (HGNC) approved symbols. The complete HGNC list

was downloaded (on 2012.08.16). Each gene was re-annotated to

the latest approved symbol if an unambiguous mapping (i.e. single

symbol mapping to an approved symbol) could be determined, else

the original gene name was maintained.

DLBCL Classifier Generation: Data Preparation
For all data sets the probes for each of the classifier genes were

merged using 2 methods: (1) the median value across the probes

for each gene (MedianMerge), and (2) the approach used by

Monti et al. - taking the average value for probes with a Pearson

correlation .0.2, while taking the maximum value for those with a

correlation , = 0.2 (MaxAvgMerge) [10]. The median approach

proved to be more informative for all but one data set (data not

shown) and thus was used unless stated. The resulting values were

used to generate Z-scores for each classifier gene in a particular

data set. These values were then converted to ARFF files for use

with the machine learning library Weka [31].

DLBCL Classifier Generation: Classifier Ranking
The Survival library for R was used to analyze right-censored

survival data, overall survival was estimated using the Kaplan-

Meier method, modeled with Cox Proportional Hazards tech-

nique [32]. There proved to be poor correlation between a

classifiers cross-validation score and the separation of its classes in

survival curves, with many classifiers having optimistic cross-

validations scores (Table S3 and Table 1). Thus classifiers were

ranked only according to separation of survival (for ABC/GCB).

DLBCL Classifier Generation: Linear Predictor Score (LPS)
Classifier

An implementation of the LPS classifier was generated that can

process the Weka ARFF file format [2]. This allowed a direct

DLBCL Comparative Gene Expression Analysis
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comparison of an existing cell of origin classifier against the Weka

machine learning tools.

DLBCL Classifier Generation: Classifiers (Figure 1: step 1
and 2)

Using the Wright et al data as training set, 12 machine learning

tools (BayesNet, BFTree, FT, J48, LMT, NBTree, RandomTree,

REPTree, RF100, RF200, SimpleCart and SMO) were trained

using the Weka package (Weka version 3.6.5) [31]. For all tools

default settings were used except the random forests (RF100/

RF200), which were set to 100/200 trees respectively. In addition,

4 different LPS classifiers were ‘‘trained’’ on the Wright data

(LPS0.9MaxAvgMerge, LPS0.9MedianMerge, LPS0.8Median-

Merge and LPS0.8MaxAvgMerge; relating to the LPS p-value

cut-off (0.8/0.9) and the method of merging probes for classifier

genes (MedianMerge/MaxAvgMerge see Data preparation)).

The Wright et al. data set consists of expression data for 240

patients annotated as one of three classes: ABC (n = 73; 30.4%),

GCB (n = 115; 47.9%) or Type-III (n = 52; 21.7%). The trained

Weka classifiers output predictions for each sample analyzed

consisting of p-values for each of the 3 classes, the class with the

largest p-value giving the predicted class. The LPS classifiers assign

everything with a confidence greater than a p-value threshold

(0.8/0.9) to ABC/GCB and everything below the threshold to

Type-III/Unclassified. The predicted classes were used to rank the

classifiers (see Classifier Ranking).

The 6 best individual Weka classifiers (LMT, SMO, BayesNet,

J48, RF100, RF200) were combined using the Weka Vote scheme

with the average of probabilities combination rule. Each classifier

was removed in turn to generate all possible 5-tool classifiers (5N).

This process was iterated with the best meta-classifier at each N

progressing to the next level (e.g. best 5N R all possible 4N). As

with the individual classifiers these were analyzed by comparing

the survival of their ABC/GCB assigned cases.

DLBCL Classifier Generation: Generation of Classifier
Gene Sets (Figure 1: step 3)

The data sets GSE10846 (split into CHOP/R-CHOP),

GSE4475 and GSE19246 were used to generate additional lists

of classifier genes from 3 sources using the published classifications

(ABC, GCB and Type-III/unclassified): (1) the 20 Wright genes

were ranked using the Weka CfsSubsetEval method (search

method: GreedyStepwise). (2) the 185 genes from Dave et al.

present on the 3 platforms were ranked using CfsSubsetEval

(search method: GreedyStepwise) [9]. (3) all genes on each

platform were ranked using the Weka InfoGainAttributeEval

(search method: Ranker). The top 1000 from each data set were

then ranked again using the more computationally expensive

CfsSubsetEval method. In order to find the most consistently

informative genes across all 4 data sets, the final rank was

generated by averaging the ranks across the data sets. Using these

ranks the following lists were generated: Wright 5 and 10; Dave

10, 20, 50, 100 and 185; All 10, 20, 50, 100 and 185 (Table S2).

Identification of Differentially Expressed Genes (Figure 1:
step 5)

Using the classes assigned by the best classifier

(LMT_J48_RF100_SMO) a linear model was fitted to the gene

expression data using the R Limma package [30]. Differentially

expressed genes between the classes were gauged using the Limma

Table 1. Assessment of individual machine-learning tool classifiers.

HMDS (GSE32918) GSE10846 R-CHOP GSE10846 CHOP

Classifier
Average
Rank

Hazard
Ratio

95% Conf
Intervals P-Val

Hazard
Ratio

95% Conf
Intervals P-Val

Hazard
Ratio

95% Conf
Intervals P-Val

SMO 3.7 0.56 0.32 1.01 0.052 0.25 0.14 0.46 8.07E-06 0.36 0.23 0.55 2.06E-06

LMT 12.0 0.57 0.33 0.98 0.043 0.28 0.15 0.50 2.35E-05 0.40 0.26 0.61 3.17E-05

BayesNet 14.3 0.67 0.38 1.17 0.155 0.24 0.13 0.45 9.18E-06 0.41 0.26 0.64 7.47E-05

J48 15.0 0.68 0.40 1.17 0.162 0.28 0.15 0.50 1.58E-05 0.41 0.27 0.63 4.29E-05

RF100 16.3 0.85 0.48 1.48 0.561 0.24 0.13 0.44 3.34E-06 0.41 0.27 0.63 5.06E-05

RF200 18.3 0.78 0.45 1.35 0.379 0.24 0.13 0.44 3.79E-06 0.44 0.29 0.68 1.81E-04

LPS 0.9 MaxAvgMerge 21.3 0.68 0.36 1.27 0.226 0.31 0.17 0.55 8.49E-05 0.40 0.26 0.63 7.65E-05

LPS 0.9 MedianMerge 21.7 0.64 0.34 1.20 0.162 0.32 0.17 0.58 1.77E-04 0.42 0.27 0.65 1.19E-04

LPS 0.8 MedianMerge 22.3 0.73 0.41 1.28 0.267 0.31 0.17 0.54 5.60E-05 0.44 0.29 0.67 1.17E-04

LPS 0.8 MaxAvgMerge 23.7 0.71 0.40 1.25 0.235 0.33 0.19 0.58 1.04E-04 0.43 0.28 0.66 1.20E-04

REPTree 24.7 1.51 0.85 2.69 0.164 0.43 0.24 0.77 4.64E-03 0.47 0.31 0.71 4.03E-04

FT 27.7 0.77 0.41 1.46 0.426 0.33 0.18 0.61 3.92E-04 0.48 0.30 0.76 1.92E-03

BFTree 28.7 0.91 0.51 1.64 0.758 0.40 0.22 0.72 2.33E-03 0.50 0.32 0.76 1.38E-03

NBTree 28.7 0.96 0.50 1.88 0.915 0.29 0.15 0.52 5.61E-05 0.57 0.37 0.89 1.30E-02

RandomTree 28.7 0.97 0.55 1.72 0.914 0.27 0.13 0.57 5.58E-04 0.44 0.28 0.70 4.97E-04

SimpleCart 30.3 0.93 0.52 1.67 0.804 0.48 0.27 0.85 1.27E-02 0.56 0.36 0.86 8.46E-03

Results obtained with individual machine-learning tools, trained on the Wright et al. data set and using 20 classifier genes are shown. Survival separation between ABC
and GCB classes for the data sets GSE32918, and GSE10846 divided into CHOP and R-CHOP components, was used for assessment. Hazard Ratios were generated for
GCB relative to ABC as baseline. The classifiers were ordered by their average rank across the data sets; with rank determined by the p-value of the ABC/GCB separation.
The LPS classifier was used for comparison with either a 0.8 or 0.9 p-value cut-off, with either MaxAvgMerge or MedianMerge methods of combining probes (see
Materials and Methods). The Classifier Identity, Hazard Ratio (GCB vs ABC as baseline), 95% confidence interval of the Hazard Ratio, and the resulting p-value for survival
separation are shown.
doi:10.1371/journal.pone.0055895.t001
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empirical Bayes statistics module, adjusting for multiple testing

using Benjamini & Hochberg correction. These lists of differen-

tially expressed genes were then used for downstream analysis.

Enrichment Analysis
Enrichment of genes against gene-lists was assessed using a

hypergeometric test, where the draw is the significantly differen-

tially expressed genes, the successes are the signature genes and the

population is the genes present on the platform. To avoid any bias

the genes used for training the machine-learning tool were

removed from the signatures before assessment. For each

assessment Z-scores were generated by comparing against random

distributions.

Comparison of Dataset Classes
The ABC/GCB classification of the 11 DLBCL datasets

(GSE10846 split in 2) was assessed by comparing the overlap

between the up-regulated genes in ABC/GCB for each dataset

against all others. The genes that were significantly up-regulated

(adjusted p-value ,0.05) in ABC/GCB were defined in each data

set, creating a set of gene lists linked to either ABC or GCB class.

Enrichment analysis (described above) was then carried out for

differentially expressed genes from each dataset individually

against the set of gene lists defined for all other data sets for

each class (e.g. ABC genes data set 1 vs ABC genes data set 2,

ABC genes data set 1 vs ABC genes data set 3 etc.) (Z-scores from

random distributions of 107 samples). The Z-scores were then

averaged between the two directions of analysis (data set 1 vs data

set 2 and data set 2 vs data set 1) and also between ABC/GCB.

Enrichment of Gene Sets
A data set of 12,323 gene signatures was created by merging

signatures downloaded from http://Lymphochip.nih.gov/

signaturedb/(SignatureDB), http://www.broadinstitute.org/gsea/

msigdb/index.jsp MSigDB V3.1 (MSigDB C1–C6), http://

compbio.dfci.harvard.edu/genesigdb/Gene Signature Datbase

V4 (GeneSigDB) and 3 individual papers [10,27,33,34,35,36].

