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Vortex knots in tangled quantum eigenfunctions
Alexander J. Taylor1 & Mark R. Dennis1

Tangles of string typically become knotted, from macroscopic twine down to long-chain

macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum

wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The

probability that a vortex loop is knotted is found to increase with its length, and a wide gamut

of knots from standard tabulations occur. The results follow from computer simulations of

random superpositions of degenerate eigenstates of three simple quantum systems: a cube

with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the

3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunc-

tions at relatively low energy, and are constrained by the spatial symmetries of the modes.

The results suggest that knotted vortex structures are generic in complex three-dimensional

wave systems, establishing a topological commonality between wave chaos, polymers and

turbulent Bose–Einstein condensates.
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C
omplexity in physical systems is often revealed in the
subtle structures within spatial disorder. In particular, the
complex modes of typical three-dimensional (3D)

domains are not usually regular, and at high energies behave
according to the principles of quantum ergodicity1,2. The
differences between chaotic and regular wave dynamics can be
seen clearly in the Chladni patterns of a vibrating two-
dimensional plate2, in which the zeros (nodes) of the vibration
accumulate small sand particles to appear as random curved lines
when the plate is irregular. The spatial distribution of these nodal
lines is statistically isotropic at high energies2, and this
irregularity is typical for chaotic systems, whose ergodic
dynamics are determined only by the energy and there are no
other constants of motion.

Understanding the spatial structure of these wavefunctions
can be challenging. Following the hydrodynamic interpretation
of single-particle quantum mechanics3, the zeros of 3D
complex-valued scalar fields are in general lines; vortex
filaments around which the phase, local velocity and probability
current (in a quantum wavefunction) circulate4–6. This is
analogous to the vortices of a classical fluid, although the phase
change around the vortex line is quantized in units of 2p, and is
singular at the vortex core where the amplitude is zero. A similar
vortex topology occurs in condensates of many quantum
particles7. The pattern of their vortex lines provides a structural
skeleton to wavefunctions4,6,8. In modes above the lowest
energies, the vortex pattern is far from regular and they are
densely intertwined. A natural 3D measure of the most extreme
spatial irregularity is when the vortex filaments are knotted, and
here we study the occurrence of knotted nodal vortex lines in
three model systems of wave chaos, as a natural extension of the
Chladni problem to three dimensions.

Despite numerous investigations of the physics of diverse
random filamentary tangles, including quantum turbulence9, loop
soups10, cosmic strings in the early universe11 and optical vortices
in 3D laser speckle patterns12, the presence of knotted structures
in generic random fields has not been previously emphasized or
systematically studied. Vortices and defects which are knotted
have been successfully embedded in a controlled way in various
3D fields, such as vortex knots in water13, knotted defects in
liquid crystals14,15 and knotted optical vortices in laser beams16,
and theoretically as vortex lines in complex scalar fields, including
superfluid flows17, and superpositions of energy eigenstates of the
quantum hydrogen atom18 and other wave fields19, but rigorous
mathematical techniques to resolve the statistical topology of
random fields are limited20. With modern high-performance
computers, the structure can be explored using large-scale
simulations.

In the following, we investigate the knottedness of the nodal
vortex structures in typical chaotic eigenfunctions of comparable
size (that is, energy and total nodal line length) for three model
systems. The chaotic eigenfunctions are represented as super-
positions of degenerate energy eigenfunctions weighted by
complex, Gaussian random amplitudes; such superpositions are
established as good models of wave chaos in the semiclassical
limit of high energy1,2,21, since the wave pattern is determined
only by their energy (unlike a plane wave which has a well-
defined momentum). Our three systems are the cubic cell with
periodic boundary conditions, whose degenerate eigenfunctions
are plane waves; the abstract 3D sphere (3-sphere), whose
degenerate eigenfunctions are hyperspherical harmonics and
which has finite volume but no boundary; and the isotropic, 3D
harmonic oscillator (3DHO), whose nodal structure is largely
contained within the classically allowed region, where the energy
exceeds the potential such that it could describe an isotropic,
harmonically trapped Bose–Einstein condensate22. Further

information and illustrations of these eigenfunction systems
appear in Supplementary Note 1 and Supplementary Figs 1–4.