Signature enrichment analysis was carried out for the signifi-

cantly differentially expressed genes (adjusted p-value ,0.05). The

contrast of ABC and GCB classes yields two lists, those up-

regulated in ABC or GCB, which were analyzed separately.

Enrichment of the signatures was assessed as described above.

Figures
Heat-maps were generated using the MEV program from the

TM4 package of microarray tools [37], and chromosome regions

were drawn using the R libraries ggbio and ggplot2 [38,39].

Implementation of Automatic Classifier
A graphical user interface (GUI) driven implementation of the

DAC was created to simplify the classification process for users.

The code behind the GUI was written in Python (http://www.

python.org/) while the GUI was generated using the WxPython

(http://www.wxpython.org/) toolkit.

The classifier takes as input a tab separated list of raw gene/

probe expression values. The file is quantile normalised (normal-

izeQuantiles function of R Limma package) and then if there are

multiple probes for a gene these are merged by taking their

median value. Finally, Z-scores are generated for each gene across

the samples [30]. The Z-scores for the 20 classifier genes (or as

many as exist on the platform) are used to produce an attribute-

relation file format (ARFF) file for analysis by Weka [31]. A Weka

classifier is generated using the Wright et al. data set with the same

subset of classifier genes. Finally, the resulting Weka output is post-

processed to append sample names and tidy up the format for

easier analysis.

The automatic classifier allows a background file (.30 samples

of random class generated on the equivalent platform) to be used

for classification of individual samples. The program finds the

genes shared between the two files, though ideally the two files

should be from the exact same platform. The file to be classified (1

or more samples) is split into individual samples and each of these

is separately appended to the background file, followed by quantile

normalization and generation of Z-scores. Once this process

finishes for all individual samples the resulting Z-scores are merged

and used to generate an ARFF file, which is then processed as

above.

The classifier and manual is available from: http://www.

bioinformatics.leeds.ac.uk/̃ bgy7mc/DAC/.

Results

Implementation of a Transferable Classifier: Overview
Our goal was to establish an implementation of the cell of origin

classifier that was robust against variation in microarray platform

and fresh or FFPE sample type. The cell of origin classifier is

distinguished by two linked characteristics: (1) the ability to define

two primary classes of DLBCL, ABC and GCB, with significant

differences in outcome when treated with the combination

chemotherapy regimen CHOP, (cyclophosphamide, hydroxydau-

norubicin, vincristine (Oncovin), and prednisolone), alone or

including rituximab anti-CD20 monoclonal antibody therapy (R-

CHOP), and (2) the fact that these classes are linked to extended

patterns of gene expression reflecting underlying molecular

pathogenesis. Our assessment of classifier performance was

therefore based first on the ability to define ABC and GCB

classes with differences in outcome, using overall survival, and

second on the demonstration that the defined classes of DLBCL

across multiple data sets showed similar overall patterns of gene

expression and appropriate segregation of non-classifier genes and

molecular signatures.

In addition to the data set generated on a custom Lymphochip

spotted cDNA microarray, on which the original formulation of

the cell of origin classification by Wright et al. was based [2]

(referred to as Wright et al. data), we identified 9 additional data

sets from the literature and the Gene Expression Omnibus (GEO,

referred to by Gene Expression Omnibus accession number where

applicable, Table S1): GSE10846, GSE12195, GSE19246,

GSE22470, GSE22895, GSE31312, GSE34171, GSE4475, and

the data of Monti et al. [5,10,11,12,21,23,24,25,26]. A batch effect

is evident in the largest data set with available outcome data,

GSE10846, between samples derived from CHOP and R-CHOP

treatment, and these two parts of the data set were therefore

treated separately. In addition we generated a data set in-house,

GSE32918, from FFPE material derived from diagnostic biopsies

of a population-based cohort treated with R-CHOP; the

epidemiology, treatment and outcome data of which are described

elsewhere [22].

We used two data sets (GSE32918, and GSE10846 divided into

CHOP and R-CHOP treated groups) for classifier development.

At each stage classifiers were ranked by the survival separation

between the assigned ABC/GCB classes (see Classifier ranking in

methods). We proceeded through the following steps (Figure 1): (1)

we assessed the performance of 12 individual machine-learning

classifiers, trained on the Wright et al. data and using 20 Wright

classifier genes, the same data was analyzed using an in-house

implementation of the LPS classifier [2], and results were

DLBCL Comparative Gene Expression Analysis
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compared to the GEO published classes; (2) we assessed the value

of combining tools starting with the best 6 and removing each tool

individually, finding the best combination of 5 classifiers, and

again removing each remaining tool, and performing this cycle

iteratively; (3) we assessed the impact of training on an alternate

data set and different combinations of classifier genes (n = 52185)

using the best meta-classifier (from step 2) or the LPS classifier of

Wright et al. [2]; (4) the resulting selected classifier was then

assessed using two additional, unseen, data sets with sufficient

samples and linked outcome data (GSE4475 and Monti et al.), as

these data sets were not used to generate the meta-classifier they

provide an unbiased assessment of performance [10,11]; (5) the

remaining data sets were classified and used to assess appropriate

segregation of gene expression with class across all 10 data sets,

representing 2030 samples. Finally the equivalently classified data

sets were used to establish meta-profiles and assess enrichment of

molecular signatures.

Machine-learning Tool Comparison
Twenty of the 27 genes, described by Wright et al. [2], are

represented both on the Illumina HumanRef-8 WG-DASL v3.0

and Affymetrix Human Genome U133 Plus 2.0 platforms used to

generate GSE32918 and GSE10846 respectively (3 Refseq genes

used by Wright et al. are not included on the Illumina platform,

and the remaining 4 features have not been confirmed as Refseq

genes and are not present on either platform) (Table S2). We first

tested the ability of machine-learning tools to use these 20 genes to

generate cell of origin classifiers, using the Wright et al. data as a

training set, by 10-fold cross-validation (Table S3). We then

compared survival separations, using overall survival, for the ABC

and GCB classes generated by these classifiers in the data sets

GSE32918 (FFPE) and GSE10846 (fresh frozen) divided into

CHOP and R-CHOP subsets. The LPS classifier defined

prognostic groups in the GSE10846 data sets (R-CHOP compo-

nent, GCB vs ABC Hazard Ratio = 0.31, p-value = 8.49E-05), but

failed to define groups with significant difference in survival in the

FFPE derived data GSE32918 (GCB vs ABC Hazard Ra-

tio = 0.64, p-value = 0.1618). In both data sets the LPS classifier

was outperformed for survival separation by several machine-

learning tools (Table 1 and Table S3). For GSE10846 published

assignments generated by a classifier using 183 genes, were also

available. While these classification choices (GEO Class) provided

better survival separation than those made by LPS (e.g. R-CHOP

component, GCB vs ABC Hazard Ratio = 0.297, p-value = 4.42E-

05), they generated less significant survival separation than

classification choices made by several of the individual machine-

Figure 1. Overview of classifier generation, testing and downstream analysis. Colored boxes (gray/green) depict different training data
sets. Step 1- assessment of individual machine-learning tools vs LPS; Step 2– assessment of machine-learning tool combinations; Step 3–assessment
of classifier gene sets, training on GSE10846_R-CHOP, and testing on previously seen and unseen data sets: Step 4- further assessment on unseen
data sets; Step 5– classification of additional data sets, evaluation of differential gene expression in all-by-all comparison, downstream analysis with
meta-profiles and enrichment of molecular signatures.
doi:10.1371/journal.pone.0055895.g001
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learning tools (e.g. R-CHOP component RF100 classifier, GCB vs

ABC Hazard Ratio = 0.238, p-value = 3.34E-06).

Machine-learning Tool Combinations
Machine-learning tools can be combined to provide the

potential advantage of balanced voting between classifiers

generated from individual tools. We again used survival separation

between assigned ABC and GCB classes as a metric to test the

performance of balanced voting between classifiers. To assess such

meta-classifiers we combined the best 6 individual machine-

learning tools (Table S3) (LMT, SMO, BayesNet, J48, RF100,

RF200) then removed each contributing tool individually and

selected the best 5-tool classifier, then repeated the cycle iteratively

to arrive at 4-tool, 3-tool and 2-tool meta-classifiers. While

balanced voting by 6 machine-learning tools did not improve

outcome separation, balanced voting by fewer classifiers did

improve survival separation of classes relative to most individual

machine-learning tools (Table 2).

To arrive at a single classifier we considered both the rank of all

classifiers assessed across the data sets and the percentage of cases

assigned to ABC or GCB class, since improved segregation of

outcome between ABC and GCB cases could come at the expense

of fewer cases assigned to one or other of these classes, and

increased assignment to Type-III/unclassified. Only three classi-

fiers, LMT_J48_RF100_SMO, RF100_SMO, and SMO, were

consistently ranked in the top 25% of all classifiers tested in every

data set (8 out of 31 or better). Amongst these

LMT_J48_RF100_SMO gave the lowest average assignment to

the Type-III/unclassified subset (17%), and was therefore selected

for further analysis (Table S4). This balanced voting classifier was

also distinguished from SMO alone, by the ability to assign a wide

range of classification confidences, a characteristic that proved to

be of relevance in downstream analyses.

Classifier Gene and Training Set Choices
A notable feature amongst published applications of the cell of

origin classification is the variable number of genes used for

classifier implementation (15 to 183) [5,11]. This feature of the

literature suggests that classifier gene number is not a critical

determinant of performance. Furthermore machine-learning tools

using 20 genes outperformed prior classification choices made

using 183 genes in the separation of survival for the GSE10846

data set (Table S4). To explore this issue in more detail we directly

assessed the performance of either LMT_J48_RF100_SMO or

LPS using a range of different classifier gene numbers. Using the

Weka CfsSubsetEval attribute selection method, we selected 10

and 5 classifier genes from the original 20 Wright genes (Wright20,

Wright10, Wright5 in Table3). Similarly using the GEO

classifications for GSE4475, GSE10846 and GSE19246 we

selected the best genes, either from 185 derived from Dave et al.

(Dave185 to Dave10 in Table 3) or using all present on an array

(All185 to All10 in Table 3). The average rank across the data sets

was used to give the most consistently informative classifier genes,

generating sets of classifier genes of size: 185, 100, 50, 20 or 10.

For this analysis we used the GSE10846 data set, which was

generated on the Affymetrix Human Genome U133 Plus 2.0 and

contained a more comprehensive representation of genes than the

Wright et al. data generated on the Lymphochip platform. We

trained on the R-CHOP treated component and tested on the

CHOP treated component. Increasing the number of classifier

genes did not improve outcome separation for either

LMT_J48_RF100_SMO or LPS classifiers (Table 3). We also

tested the resulting classifiers on GSE32918. This data set was best

classified when using 20 classifier genes and the Wright et al. data

set for training, classifiers trained on the R-CHOP component of

GSE108240 data performed poorly regardless of classifier gene

number (Table 3).

Testing on Additional Data Sets
We next tested the performance of the LMT_J48_RF100_SMO

meta-classifier on two additional data sets, GSE4475 and Monti

et al., for which outcome data was available [10,11]. First in order

to further evaluate the impact of training data set and classifier

gene number we used the GSE4475 data set. The array platform

on which GSE4475 was generated lacked probes for some

classifier genes with only 16 of the 20 Wright classifier genes

represented, thus gene numbers used differed from those available

in GSE10846 or GSE32918. Nonetheless in this data set

increasing classifier gene number again had no beneficial impact

on survival separation for either LMT_J48_RF100_SMO or LPS

classifiers (Table 4A). Training data set had limited impact on the

performance of the classifier in evaluating GSE4475, giving p-

values of 0.004 or 0.003 whether trained on Wright or GSE10846

R-CHOP data, both outperforming the significance of survival

separation gained using the published classes for this data set (p-

value 0.0108).

In contrast to GSE4475, the Monti et al. data set proved

difficult to separate into classes with significant differences in

survival when using probe selection and normalization parameters

effective on other data sets. However using the same parameters

for probe selection and normalization as reported by Monti et al.

[10], regenerated significant survival separation using the

LMT_J48_RF100_SMO meta-classifier, although in this instance

this remained inferior to the published classes (Table 4B). The

reason for this data set specific normalization and probe selection

issue is not apparent, but following the procedures of Monti et al.

[10], allows effective use of the data. Furthermore downstream

analysis of differential gene expression further verified appropriate

segregation of cases in this data set.

We conclude that a cell of origin classifier using balanced voting

of LMT_J48_RF100_SMO machine-learning tools, using 20

classifier genes is applicable to data sets generated on multiple

platform types, separating DLBCL into ABC and GCB classes

with significant survival differences. Training on the Wright et al.

data set provides better performance on the FFPE data generated

on the Illumina platform, and performs well on data sets derived

from fresh material generated on Affymetrix platforms. We

therefore selected the combination of balanced voting of

LMT_J48_RF100_SMO machine-learning tools, 20 classifier

genes and training on the Wright et al. data for downstream

analysis.

Consistent Classification and Classification Confidence
The comparison of survival separation for ABC and GCB

classes by different classifiers did not assess the effects of classifier

choice on a case-by-case basis. To assess this we examined the

classification choice for each case, for every classifier tested in all 3

data sets used for selecting classifiers. The resulting maps of

classification choice illustrate an important point (Figure 2, Figure

S1 and Table S5). A significant proportion of samples in each data

set is uniformly classified by the majority of classifier implemen-

tations and thus possesses a consistent class. In contrast other

samples are particularly labile and show divergent classification

choices with different algorithms, classifier gene numbers or

training data sets. These labile samples contribute to the

differences in survival separation observed for different classifier

algorithms. These results illustrate that in all data sets a ‘‘molecular
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gray zone’’ exists, and the classification of cases falling into this

gray zone is susceptible to classifier choice.

The ABC and GCB classes assigned by balanced voting

between LMT_J48_RF100_SMO were characterized by more

significant survival separation than published classification choices

for most data sets. Assessing individual case-by-case class

assignments, this was not attributable to an increase in the

percentage of Type-III class. Across both components of the

GSE10846 data set there was little difference in the number of

Type-III cases assigned: R-CHOP - 15%

LMT_J48_RF100_SMO vs 14% GEO-published, CHOP –15%

LMT_J48_RF100_SMO vs 17% GEO-published. The improve-

ment in outcome separation was thus due to the selection of cases

for inclusion in the ABC or GCB groups. In regard to this,

Table 3. Effect of training data set and classifier gene number on survival separation.

GSE10846 CHOP GSE32918

Classifier Hazard Ratio
95% Conf
Intervals P-Val Hazard Ratio

95% Conf
Intervals P-Val

GEO Published Class 0.41 0.27 0.64 6.43E-05 – – – –

LMT_J48_RF100_SMO Classified

Train Wright

Wright20 0.37 0.24 0.57 6.38E-06 0.56 0.33 0.97 0.037

Train GSE10846 R-CHOP

Wright20 0.42 0.27 0.64 4.98E-05 0.86 0.51 1.46 0.573

Wright10 0.49 0.32 0.75 1.04E-03 0.87 0.52 1.46 0.594

Wright5 0.47 0.31 0.74 9.15E-04 0.87 0.51 1.47 0.598

Dave185 0.49 0.33 0.75 7.96E-04 0.78 0.46 1.34 0.367

Dave100 0.46 0.30 0.70 3.69E-04 0.97 0.56 1.68 0.919

Dave50 0.49 0.32 0.73 5.67E-04 0.92 0.53 1.58 0.761

Dave20 0.50 0.33 0.76 1.09E-03 1.17 0.68 1.99 0.572

Dave10 0.46 0.31 0.71 3.29E-04 0.93 0.55 1.58 0.785

All185 0.49 0.33 0.73 5.67E-04 0.92 0.54 1.55 0.748

All100 0.45 0.29 0.70 3.05E-04 0.90 0.52 1.56 0.706

All50 0.45 0.29 0.69 2.22E-04 1.03 0.59 1.78 0.918

All20 0.45 0.29 0.68 1.87E-04 0.86 0.50 1.49 0.602

All10 0.44 0.29 0.67 1.42E-04 0.88 0.52 1.48 0.619

LPS Classified

Train Wright

Wright20 0.42 0.27 0.65 1.19E-04 0.64 0.34 1.20 0.162

Train GSE10846 R-CHOP

Wright20 0.43 0.28 0.66 1.00E-04 0.79 0.46 1.36 0.392

Wright10 0.40 0.26 0.62 4.37E-05 0.94 0.53 1.67 0.826

Wright5 0.45 0.28 0.70 4.60E-04 0.89 0.51 1.53 0.663

Dave185 0.52 0.34 0.80 2.59E-03 0.81 0.46 1.43 0.475

Dave100 0.51 0.33 0.77 1.47E-03 0.81 0.46 1.42 0.457

Dave50 0.51 0.33 0.78 1.74E-03 0.84 0.48 1.45 0.526

Dave20 0.45 0.29 0.70 3.90E-04 1.05 0.59 1.86 0.869

Dave10 0.46 0.30 0.71 5.08E-04 1.00 0.57 1.77 0.994

All185 0.44 0.28 0.67 1.29E-04 0.83 0.49 1.42 0.496

All100 0.47 0.31 0.71 3.44E-04 0.87 0.51 1.50 0.622

All50 0.46 0.31 0.70 3.01E-04 0.90 0.52 1.53 0.687

All20 0.45 0.29 0.68 2.12E-04 0.85 0.50 1.45 0.544

All10 0.49 0.33 0.74 7.50E-04 0.78 0.44 1.36 0.375

The results obtained with classifiers trained on the Wright et al. data using 20 classifier genes were compared against those obtained with classifiers trained on the
GSE10846 R-CHOP component using either the same 20 classifier genes, or a range of different classifier gene selections. Shown are the results for classifying the
GSE10846 CHOP data (left) and GSE32918 (right). In each table the survival separation observed with the published GEO classes (top) was compared to the meta-
classifier (middle) and the LPS (bottom). The Classifier identity, Hazard Ratio (GCB vs ABC as baseline), 95% confidence interval of the Hazard Ratio, and the resulting p-
value for survival separation are shown. In the meta-classifier and LPS portions of the tables the results are shown for training on the Wright et al. data set (20 classifier
genes) followed by the results for classifiers trained on the GSE10846 R-CHOP data set with different sets of classifier genes (Wright20-Wright5, Dave185-Dave10, All185-
All10).
doi:10.1371/journal.pone.0055895.t003
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LMT_J48_RF100_SMO assigned more cases to the GCB

category (52% vs 46% and 51% vs 42% for R-CHOP and

CHOP subsets) and fewer cases to the ABC category (33% vs 40%

and 34% vs 41% for R-CHOP and CHOP subsets). Since the

assignments made by LMT_J48_RF100_SMO were associated

with more significant separation in survival between ABC and

GCB classes, and this is the primary clinical characteristic of the

cell of origin classification [1], we reasoned that this reflected

improved performance and more appropriate class-assignment.

The concept of a ‘‘molecular gray zone’’ was inherent in the

original formulation of the cell of origin classifier where cases that

fall below a defined confidence threshold for either ABC or GCB

class were assigned to the Type-III/unclassified category [1,5]. A

feature of balanced voting between classifier algorithms was that a

wide range of classification confidences for ABC, GCB and Type-

III classes was assigned. The relationship of classifier gene

expression to classifier confidence is illustrated in heat-maps of

classifier genes ranked by confidence score (Figure 3). These heat-

maps illustrate the weak expression of both ABC and GCB

classifier genes in the Type-III/unclassified cases, and the range of

classifier gene expression patterns associated with increasing

classification confidence.

The balanced voting classifier provides a confidence for

assignment to ABC, GCB or Type-III/unclassified and cases are

assigned to the class with highest confidence, without a hard

threshold. To assess whether classifier confidence assigned by the

balanced voting classifier had clinical significance we examined the

outcome of ABC and GCB cases by classifier confidence across all

4 data sets using hard confidence thresholds in 0.1 steps

incrementing from 0.5. The results demonstrated that classifier

confidence was generally associated with increasing differences in

survival separation, although not in a linear fashion, since in some

instances the Hazard Ratio of GCB vs ABC class was lowest for a

0.7 rather than 0.8 threshold. This was potentially attributable to

the small number of highest confidence cases in any individual

data set. Overall, high confidence ABC-DLBCL had a poor

outcome (range of Hazard Ratios for 5 data sets 0.23 to 0.36 Table

S6). However using a hard confidence threshold above 0.5 for

ABC or GCB class-assignment generated an increase in Type-III/

unclassified in all data sets. Since the use of the highest confidence

score, without hard threshold, for class-assignment outperformed

published classifications assignments in most data sets, while

assigning equivalent numbers to the Type-III/unclassified cate-

gory, this approach was maintained.