We find that vortex knots occur with high probability at
sufficiently high energy in all of these random wave super-
positions. The results suggest that even in low-energy cavity
modes, possibly accessible to experiments, knotted vortices will
occur with some reasonable probability. The statistical details of
random vortex knotting (with respect to the types of knot that
occur, the length of knotted vortex curves and the eigenfunction
energy) depends strongly on the wave system, and we perform an
analysis and comparison of these properties.

Results
Knots in high-energy random eigenfunctions. Figure 1 shows the
nodal/vortex structure of a typical chaotic eigenfunction in each
model system: in Fig. 1a, a cube with periodic boundaries; in Fig. 1b,
the 3-sphere; and in Fig. 1c, the 3DHO. In all three cases the random
modes are labelled by energy EN with principal quantum number
N (further details of how the model systems are generated and how
the vortices are located is given in Supplementary Notes 1 and 2).
In each of the Figs 1d–g, a single vortex line from these
eigenfunctions is shown alongside a simpler projection of the same
knot. Each vortex line resembles a random walk12,23.

Our analysis of these knots uses the standard conventions of
mathematical knot theory24, in which knots in closed curves can
be factorized into prime knots, which are tabulated according to
their minimum number of crossings (examples are shown in
Supplementary Figure 5). Both prime knots (for example, as
shown in Fig. 1d,f–g), and composites of prime knots (for
example, as shown in Fig. 1e), are identified in the curve data by a
combination of several schemes. After simplifying the longest
curves by a geometric relaxation method23, several topological
invariants are computed for each curve, which distinguish knots
of different types. These are, the absolute value of the Alexander
polynomial25 |D(t)|, evaluated for t at certain roots of unity; the
hyperbolic volume26; and the second- and third-order Vassiliev
invariants27,28. Although other knot invariants can have more
discriminatory power than these separately24,29, they tend to be
significantly more demanding in computer time; in practice the
combination of this particular set of invariants discriminates
almost all tabulated knots24,29 (up to at least 14 crossings; the
methods are described further in Supplementary Note 3). Each of
these invariants encodes different topological and geometric
information about each knot24. When comparing the knottedness
of different vortex loops, we follow previous studies25,27 in using
the (positive integer-valued) knot determinant |D(� 1)| as the
primary quantitative measure of their knotting complexity.

We have identified B50,000 knots from around 109 curves
(of different lengths), computed from about 106 random eigenfunc-
tions (at different energies). Some of these knotted curves are
relatively short, such as that in Fig. 1d, although the majority of
vortex knots are much longer, such as that in Fig. 1e, whose full
spatial extent spreads over several periodic cells. At large lengthscales,
each curve approximates a Brownian random walk12,23; for closed
curves, the radius of gyration scales with the square root of the total
length. Most of the vortex knots occur in closed loops; in the 3DHO,
however, most vortex lines stretch to spatial infinity as almost-
straight lines in the classically forbidden region. Most of the knots in
the 3DHO are in these open curves, such as that represented in
Fig. 1g. In the periodic cube, many of the longer lines wrap around
the cell a non-zero number of times (that is, they have nontrivial
homology, so in a tiling of the 3D cells they would be infinitely
long and periodic12). Since knots in such a periodic space have not
been adequately classified mathematically24, we only consider knots
in closed loops with trivial homology in this system.
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Links, which are configurations of two or more vortex curves
that are topologically entangled with one another, also occur
frequently. In fact, we find links to be more common than knots,
consistent with previous investigations of random optical fields at
smaller lengthscales in which links are found to be common but
knots were not detected30. The restriction to knotting in the
present study was chosen as it allows comparison with extensive
studies of the knotting probability of random curves (as random
walks)25, whereas the study of random linking is not so well
developed. Furthermore, linking of open curves (in the 3DHO) is
not well defined. For these reasons, our analysis is limited to the
statistics of vortex knotting.