A Downloadable Classifier Implementation
Routine implementation of the cell of origin classification in a

clinical setting requires individual cases to be assigned to ABC,

GCB or Type-III/unclassified class as they occur, rather than

classification of a large collection of cases as embodied in the data

sets used in this study. We therefore developed a downloadable

application, featuring a simple graphical user interface, which

employs the LMT_J48_RF100_SMO balanced voting approach

to classify either a large collection (as in this study) or individual

Table 4. Effect of data set and classifier gene number on
survival.

A

GSE4475

Classifier Hazard Ratio
95% Conf
Intervals P-Val

GEO Published Classes 0.3622 0.1660 0.7907 0.011

LMT_J48_RF100_SMO Classified

Train Wright

Wright16 0.38 0.20 0.73 0.004

Train GSE10846 R-CHOP

Wright16 0.35 0.17 0.70 0.003

Dave185 0.39 0.20 0.75 0.005

Dave100 0.42 0.22 0.81 0.010

Dave50 0.44 0.23 0.83 0.011

Dave20 0.46 0.24 0.87 0.017

Dave10 0.37 0.19 0.73 0.004

All185 (137 Actual) 0.45 0.23 0.89 0.022

All100 (69 Actual) 0.43 0.22 0.87 0.019

All50 (35 Actual) 0.37 0.18 0.76 0.007

All20 (15 Actual) 0.45 0.23 0.90 0.024

All10 (7 Actual) 0.38 0.20 0.73 0.004

LPS Classified

Train Wright

Wright16 0.36 0.17 0.76 0.007

Train GSE10846 R-CHOP

Wright16 0.35 0.17 0.73 0.005

Dave185 0.46 0.23 0.93 0.031

Dave100 0.46 0.23 0.93 0.031

Dave50 0.46 0.22 0.93 0.030

Dave20 0.44 0.22 0.89 0.023

Dave10 0.35 0.17 0.72 0.004

All185 (137 Actual) 0.44 0.21 0.89 0.023

All100 (69 Actual) 0.43 0.22 0.85 0.016

All50 (35 Actual) 0.36 0.18 0.73 0.005

All20 (15 Actual) 0.46 0.24 0.89 0.021

All10 (7 Actual) 0.31 0.15 0.62 0.001

B

Monti et al data

Classifier Hazard Ratio 95% Conf
Intervals

P-Val

Monti Class 0.34 0.18 0.65 1.09E-03

LMT_J48_RF100_SMO 0.47 0.26 0.86 1.51E-02

LPS 0.9 MaxAvgMerge 0.49 0.26 0.93 2.95E-02

The effect of training data set and classifier gene selection was assessed on a
previously unseen data set GSE4475 (A). Survival separation observed with the
published GEO classes (top) was compared to the meta-classifier (middle) and
the LPS classifier (bottom). The Hazard Ratio (GCB vs ABC as baseline), 95%
confidence interval of the Hazard Ratio, and the resulting p-value for survival
separation are shown. For the meta-classifier and LPS the results for training on
the Wright et al. data set (20 classifier genes) are shown, followed by the results
for classifiers trained on the GSE10846 R-CHOP data set with different sets of

classifier genes (Wright20-Wright5, Dave185-Dave10, All185-All10). (B) The
classifiers were also tested on Monti et al. data requiring MaxAvgMerge data
processing (see Materials and Methods) to observe significant differences in
survival. Results are shown for the LMT_J48_RF100_SMO and LPS (best shown)
classifiers trained on Wright et al. data and using 20 classifier genes.
doi:10.1371/journal.pone.0055895.t004
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samples, given a background data-set from the same platform. We

refer to this application as the ‘‘Diffuse Large B-cell Lymphoma

Automatic Classifier’’ (DAC), and use this designation for the

remainder of this manuscript. This application offers other groups

the opportunity to directly compare their own classifications to

those generated by DAC in this study. The classifier, user guide,

and example data can be downloaded from: http://www.

bioinformatics.leeds.ac.uk/̃ bgy7mc/DAC/.

Gene Segregation Confirms Robust Classification
To verify that DAC represented a fully transferrable imple-

mentation we evaluated additional DLBCL data sets imported

from GEO (Table S1). Retaining GSE10846 sub-divided by

CHOP/R-CHOP treatment to account for batch effect, this

increased the number of independently assessed data sets to 11.

Together these represented 2030 DLBCL cases [5,14,21,24,40].

Directly linked outcome information was not available for the

additional data sets in GEO, and ultimately the primary goal of

the cell of origin classifier is to co-segregate cases with similar

overall patterns of gene expression. We therefore used the

consistency with which genes were differentially expressed

between ABC and GCB class to further assess the performance

of DAC.

We identified differentially expressed genes between ABC and

GCB class defined by DAC for each data set. We refer to these

differentially expressed genes, as ‘‘class-associated’’. We performed

a pairwise comparison of the resulting lists of class-associated genes

Figure 2. Consistent classification and classification confidence. The classes assigned by 31 tested classifiers for the GSE10846 CHOP data set
are shown along with published classes in GEO and those assigned by the LPS classifier (GCB = blue, Type-III = green, and ABC = yellow). Samples are
vertically ordered by class assigned by the meta-classifier LMT_J48_RF100_SMO (later referred to as ‘‘DAC’’); this meta-classifier assigns confidence
scores for each class, and the class with highest confidence is selected for each sample. Within each class samples are ranked by classification
confidence. At either extreme, samples are ordered from high to low confidence GCB, and from low to high confidence ABC. In the Type-III category
high confidence cases are shown centrally, flanked by lower confidence Type-III cases. On either side the latter are ordered by GCB or ABC signal
(identified by GCB or ABC being the second highest classification confidence). The first column (labelled with black bar and red 5) identifies the
classes assigned by LMT_J48_RF100_SMO, followed by results obtained for 30 other machine-learning classifiers, with the classes assigned for each
case in the appropriate color. Classifiers are ranked (number above each column) from left to right according to the significance of survival separation
between assigned ABC and GCB classes; note that LMT_J48_RF100_SMO was selected as the reference based on overall performance across multiple
data sets, and in this data set is ranked 5th (shown in red) for survival separation. On the far right the published class assignments linked in GEO to the
data set (GEO class, orange bar) and classes assigned by the LPS classifier using either a 0.8 or 0.9 p-value threshold classes are shown (dark gray bars
respectively).
doi:10.1371/journal.pone.0055895.g002

Figure 3. Heat-maps of classifier gene expression for data-sets used in classifier generation and testing. The data set is indicated on the
left above the relevant heat-map. The LMT_J48_RF100_SMO (later referred to as ‘‘DAC’’) assigned class is shown by the ‘‘Class’’ bar at the top of each
heat-map; blue = GCB, green = Type-III and yellow = ABC. The classification confidence is shown in the ‘‘Classifier Confidence’’ bar under the ‘‘Class’’
bar (red to blue = high to low-confidence). The classifier genes are ordered vertically for each heat-map as shown in the expanded box, and the class-
association of the genes is indicated by the vertical colored bar (yellow = ABC and blue = GCB). The expression values for each sample are shown as Z-
scores using a blue to red color scale for low to high expression (22 to +2).
doi:10.1371/journal.pone.0055895.g003
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for all data set combinations, using a hypergeometric test

(Figure 4A). For each pairwise comparison 107 random gene lists

of equivalent size were used to establish the expected distribution

against which the observed overlaps were assessed. This analysis

showed that differentially expressed genes associated with ABC

and GCB class defined by DAC were very similar for each data

set. Two FFPE derived data sets, GSE32918 and GSE31312, are

included in this analysis [22,23]. GSE31312, derived from an

Affymetrix platform, showed amongst the highest concordances

with GSE10846 generated from fresh frozen material on the same

platform. While the data derived from FFPE material on an

Illumina platform (HumanRef-8 V3) [22], showed lower concor-

dance, the overall similarity is still highly significant (Figure 4B).

The observed variation in overlap is not surprising given both the

difference in case series and platform type. Thus DAC generates

comparable segregation of gene expression for ABC and GCB

DLBCL in data sets derived from different platform types, case

series, and operators.

Establishing DLBCL Meta-profiles
We next proceeded to a more refined comparative analysis of

gene expression, assessing consistent associations of individual

genes with the primary cell of origin classes, ABC and GCB

DLBCL. We compared the lists of class-associated genes for all 11

data sets, maintaining the sub-division of GSE10846 by CHOP/

R-CHOP treatment, ranking genes first by the number of data sets

in which the genes were class-associated and second by the median

normalized fold change (Table 5 and Table S7). A threshold of 6

or more data sets was chosen to define lists of genes that are

differentially expressed and class-associated in at least half the data

sets. This provides a critical additional variable, the consistency of

class-association, which differentiates these lists from prior

assessments made on individual data sets. We refer to these lists

as ‘‘meta-profiles’’, which are composed of 414 genes for ABC-

DLBCL and 415 for GCB-DLBCL.

Excluded Wright classifier genes (Tables S2 and S7) provided an

initial means for assessment of these meta-profiles [2]. Of seven

Wright classifier genes that were not represented on the Illumina

HumanRef-8 WG-DASL v3.0 array, three had RefSeq IDs, and

were included on other platforms. MYBL1, a GCB classifier gene,

was represented in 10 data sets, in all 10 data sets it was strongly

GCB class-associated, and ranked 21st in the meta-profile.

TBC1D27, an ABC classifier gene, was represented in 8 data sets;

in all of these it was strongly ABC class-associated and ranked

103rd in the ABC meta-profile. The third excluded classifier gene

IGHM was also represented on 10 data sets, and while class-

associated in 7 of these data sets and hence ranked 172nd, it was

the single most strongly ABC-DLBCL associated gene when

considering median normalized fold-change alone. Thus the

appropriate class-segregation of these excluded Wright classifier

genes, also confirms the internal consistency of classification with

DAC.

Meta-profiles Identify Highly Class-associated
Transcription Factors

The meta-profiles are informed by consistency of expression

across multiple different data sets. This provides an important

variable for assessing the likely significance of a gene in the

lymphoma class. Notably of the 414 genes in the ABC-DLBCL

meta-profile only 24 genes were class-associated in 11/11 data

sets. Microarray platforms differ in the selection of probes and

hence the ability to assess individual genes. When taking

differential representation of genes into account, 42 genes were

ABC class-associated in all data sets in which probes for the gene

were present on the platform used (100% class-association).

Equally for GCB-DLBCL 20 genes were class-associated in 11/

11 data sets, with 35 being 100% class-associated when accounting

for gene representation on platforms used.

A notable feature was that the top three genes (ZBTB32, KCNA3

and CYB5R2) in the ABC-DLBCL meta-profile were not primary

classifier genes. In contrast for GCB-DLBCL the classifier genes

MME (CD10) and LMO2 topped the ranking. It was also notable

that the most consistent ABC-DLBCL meta-profile genes included

the transcriptional regulators BATF, TCF4, ARID3A, and

CREB3L2 in addition to ZBTB32 and the primary classifier genes

IRF4 and FOXP1.

Enrichment of Appropriate Gene Signatures for Class
We reasoned that if the data sets were appropriately classified

then meta-profiles should be enriched for genes that overlap in a

statistically significant fashion with gene signatures representing

lists of genes defined in previous work linked to cell of origin class

or molecular pathogenesis (i.e. contain more signature genes than

expected by chance for a list of equivalent number). Furthermore

if this condition were met, and since the meta-profiles were

uniquely informed by consistency of gene expression across

multiple data sets, then analysis of gene signature databases would

additionally form the basis for identifying novel associations

relevant to disease biology. The databases MSigDB, GeneSigDB,

as well as the SignatureDB of the Lymphoma Leukemia Molecular

Profiling Project, provide an extensive compendium of gene

signatures/sets related to particular cell states, pathways, or gene

features [27,28,41]. We used these compendia, and a hypergeo-

metric test, to provide an unbiased assessment of the enrichment of

gene sets/signature in the meta-profiles. For these analyses all

classifier genes were excluded, since these inevitably show bias in

association, and the use of only 20 classifier genes provides a

substantial advantage in this respect. Amongst all 12323 signatures

tested 903 showed significant enrichment, after correction for

multiple testing in the ABC meta-profile and 1513 in the GCB

meta-profile (Table 6 and 7, and Table S8). In each case (ranking

by FDR corrected p-value) extended signatures of the ABC- and

GCB-DLBCL subtypes were the most enriched of all signatures

tested: ABCgtGCB_U133AB (FDR corrected p-value 5.61E-235)

and GCB_gt_ABC_U133plus (FDR corrected p-value 4.59E-214)

[41]. These signatures showed a 61.85% and 54.55% overlap of

genes with ABC meta-profile and GCB meta-profile respectively.

Other cell of origin related signatures showed similar high but not

complete degrees of overlap, such as

ABC_gt_GCB_PMBL_MCL_BL_U133AB (80.43% overlap and

FDR corrected p-value 2.68E-55) for the ABC meta-profile, and

GC_B_cell_U133Plus (25.31% overlap and FDR corrected p-

value 3.05E-70) for the GCB meta-profile.

We also considered signature enrichment for differentially

expressed genes for each class in each data set independently. This

approach assesses the consistency of signature enrichment across

data sets (Table S9), and emphasizes the co-ordinated expression

of components of a signature, rather than the expression of

individual genes. In this analysis extended ABC- and GCB-

DLBCL signatures again emerged as most highly and consistently

enriched in all data sets: ABC_gt_GCB_U133AB (11/11 data sets,

average p-value 9.42E-67) for ABC class, and GCB_gt_AB-

C_U133plus (11/11 data sets, average p-value 3.10E-78) for GCB

class. Furthermore these analyses confirm that the ABC and GCB

class-associated genes observed in FFPE data show similar patterns

of molecular signature enrichments to those observed in data sets

derived from fresh material (See GSE32918 and GSE31312

columns in Table S9). We can conclude that DAC allows robust
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class-specific segregation of gene expression regardless of data

source and platform type.

Oncogenic Pathway Enrichment in ABC-DLBCL
Several oncogenic pathways have been established for ABC-

DLBCL [6]. Focusing on gene signatures that were selectively

enriched in the ABC but not the GCB meta-profile, amongst the

most enriched signatures were those related to NFkB or MYD88

activation: NFkB_Up_all_OCILy3_Ly10 ranked 37rd (ranking by

FDR adjusted p-value), MYD88_Ngo_etal ranked 72nd,

NFkB_Up_HBL1 ranked 85th, and NFkB_Up_bothOCI-

Ly3andLy10 ranked 113th [35,42,43,44,45].

Other signatures of NFkB activity have been defined in distinct

cellular contexts. Our analysis allowed a ranking of the relative

enrichment of these signatures across both the meta-profiles and

individual data sets. Of 46 signatures related to NFkB, 8 were

enriched in the ABC but not GCB meta-profiles and of these 3

(‘‘NFkB_Up_all_OCILY3_LY10’’, ‘‘NFkB_Up_HBL1’’,

‘‘NFkB_Up_bothOCILY3andLY10’’) were enriched in 11/11

individual data sets (Table S8 and S9) [36]. In addition to the 3

classifier genes that are NFkB targets (CCND2, IRF4 and PIM1) the

ABC meta-profile genes contributing to the enrichment of these

three NFkB signatures were: ADAM8, BATF, CCL22, CCR7, CD44,

CFLAR, ELL2, EPHB1, GPR183, HCK, IL10, IL12A, LITAF, LYN,

MARCKS, MIR155HG, NOSIP, PLAGL1, PLK3, RAB7L1, RNF183,

SLC38A5, SMARCA2, SNX18, STAT3, TCEB3. Since these

signatures were generated from ABC-DLBCL cell lines there is

potential circularity in detecting enrichment in the ABC subset.

However independent evidence for the specific role of NFkB target

genes in the ABC-DLBCL meta-profile was also provided by the

enrichment of gene sets linked to promoters with evolutionarily

conserved transcription factor motifs contained in the C3

component of MSigDB [29]. The most enriched such gene set

in the ABC-DLBCL profile was for NFkB binding sites,

V$NFKB_Q6_01 (7.79% overlap, FDR corrected p-va-

lue = 8.17E-6). Of the 19 genes (excluding classifier gene BMF)

contributing to this enrichment only two overlapped with those

linked to the experimental NFkB target lists (BATF and IL12A).

The enrichment of the NFkB motif gene set in the ABC meta-

profile contrasted with the GCB meta-profile in which the most

significantly enriched MSigDB_C3 gene sets were FOXO motif

variants as well as the NFAT motif (TGGAAA_V$NFAT_Q4_01

3.61% overlap, FDR corrected p-value = 1.15E-07). Notably the

NFkB and NFAT gene sets were not enriched in the reciprocal

meta-profiles indicating enrichment specific to DLBCL class.

Since NFkB and NFAT are two of the major transcription factor

targets downstream of surface receptor signaling in B-cells, these

results support the concept that differential usage of these

pathways is a central feature separating ABC- and GCB-DLBCL.

Association of GCB-DLBCL with Stromal and Focal
Adhesion Signatures

For GCB-DLBCL a distinctive feature was association with

stromal signatures. The most significant enrichment was observed

for the signature Stromal-1_DLBCL_survival_predictor (ranked

4th, 23.5% overlap, FDR corrected p-value = 3.92E-49) (Table 7)

[5]; and amongst individual data sets this signature was enriched

in 10/11. The strong class association was further underlined by

the fact that this signature shared no overlapping genes with the

ABC-DLBCL meta-profile, representing a significant depletion

(Zscore = 22.12) (Table 6). Indeed other stromal signatures such

as ‘‘CROONQUIST_STROMAL_STIMULATION_UP’’

(16.67% overlap, FDR corrected p-value 3.19E-06) and ‘‘SUNG_-

METASTASIS_STROMA_UP’’ (10.91% overlap, FDR correct-

ed p-value 1.51E-05) were also enriched in the GCB meta-profile.

Amongst KEGG pathway signatures 9 were significantly enriched

in the GCB-DLBCL meta-profile, of which the 2 most significantly

enriched were: ‘‘KEGG_FOCAL_ADHESION’’ (9.09% overlap,

FDR corrected p-value 4.99E-07), ‘‘KEGG_ECM_RECEP-

TOR_INTERACTION’’ (13.10% overlap, FDR corrected p-

value 7.88E-06). Thus expression of genes associated with stromal

interactions is a particular and consistent characteristic of GCB-

DLBCL.

Gene Expression Signatures of DLBCL Show Consistent
Associations with Chromosomal Regions

Recurrent cytogenetic abnormalities characterise DLBCL and

show association with cell of origin class and outcome [4,46].

Therefore a conspicuous feature of the ABC and GCB meta-

profiles was differential enrichment of gene signatures associated

with chromosomal regions/cytobands. Of the 326 chromosomal

(chr) cytoband signatures contained in the C1 component of

MSigDB, 6 were significantly enriched in the ABC meta-profile,

while 3 (chr12p, chr17q24 and chr2q23) were enriched in the

GCB meta-profile. Four of the 6 enriched cytobands in the ABC

meta-profile are on chr3 (Figure 5 and Table S8), and 2 on chr18

(chr18p11 and chr18q21). A similar bias toward chr3 enrichment

was evident when each data set was individually assessed. 22

cytobands were enriched in 5 or more data sets, 10 of these were

derived from chr3 (chr3-p21, p23, q12, q13, q21, q22, q23, q27,

q28 and q29) of these 3q13 and 3q29 were the most consistent.

Amongst individual data sets three chr18 cytobands were enriched

in 5 or more data sets, chr18p11, chr18q21 and chr18q12. These

patterns largely reflect regions of recurrent chromosomal aberra-

tions [4,46], and provide evidence for the particular significance of

chr3 and chr18 deregulation in ABC-DLBCL.