Probabilities and complexities of knottedness. As one might
expect, the random eigenfunction statistics show that longer
knotted vortex curves display a greater complexity of knot types,
as measured by the knot determinant |D(� 1)|. This is repre-
sented in Fig. 2 for each of the three systems at fixed energy.
These histograms indicate that the distribution of log |D(� 1)|
with respect to vortex length L apparently scales according to a
power law. Longer curves are also more likely to be knotted; the
probability of a given vortex loop being unknotted decreases
exponentially according to L (Fig. 2 insets), as previously studied
for random walks modelling polymers25,27,31. The value of the
unknotting exponents is different for each of the three systems,
given in the caption.

Each of the model systems studied has a finite spatial extent,
namely the side length of the cube and the diameters of the
3-sphere and classically allowed region of the 3DHO. In the latter
two cases, this finite size imposes a long-length cutoff S to the
Brownian scaling of long vortex lines. In the 3-sphere and 3DHO,
loops whose radius of gyration exceeds S are confined, and the
Brownian and confined regimes have different knotting prob-
ability exponents. Both knotting probability and complexity
increase distinctly with length in the confined regime, where long
curves are restricted to volumes much smaller than the
corresponding Brownian radius of gyration would allow.

In contrast, the cube’s periodic boundary conditions allow the
vortex lines to have extent greater than the cube’s side length,
although the Brownian scaling of loop sizes gives way at some S
to the lines with nontrivial homology, which do not contribute to
the knot count. Figure 2b,c shows that the minimal complexity of
knots in the confined regime also scales with L; long vortices are
always knotted in these systems, and the knot is usually very
complex. By contrast, under periodic boundary conditions
(Fig. 2a) even the longest vortex loops can be topologically
trivial. In all of these cases, the scaling depends weakly on the
energy of the eigenfunction, at least in the ranges of energy
considered in the simulations.

Low-energy knots and the impact of eigenfunction symmetry.
The total vortex length in random eigenfunctions is proportional

d e f g

λa λb λc

Figure 1 | Tangled and knotted vortex filaments in random high-energy eigenfunctions of energy EN. Vortex lines are shown in (a) a periodic cubic cell,

with principal quantum number N¼9 (ENp3N2); (b) the 3-sphere (plotted in a distorted projection in which all points on the bounding sphere are

equivalent) with N¼ 17 (ENpN(Nþ 2)) and (c) the 3DHO with N¼ 21 (ENpNþ 3/2). The total vortex length is similar in each eigenfunction, a reference

wavelength at the origin, proportional to EN
� 1/2 is given in each of a–c. Each vortex loop in the eigenfunction is coloured grey except for one or two knotted

examples in each system, illustrated further in d–g; each of these coloured knots is plotted alongside a simpler projection of the same knot. (d) The trefoil

knot (tabulated as 31 from (a) with length L¼ 50 l and determinant |D(� 1)|¼ 3; (e) a composite knot consisting of the two trefoils joined with the 6-

crossing knot 62 (that is, 32
1 # 62), which passes through the periodic boundary of (a) many times with L¼ 1,700 l and |D(� 1)|¼ 99; (f) the more

complicated 14-crossing prime knot from (b) labelled K14n5049 in the extended notation of standard tabulations beyond 11 crossings29, with L¼ 1,500 l
and |D(� 1)|¼ 313; (g) the open 8-crossing prime knot 812 from (c) having L¼ 1,000 l where l is defined with respect to momentum at the origin and only

vortex length in the classically allowed region is considered, and with |D(� 1)|¼ 29.
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to their energy EN (see Supplementary Note 1). It is therefore
natural to expect knotted vortex lines to occur more frequently in
higher-energy eigenfunctions. This probability of knotting with
energy is shown for eigenfunctions of the 3-sphere and 3DHO in
Fig. 3. In the 3-sphere, where all vortex loops must be closed, this
probability reaches 99% when NE16, which is surprisingly small
to guarantee such a degree of topological complexity (as illu-
strated in the insets of Fig. 3).