Discussion

Despite the established nature of the cell of origin classification a

comparative analysis of gene expression across multiple data sets

classified with the same algorithm has not been published. To

Figure 4. Pair-wise comparison of differentially expressed genes between all classified data-sets. (A) Differentially expressed genes
within each class (ABC and GCB) were sequentially compared for each data set against the equivalent sets of differentially expressed genes for each
other data set (ABC vs ABC and GCB vs GCB). For every comparison distributions derived from 10-million random samplings of gene sets of equivalent
size were established. Comparing observed degrees of overlap against these random distributions generated Z-scores. Because the sets of
differentially expressed genes for each class are of different size, the assessment generates 2 Z-scores for each class for every pair of data-sets. The Z-
scores shown are the averages between the 4 Z-scores generated for each pairwise comparison (ABC and GCB in both directions of comparison). (B)
This shows an example of the expected and observed degree of overlap between two data sets. The example shown is the degree of overlap of the
ABC genes of GSE10846 CHOP (1933 genes) against the ABC genes in GSE32918 (503 genes) (yellow box in A). The observed degree of overlap (229
genes, 45% of differentially expressed ABC genes in GSE32918) is 29 standard deviations away from the expected random degree of overlap.
doi:10.1371/journal.pone.0055895.g004

DLBCL Comparative Gene Expression Analysis

PLOS ONE | www.plosone.org 14 February 2013 | Volume 8 | Issue 2 | e55895



allow such an analysis we have developed a robust classifier based

on 20 genes, described in the original Wright classifier implemen-

tation [2], and represented on multiple platform types. The use of

a small number of classifier genes is an important feature since

primary classifier genes show intrinsic bias and need to be

disregarded for downstream analyses. Since the inception of the

cell of origin classification, variations have been described that

employ larger numbers of classifier genes [5,9]. However, to our

knowledge, there has been no direct comparison of whether large

numbers of classifier genes produce consistent improvement in

classification. Here we have directly addressed this question and

using a range of different classifier gene choices we find no

Table 5. ABC and GCB DLBCL meta-profiles.

Up-regulated in ABC Up-regulated in GCB

Gene
Classifier
Gene

Median
Normalised FC

Number Of
Files Gene

Classifier
Gene

Median
Normalised FC

Number Of
Files

ZBTB32 0.69 11 MME Yes 0.67 11

KCNA3 0.59 11 LMO2 Yes 0.66 11

CYB5R2 0.58 11 SPINK2 0.62 11

CCND2 Yes 0.56 11 STAG3 0.56 11

IRF4 Yes 0.54 11 LRMP Yes 0.41 11

PHF16 0.52 11 ASB13 0.41 11

FAM46C 0.52 11 AUTS2 0.40 11

BATF 0.52 11 MAPK10 0.40 11

PIM2 0.46 11 BCL6 Yes 0.40 11

TNFRSF13B 0.44 11 SLC12A8 0.37 11

FUT8 Yes 0.41 11 PLEKHF2 0.36 11

SH3BP5 Yes 0.40 11 SSBP2 0.35 11

ADTRP 0.39 11 DENND3 Yes 0.31 11

ENTPD1 Yes 0.37 11 FADS3 0.30 11

TCF4 0.34 11 ITPKB Yes 0.28 11

ARID3A 0.33 11 PTK2 0.24 11

HSP90B1 0.31 11 HIP1R 0.23 11

PIM1 Yes 0.31 11 STS 0.20 11

BCL2L10 0.30 11 VGLL4 0.16 11

BLNK Yes 0.30 11 SULT1A1 0.15 11

CREB3L2 0.28 11 MYBL1 0.65 10

MAN1A1 0.26 11 TTC9 0.34 10

CFLAR 0.20 11 ZPBP2 0.46 9

CLINT1 0.13 11 FNDC1 0.43 9

BSPRY 0.45 10 SNX22 0.32 9

ARID3B 0.28 10 EEPD1 0.29 9

ATP13A3 0.19 10 ANKRD13A 0.24 9

C1ORF186 0.54 9 SERPINA9 Yes 0.93 8

TOX2 0.53 9 LINC00487 0.72 8

CLECL1 0.49 9 LOC285286 0.43 7

LRRC33 0.42 9 SNX29P1#SNX29P2 0.87 6

FOXP1 Yes 0.38 9 LOC440864 0.55 6

ZNF385C 0.34 9 C12ORF77 0.36 6

CCDC50 0.24 9

PARP15 0.53 8

MPEG1 0.43 8

TBC1D27 Yes 0.42 8

FAM108C1 0.41 8

ISY1#RAB43 0.17 6

Genes shown are differentially expressed and up-regulated in the indicated class in all data sets (shown for . = 6) that have a corresponding probe (ABC (left) and GCB
(right)). ClassifierGene: genes used in classifier; Median NFC: median normalised fold change (0–1 for differentially expressed genes); NumFiles: number of files in
which gene is differentially expressed and upregulated in the indicated class. See Table S7 for complete lists.
doi:10.1371/journal.pone.0055895.t005
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consistent benefit of using larger numbers of classifier genes.

Indeed in several instances classifiers relying on greater numbers of

classifier genes generate ABC- and GCB-DLBCL classes with less

significant survival separation.

An issue of primary importance in the evaluation of a test is the

performance against a ‘‘gold standard’’ and the choice of metric

that is used to assess performance. The most significant clinical

feature of the cell of origin classification is the ability to separate

DLBCL into two major subgroups ABC and GCB with different

survival [1]. In assessing the performance of classifiers we therefore

used survival separation as the metric. The ‘‘gold standard’’ can be

seen either as the LPS classifier described by Wright et al. [2], or

the classes assigned by subsequent extension of this classifier to

include more classifier genes [5]. While the LPS classifier

effectively separates multiple data sets from fresh frozen material

into classes with significant survival separation, classification

choices made by machine-learning tools using 20 classifier genes

generate more significant differences in survival separation than

those made by LPS or the published class assignments for 4/5 data

sets (considering the CHOP and R-CHOP components of

GSE10846 separately), the original data set of Monti et al. being

the exception [10]. Furthermore our selected classifier can

distinguish prognostic groups in an FFPE derived data set

generated on an Illumina platform [22], while the LPS classifier

was much less effective in this data set. Another FFPE derived data

set included in this analysis, GSE31312, was generated on

Affymetrix HG-U133 Plus 2.0 GeneChips using FFPE derived

samples [23]. This was also readily classified by DAC and at the

level of segregation of gene expression was amongst the most

concordant with GSE10846.

An important observation emerging from this study is the

existence of an extended molecular gray zone, representing cases

whose classification is sensitive to the type of classifier implemen-

tation used. A substantial group of cases in each data set was

equivalently classified by most classifier implementations and thus

had a consistent class. In contrast the differences in outcome

Table 6. Selected gene signatures significantly enriched or depleted in the ABC meta-profile.

Enriched

Gene Signature Overlapping GeneSigSize randomAvg randomSD %Overlap Zscore FDR Source

ABCgtGCB_U133AB 167 270 4.52 2.10 61.85 77.45 5.61E-235 ** SignatureDB

ABC_gt_GCB_PMBL_MCL_BL_U133AB 37 46 0.77 0.87 80.43 41.65 2.68E-55 ** SignatureDB

NFkB_Up_all_OCILy3_Ly10 13 64 1.07 1.02 20.31 11.65 9.07E-09 ** SignatureDB

MYD88_Ngo_etal 21 266 4.45 2.08 7.89 7.96 6.83E-07 ** SignatureDB

NFkB_Up_HBL1 18 211 3.53 1.85 8.53 7.80 2.28E-06 ** SignatureDB

V$NFKB_Q6_01 18 231 3.86 1.94 7.79 7.29 8.17E-06 ** MSigDB_C3

NFkB_Up_bothOCILy3andLy10 8 37 0.62 0.78 21.62 9.48 1.33E-05 ** SignatureDB

chr3q29 7 54 0.91 0.94 12.96 6.47 1.22E-03 ** MSigDB_C1

chr18p11 8 75 1.25 1.11 10.67 6.09 1.38E-03 ** MSigDB_C1

chr3q13 7 86 1.44 1.19 8.14 4.69 0.01 * MSigDB_C1

chr3q21 7 99 1.66 1.27 7.07 4.19 0.02 * MSigDB_C1

chr3p21 11 237 3.96 1.96 4.64 3.58 0.03 * MSigDB_C1

chr18q21 6 82 1.37 1.16 7.32 3.99 0.04 * MSigDB_C1

KEGG_FOCAL_ADHESION 7 198 3.31 1.80 3.54 2.06 0.27 MSigDB_C2

TGGAAA_V$NFAT_Q4_01 40 1883 31.48 5.35 2.12 1.59 0.33 MSigDB_C3

chr12p13 6 201 3.36 1.81 2.99 1.46 0.45 MSigDB_C1

CROONQUIST_STROMAL_STIMULATION_UP 2 60 1.00 0.99 3.33 1.00 0.64 MSigDB_C2

SUNG_METASTASIS_STROMA_UP 3 110 1.84 1.34 2.73 0.87 0.66 MSigDB_C2

KEGG_ECM_RECEPTOR_INTERACTION 2 84 1.40 1.17 2.38 0.51 0.75 MSigDB_C2

Depleted

Gene Signature Overlapping GeneSetSize randomAvg randomSD %Overlap Zscore FDR GeneSet

GCB_gt_ABC_U133plus 0 297 4.97 2.20 0.00 22.26 0.07 SignatureDB

Stromal-1_DLBCL_survival_predictor 0 260 4.35 2.06 0.00 22.12 0.12 SignatureDB

GC_B_cell_U133Plus 3 324 5.42 2.29 0.93 21.06 0.59 SignatureDB

chr17q24 0 42 0.70 0.83 0.00 20.85 0.80 MSigDB_C1

chr2q23 0 22 0.37 0.60 0.00 20.61 0.86 MSigDB_C1

Gene signature enrichments in the meta-profiles were assessed with a hypergeometric test. Shown are selected signatures discussed in the text, including those related
to the reciprocal class, a comprehensive list is provided in Table S8. Gene Signature: name of signature, Overlapping: how many of the ABC meta-profile genes overlap
with signature, GeneSigSize: number of genes in gene signature (after classifier genes are removed), randAvg/randSD: average/standard-deviation overlap from
distribution containing 1 million random samplings, %Overlap: percentage of gene signature that overlaps with meta-profile, Zscore: standard score of observed
normalised against random distribution, FDR: Benjamini-Hochberg false discovery rate, Source: gene signature origin. Shown is a selection of gene signatures (see Table
S8 for complete list). ** FDR ,0.01, * FDR ,0.0.
doi:10.1371/journal.pone.0055895.t006
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separation observed were attributable to cases that had more

marginal expression of classifier genes and moved been class in a

fashion dependent on classifier implementation. While a ‘‘molec-

ular gray zone’’ was inherent in the cell of origin classification, and

in its original form encompassed the Type-III or unclassifiable

cases [1,2], when considering the choices made by different

classifier implementations the extent of this molecular gray zone

was greater. The concept of cases that do not fall neatly into one or

other diagnostic group is familiar and indeed is encompassed in

distinct categories of the WHO lymphoma classification [47]. It is

therefore no surprise that gene expression profiling is similarly

subject to ambiguity, and that choice of weighting for individual

genes results in differential classification of some cases. Such

ambiguity may be resolved in future by using more discrete

variables, for example the presence or absence of particular

pathway mutations. Nonetheless gene expression based classifica-

tion schemes are likely to continue to provide additional important

information, since they can assess the combined impact of multiple

molecular abnormalities acting within a tumour cell population to

drive a predominant phenotype. An analysis such as that

performed in this work can provide the basis on which to select

between individual classifier implementations. In making this

selection a metric needed to be chosen. We opted for the

difference in overall survival between the principal cell of origin

classes assigned by each classifier, while ensuring that this did not

come at the expense of greater inclusion into the Type-III/

unclassified category. We used the consistency of class-associated

gene expression as a supporting feature. As illustrated in this work

it is possible to improve on classification choices using different

implementations, while remaining within an existing classification

paradigm. While such choices have limited impact in the research

setting, if classification based on gene expression profile is in future

linked to treatment choice then classifier implementation will

become a significant consideration. It could be argued that a

systematic evaluation of classifier implementations is advisable in

Table 7. Selected gene signatures significantly enriched or depleted in the GCB meta-profile.

Enriched

Gene Signature Overlapping GeneSigSize randomAvg randomSD %Overlap Zscore FDR Source

GCB_gt_ABC_U133plus 162 297 4.98 2.20 54.55 71.46 4.59E-214 ** SignatureDB

GC_B_cell_U133Plus 82 324 5.43 2.30 25.31 33.33 3.05E-70 ** SignatureDB

Stromal-1_DLBCL_survival_predictor 61 260 4.36 2.06 23.46 27.52 3.92E-49 ** SignatureDB

TGGAAA_V$NFAT_Q4_01 68 1883 31.57 5.36 3.61 6.80 1.15E-07 ** MSigDB_C3

KEGG_FOCAL_ADHESION 18 198 3.32 1.80 9.09 8.16 4.99E-07 ** MSigDB_C2

CROONQUIST_STROMAL_STIMULATION_UP 10 60 1.01 0.99 16.67 9.05 3.19E-06 ** MSigDB_C2

KEGG_ECM_RECEPTOR_INTERACTION 11 84 1.41 1.18 13.10 8.16 7.88E-06 ** MSigDB_C2

SUNG_METASTASIS_STROMA_UP 12 110 1.84 1.34 10.91 7.57 1.51E-05 ** MSigDB_C2

chr12p 2 6 0.10 0.31 33.33 6.03 0.04 * MSigDB_C1

chr17q24 4 42 0.70 0.83 9.52 3.96 0.04 * MSigDB_C1

chr2q23 3 22 0.37 0.60 13.64 4.37 0.05 * MSigDB_C1

MYD88_Ngo_etal 10 266 4.46 2.08 3.76 2.66 0.09 SignatureDB

chr3q13 4 86 1.44 1.19 4.65 2.15 0.24 MSigDB_C1

chr3q21 4 99 1.66 1.27 4.04 1.84 0.31 MSigDB_C1

V$NFKB_Q6_01 7 231 3.87 1.94 3.03 1.61 0.34 MSigDB_C3

NFkB_Up_HBL1 5 211 3.54 1.86 2.37 0.79 0.59 SignatureDB

chr3q29 1 54 0.91 0.94 1.85 0.10 0.81 MSigDB_C1

NFkB_Up_all_OCILy3_Ly10 1 64 1.08 1.03 1.56 20.07 0.84 SignatureDB

Depleted

Gene Signature Overlapping GeneSetSize randomAvg randomSD %Overlap Zscore FDR GeneSet

ABCgtGCB_U133AB 0 270 4.53 2.10 0.00 22.16 0.07 SignatureDB

chr3p21 2 237 3.98 1.97 0.84 21.00 0.55 MSigDB_C1

chr18p11 0 75 1.26 1.11 0.00 21.13 0.59 MSigDB_C1

ABC_gt_GCB_PMBL_MCL_BL_U133AB 0 46 0.77 0.87 0.00 20.89 0.73 SignatureDB

NFkB_Up_bothOCILy3 andLy10 0 37 0.62 0.78 0.00 20.79 0.78 SignatureDB

chr18q21 1 82 1.38 1.16 1.22 20.32 0.81 MSigDB_C1

Gene signature enrichments in the meta-profiles were assessed with a hypergeometric test. Shown are selected signatures discussed in the text, including those related
to the reciprocal class, a comprehensive list is provided in Table S8. Gene Signature: name of signature, Overlapping: how many of the GCB meta-profile genes overlap
with signature, GeneSigSize: number of genes in gene signature (after classifier genes are removed), randAvg/randSD: average/standard-deviation overlap from
distribution containing 1 million random samplings, %Overlap: percentage of gene signature that overlaps with meta-profile, Zscore: standard score of observed
normalised against random distribution, FDR: Benjamini-Hochberg false discovery rate, Source: gene signature origin. Shown is a selection of gene signatures (see Table
S8 for complete list). ** FDR ,0.01, * FDR ,0.05.
doi:10.1371/journal.pone.0055895.t007
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such circumstances, where sufficient publically available data sets

are available.

The development of meta-profiles representing the most

consistent differentially expressed genes between ABC- and

GCB-DLBCL is significant since these gene lists are uniquely

informed by the consistency of differential gene expression

between multiple data sets. Indeed limited numbers of genes were

detected as ABC- or GCB-associated in all data sets, and these

genes are likely to be enriched for core regulators. Amongst the

transcription factors most consistently linked to the ABC-subset is

BATF, an NFkB target gene that has recently been identified as a

key partner of IRF4 [48,49,50,51]. This is of particular interest

since ABC-DLBCL and myeloma show non-oncogenic addiction

to IRF4 function [52,53]. IRF4 depends on partner transcription

factors to occupy DNA, the canonical partners being ETS-factors

SPIB or PU.1 in B-cells; in contrast BATF plays a dominant role

in T-cells [48,50,51]. IRF4 is itself an NFkB target gene, which is a

principle mechanism proposed for its expression in ABC-DLBCL

[54]. BATF expression in ABC-DLBCL may be explained in a

similar fashion since it features on multiple NFkB signature lists,

including the MSigDB signature V$NFKB_Q6_01. Indeed BATF

is induced transiently in activated B-cells during CD40 driven

plasma cell differentiation [55]. Amplification of chr19q as well as

translocations can deregulate SPIB, leading to functional addiction

to this transcription factor [4,52]. It will therefore be interesting to

assess the relative contributions of SPIB and BATF to IRF4

function in ABC-DLBCL.

Another feature of the ABC-DLBCL meta-profile was the fact

that three genes, ZBTB32, KCNA3 and CYB5R2 show a more

consistent class-association than any of the primary classifier genes.

ZBTB32 encodes a transcription factor, also known as Repressor

of GATA (ROG), with functions in T-cell activation and

differentiation [56]. The role of this gene in B-cell differentiation

is somewhat enigmatic, but ZBTB32 has recently been identified

as a repressor of transcription rapidly induced during murine B-

cell differentiation, which can co-operate with BLIMP1 in

silencing CIITA [57]. The latter is essential for MHC class-II

expression, and shows a weak class-association with GCB-DLBCL.

Expression of ZBTB32 and repression of CIITA may thus

contribute to immune-evasion in ABC-DLBCL [54,58]. KCNA3

(also known as Kv1.3) encodes a potassium channel, which is

expressed in effector memory T-cells and memory B-cells [59,60].

KCNA3 has been identified as a potential target for therapy in

autoimmune disease [61], and several strategies for inhibition have

been developed in this context [59]. The strong and consistent

expression of KCNA3 identifies this as an intriguing candidate for a

novel therapeutic approach in ABC-DLBCL.

Enrichments of gene signatures derived from previous studies

[29,35,42,43,44,45], across meta-profiles and across individual

data sets provides a resource for the identification of class/

signature/gene associations of relevance to lymphoma pathogen-

esis and further confirmed the validity of classifications. A striking

feature was the ability to identify gene sets associated with known

regions of chromosomal deregulation in DLBCL. Several studies

have assessed the contribution of copy number alterations to

deregulated gene expression [46,62], with a notable recent paper

using integrated analysis to assess the contribution of multiple

regions of copy number change to deregulation of cell-cycle

checkpoints [26]. Our comparative analysis has allowed a distinct

approach identifying over-represented chromosomal cytobands by

the consistency of gene expression across multiple data sets. This

approach emphasised the particular importance of chr3 and chr18

to ABC-DLBCL, and also identified genes in chromosomal

regions as potential drivers of pathogenesis. An example of this

was evident in chr18q21. Amplification of chr18q is common in

ABC-DLBCL and associated with aberrant expression of BCL2

[4,26]. Identifying differential expression of BCL2 is complicated

by the fact that BCL2 translocations are a common feature of

GCB-DLBCL, but nonetheless BCL2 was ABC class-associated.

However, the most consistently differentially expressed gene from

chr18q21 in ABC-DLBCL was TCF4. This gene encodes a

transcription factor also known as E2-2, which can drive SPIB

expression and co-operate with SPIB to regulate the transcrip-

tional program of plasmacytoid dendritic cells [63,64]. Notably

several dendritic cell signatures are enriched in the ABC-DLBCL

meta-profile including Dendritic_cell_CD123pos_blood, CD123

being a surface marker of plasmacytoid dendritic cells, ranked 6th

of all signatures in the ABC meta-profile (12.38% overlap, FDR

corrected p-value = 8.95E-18). Thus in addition to the deregula-

tion of BCL2, amplification of chr18q21 is likely to contribute to

the consistent expression of TCF4, and hence to establishing the

transcriptional network of ABC-DLBCL.