The energies simulated in the 3DHO are insufficient to
guarantee that a random eigenfunction will contain a knotted
vortex (Fig. 3a), as the distribution of vortex lengths in the
classically allowed region prefers a greater number of shorter
curves. The knotting probability of a 3DHO eigenfunction also
strongly depends on whether the principal quantum number
N is odd or even, since 3DHO energy eigenstates, and hence the
zeroes (that is, the vortex tangle), must be parity-symmetric
with respect to spatial inversion through the origin; in fact, the
nodal system of vortex curves is required to be strongly

negatively amphicheiral32 (tangents at parity-opposite vortex
points must be parallel). Furthermore, when N is odd, exactly
one open vortex line must pass through the origin, such as the
low-energy example in Fig. 4a. Since strongly negatively
amphicheiral knots must be open (see Supplementary Note 4
and Supplementary Fig. 6), this line can take such a
configuration and is commonly knotted, contributing to a
larger knotting probability when N is odd (other knots can
occur when N is odd or even, but only in antipodal pairs, as
shown in Fig. 4b). This symmetry constraint applies to all
energies considered in the simulations.

Eigenfunctions of the 3-sphere must also be symmetric under
inversion between antipodal points, but here the curve system
must be strongly positively amphicheiral (opposite vortex
points have antiparallel tangents). The simplest prime knot
with this symmetry is in fact the 10-crossing knot 1099 (ref. 32),
and an example of a knotted vortex of this type is shown in
Fig. 4c.
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Figure 2 | Dependence of vortex knot complexity on curve length. The

plots show histograms of log10 log10 D � 1ð Þj jð Þ against log10(L) for the thee

systems at the same energies of the examples in Fig. 1: (a) periodic cube,

N¼ 9; (b) 3-sphere, N¼ 17; (c) 3DHO, N¼ 21. In each system, the

logarithm of the probability that a given vortex curve is unknotted as a

function of its length L is plotted in the insets, with error bars representing

the standard error of the mean. probability over many different random

eigenfunctions. For larger values of L, this unknotting probability logarithm

is fitted to � L/L0þ const, with scaling factors L0 of approximately: (a)

1,800 l; (b) 100 l; (c) 250 l. In the main plots, the strong horizontal lines

of constant, low-value |D(� 1)| correspond to specific knots, such as the

trefoil (for which log10 log10 D � 1ð Þj jð Þ¼�0:32) and the composite double

trefoil 31#31 (for which log10 log10 D � 1ð Þj jð Þ¼�0:02).
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Figure 3 | Probabilities of random eigenfunctions with different energies

containing knotted vortices. (a) 3DHO; (b) 3-sphere. Blue (green) points

denote those where the principal quantum number N is even (odd), for

reasons described in the main text, and errors represent the standard error

of the mean. fraction of knotted eigenfunctions, averaged over many

different random samples. Insets depict the vortices in a typical

eigenfunction at different energies, with each vortex curve represented in a

different colour.
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Discussion
On the basis of computer experiments, we have shown that
knotted vortex lines are common in random quantum wavefunc-
tions, even at comparatively low energies. These results comple-
ment previous rigorous mathematical studies, where small knots
(of any type) have been proven to occur with non-zero
probability in random eigenfunctions of the 3DHO33 and
hydrogen atom34 at high energies. These knots would be quite
different from those studied in the present work, as they occupy
limited volumes and, in the 3DHO, occur with exponentially
small probabilities. As such, those knots may be thought of as
highly structured superoscillatory phenomena35, known to be
very rare. On the other hand, the knotted vortices emphasized
here can extend throughout the entire wavefunction, and are
rather common except at the lowest energies; in fact, the very
smallest knots we find in the 3DHO are an order of magnitude
larger than the bounds on the size of superoscillatory examples.
Preliminary numerical studies of vortex knots in random
eigenfunctions of hydrogen indicate similar behaviour to the
3DHO described here, where eigenfunctions containing knotted
vortices are typically beyond a certain energy (and comparable
mode count), although unlike the 3DHO and 3-sphere, the nodal
sets are not constrained by an amphicheiral symmetry.

Although our computer experiments have been limited to
modes of fixed energy, we do not anticipate major differences in
systems of random waves with different power spectra, such as a
turbulent Bose–Einstein condensate22 with characteristic power
law spectrum, especially when sizes of system are similar to or
greater than those considered here.