In conclusion, the generation of the robust classifier algorithm,

DAC, provides a tool with which to consistently classify DLBCL

cases regardless of microarray platform type. It has potential

applications in the research and clinical setting, since it is designed,

and is currently being used, to allow real-time assessment of

individual incident cases. Currently real-time classification of

DLBCL cases into molecular classes does not affect primary

clinical management decisions, but in future this may change. The

analysis we have performed highlights the issues surrounding the

effect that classifier choice can have on class assignment, and

argues for a robust analysis of classifier algorithm in such settings.

The development of this classifier has allowed the generation of a

useful resource in which the consistency of class-associated gene

expression provides a method for identifying associations of

relevance to disease biology, and in particular highlights

transcription factors operating in ABC-DLBCL.

Supporting Information

Figure S1 Consistent classification and classification
confidence. This accompanies Figure 2. The classes assigned by

31 tested classifiers for the (A) GSE10846 CHOP, (B) GSE10846

R-CHOP, (C) GSE32918 data set are shown along with published

classes in GEO and those assigned by the LPS classifier

(GCB = blue, Type-III = green, and ABC = yellow). Part (A)
reproduces the data shown in Figure 2 and is included for

completeness and to allow direct comparisons. As in Figure 2,

samples are vertically ordered by the class given by the meta-

classifier LMT_J48_RF100_SMO (later referred to as ‘‘DAC’’);

this meta-classifier assigns confidence scores for each class, and the

Figure 5. Chromosome cytoband enrichment/depletion in the ABC class. Human chromosomal cytobands are depicted using gray scales,
with chromosomes displayed vertically in numerical order. Enrichment or depletion of cytobands was assessed using a hypergeometric test and the
MSigDB C1 component against the meta-profiles and across differentially expressed genes for each data set individually. Observed enrichments and
depletions are shown as the average Z-scores with red to blue color scale (average Z-score = +6 to 22) as indicated in the insert. These are derived
from analyses of individual data sets (Table S9), with significant enrichment in .5/11 data sets used as threshold for inclusion. Regions additionally
identified as significantly enriched in the ABC meta-profile (Table S8) are indicated with a star (FDR corrected p-value ,0.05 = black star, FDR
corrected p-value ,0.1 = white star).
doi:10.1371/journal.pone.0055895.g005

DLBCL Comparative Gene Expression Analysis

PLOS ONE | www.plosone.org 19 February 2013 | Volume 8 | Issue 2 | e55895



class with highest confidence is selected for each sample. Within

each class samples are ranked by classification confidence. At

either extreme, samples are ordered from high to low confidence

GCB, and from low to high confidence ABC. In the Type-III

category high confidence cases are shown centrally flanked by

lower confidence Type-III cases. On either side the latter are

ordered by GCB or ABC signal (identified by GCB or ABC being

the second highest classification confidence). The first column

(labelled with black bar and red 5) identifies the classes assigned by

LMT_J48_RF100_SMO, followed by results obtained for 30

other machine-learning classifiers, with the classes assigned for

each case in the appropriate color. Classifiers are ranked (number

above each column) from left to right according to the significance

of survival separation between assigned ABC and GCB classes;

note that LMT_J48_RF100_SMO was selected as the reference

based on overall performance across multiple data sets, and in this

data set is ranked 5th (shown in red) for survival separation. On the

far right the published class assignments linked in GEO to the data

set (GEO class, orange bar) and classes assigned by the LPS

classifier using either a 0.8 or 0.9 p-value threshold classes are

shown (dark gray bars respectively).

(PDF)

Table S1 Dataset details. This table provides details of the

datasets used, showing the GEO accession number where

applicable, the title of the associated publication, data set size,

array type (Chip Number), presence of associated survival

information (Yes/No), and the stages of the evaluation for which

the data set was used.

(XLSX)

Table S2 Classifier genes. This table lists the original Wright

et al. classifier genes and their cell of origin class association.

Genes used in classifier development are shown in bold, asterisks

identify Lymphochip features for which an official gene symbol

was not identified. The GeneSelections work sheet shows the

extended classifier gene sets which were generated and analysed

(Figure 1. step 3).

(XLSX)

Table S3 Cross-validation and details of classifier
evaluation. In the upper panel of this table the results for 10-

fold cross-validation are provided for individual machine learning

tools on the Wright et al. data. In the lower panels the results are

shown for all individual classifiers, and meta-classifiers on data sets

GSE32918, and GSE10846 divided into CHOP and R-CHOP

components. For each component of the table classifiers are

ordered by their average rank for survival separation (ABC vs

GCB). Shown are the classifier identity, the Hazard Ratio (GCB vs

ABC as baseline), 95% confidence interval of the hazard ratio, p-

value and log rank.

(XLSX)

Table S4 Overall classifier ranking and Type-III/
unclassified assignments by top 3 classifiers. The upper

panel shows a summary of the performance of individual and

meta-classifiers. Classifiers are order by their average rank for

survival separation between ABC and GCB classes across the

datasets GSE32918, and GSE10846 divided into CHOP and R-

CHOP components. In the lower panel the top three classifiers

LMT_J48_RF100_SMO, RF100_SMO, and SMO are compared

for assignments to each class GCB, TypeIII, and ABC as % of

cases, and ranked by Average % TypeIII (lowest to highest).

(XLSX)

Table S5 Detailed class assignments for all data sets.
This file includes tables for all data sets used in this manuscript. It

provides the available details for each sample (as indicated) such as

GEO_Number, Original order, GEO_Class, Age, Sex and meta-

data, followed by the classes assigned for each sample for every

classifier tested including the selected class, the confidence of

selected class, and the scores assigned for other classes. For data

sets used in classifier training and development the results for all

tested classifiers, and all combinations of classifier genes and

training data sets are provided. For data sets used in later stages

only classes assigned by DAC (LMT_J48_RF100_SMO) trained

on Wright et al. data are shown.

(XLSX)

Table S6 Confidence, threshold and survival. Shown are

the results observed with DAC (LMT_J48_RF100_SMO) using

either the highest confidence for class-assignment or a hard

threshold of confidence starting from p-value of 0.5 and

incrementing in 0.1 steps. Shown are the Dataset identifier, the

threshold used (PValCutoff), the resulting % Type-III/unclassified

(%Unclassified), and the associated Hazard Ratios, and 95%

Confidence Intervals of the Hazard Ratios for GCB vs ABC as

baseline.

(XLSX)

Table S7 ABC/GCB DLBCL Meta-profiles. Shown are the

complete lists of genes differentially expressed between ABC and

GCB classes across all data sets. The table is divided into ABC and

GCB class-associated genes. Shown are the Official Gene Symbol

(Gene), the Median normalised fold change (MedianNormFC), the

number of data sets (files) in which a gene was differentially

expressed (Numfiles), the % of data sets in which the gene was

differentially expressed (%GenePresent), followed by the Fold

change in expression for each data set individually (GSE10846

divided into CHOP and R-CHOP components). A threshold of

$6 data sets (NumFiles) was used for inclusion in meta-profiles.

(XLSX)

Table S8 Meta-profile signature enrichment analysis.
The table is divided into two parts showing results for the ABC

and GCB DLBCL meta-profiles separately. The first worksheet

shows results for the ABC class (upABC_GCB), the second the

results for the GCB class (ABC_upGCB). Shown are the

enrichments observed for all signatures evaluated using the

GeneSigDB, MSigDB and SignatureDB compendia as well as

selected literature sources. For each signature the following are

shown: the Gene Signature designation (Gene Signature), source

of the signature (Source), number of genes overlapping between

meta-profile and gene signature (Overlapping), number of genes in

the signature (GeneSigSize), the average number of overlapping

genes observed in 106 random samplings (randomAvg), the

standard deviation of observed for 106 random samplings

(randomAvg), the percentage of the gene signature that overlaps

(%Overlap), whether a gene signature is enriched (Enriched)

shown as 1 if probability of enrichment is ,probability of

depletion, the standard score for the observed overlap (ZScore),

the probability of the overlap given the GeneSigSize (probablity),

the Benjamini and Hochberg correction of probability scores

(FDR), the enrichment or depletion of signatures and reciprocal

signature pairs in ABC and GCB (Annotation), the genes

contributing to overlap (EnrichedGenes), genes contributing to

enrichment separated with ‘|’ (classifier genes excluded from

analysis are located after ‘EXCLUDED_GENES:’ tag). For the

‘‘Annotation’’ column in each case the first symbol refers to the

signature status in ABC (‘‘+’’ = enriched (+ve Zscore), ‘‘2’’ = de-

pleted (-ve Zscore), ‘‘*’’ = not significantly enriched or depleted)

and the second symbol to the status in GCB. Where the signature

is part of a signature pair (ie there are reciprocal signatures of up
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(_UP) and down (_DN) regulated genes for a given condition) these

are separated by a ‘‘/’’. These symbols can be used to search for

signatures and signature pairs with coherent regulation.

(XLSX)

Table S9 Signature enrichments for individual data
sets. The table is divided into two parts including results for all

tested signatures for each data set individually in the comparison

of ABC vs GCB DLBCL class. The first worksheet shows results

for the ABC class (upABC_GCB), the second the results for the

GCB class (ABC_upGCB). This emphasises the consistency of

signature enrichment rather than the consistant differential

expression of individual genes. For each signature the following

are shown: the Gene Signature designation (Gene Signature),

Source of the signature (Source), the number of data sets in which

the signature was enriched/depleted (Number_of_Samples), the

average Z score of the observed enrichment (avgZscore), the

standard deviation of the Z scores of enrichment (sdZscore), the

average probability (avgProb), the standard deviation of probabil-

ities of enrichment (sdProb), whether there is consistent enrich-

ment or depletion across data sets in which enrichment/depletion

is observed (ZscoresAllSameSign), annotation of the signature and

any associated reciprocal signature/signature pairs for each data

set (shown using the data set identifier). For the latter in each case

the first symbol refers to the signature status in ABC (‘‘+’’ = en-

riched (+ve Zscore), ‘‘2’’ = depleted (-ve Zscore), ‘‘*’’ = not

significantly enriched or depleted) and the second symbol to the

status in GCB. Where the signature is part of a signature pair (ie

there are reciprocal signatures of up (_UP) and down (_DN)

regulated genes for a given condition) these are separated by a

‘‘/’’. These symbols can be used to search for signatures and

signature pairs with coherent regulation.

(XLSX)
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