Knotting of vortices in chaotic complex 3D eigenfunctions is a
complex counterpart to Chladni’s original observation of the
structure of cavity modes, and we anticipate that generic 3D
complex cavity modes1,2 will contain knotted vortices. Our results
lead us to expect that almost every random quantum
eigenfunction at sufficiently high energy contains at least one
knotted vortex line and, at least in the systems considered here,
this is common even at the relatively low energies currently
accessible to numerical experiment. Knotted nodal lines with
characteristic complexity scalings may therefore be a complex, 3D
counterpart to the nodal statistics proposed to signify quantum
chaos36 for real-valued chaotic eigenfunctions in two dimensions.
On the basis of the mode counts2 of the energies in Fig. 3, we
expect knotted vortices to occur with 50% probability from
somewhere between the 500th (3-sphere) to 3,000th (3DHO)
mode of a chaotic cavity.

Methods
Sampling random eigenfunctions. We generate random eigenfunctions of model
systems via standard random superpositions of their degenerate eigenfunctions.
Further details and comparisons of these systems, especially their eigenfunctions,
are included in Supplementary Note 2.

Tracking vortices (nodal lines). Within each random eigenfunction, phase
vortices are numerically tracked by sampling the wavefunction on a cubic lattice
(initial voxel size B0.1l) and checking around each numerical grid plaquette for
the circulation of phase indicating the passage of a vortex line through the face of
the grid cell. The phase is only guaranteed to circulate in this way when the
amplitude is zero but the complex scalar gradient is non-zero (that is, the
vortices occur as transverse intersections of real and imaginary nodal surfaces),
but this is generically the case in random eigenfunctions; the algorithm would
otherwise fail to converge on the vortex line but, as anticipated, we have never
observed this to happen. This core procedure does not always fully capture the
geometry of the vortex curve (especially where two vortex lines approach
closely), and so the above procedure is augmented with a recursive resampling of
the numerical grid, at successively higher resolutions, in any location where
the vortex line tracking is ambiguous; we call this the RRCG algorithm
(see Supplementary Note 2). Since vortex lines must be continuous, the result of
the algorithm is a piecewise-linear representation of each vortex in the entire
large-scale tangle. The vortex topology is retained, and geometry well recovered,
even with a relatively poor initial sampling resolution. The algorithm generalizes
to each of periodic boundary conditions, the 3-sphere and the 3DHO via an
appropriate choice of lattice boundary conditions, and in the case of the 3-sphere
by sampling on multiple Cartesian lattices and joining appropriate boundaries to
reproduce the geometry of the sphere.

Detecting and classifying knots and links. The topology of vortices is
investigated using the standard knot invariants described in the main text, whose
values depend only on the topology of a single curve and from which the knot type
can be inferred. It is computationally expensive to use some invariants known to be
more powerful (for example, the Jones or HOMFLY-PT polynomials), or to
identify the exact knot type of every curve. When necessary (Figs 1 and 4) we are
able to do so unambiguously using the Alexander polynomial (evaluated at certain
roots of unity), hyperbolic volume and Vassiliev invariants of degree 2 and 3.
We further use the knot determinant to measure the topological complexity of
vortex curves even without identifying their specific knot types.

Data availability. All relevant data are available from the corresponding author on
request.
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2. Stöckmann, H.-J. Quantum Chaos: An Introduction (Cambridge University

Press, 2006).
3. Madelung, E. Quantentheorie in hydrodynamischer form. Z. Phys. 40, 322–326

(1927).
4. Hirschfelder, J. O., Goebel, C. J. & Bruch, L. W. Quantized vortices around

wavefunction nodes. II. J. Chem. Phys. 61, 5456–5459 (1974).

a b c

0

�

P
ha

se

�
2

3�
2

2�

Figure 4 | Examples of low-energy eigenfunctions with knotted vortices in symmetric strongly amphicheirally symmetric conformations. (a) 3DHO,

N¼ 5, with a single ‘open figure-8’ vortex knot (tabulated as 41) in a strongly negatively amphicheiral conformation (this is the simplest prime knot with

this symmetry); (b) 3DHO, N¼4, with a pair of mirrored trefoil vortex knots 31#31 (knotting at this low energy is found to be extremely rare); (c) 3-sphere,

N¼ 7, with the knot 1099 (the simplest prime knot with strongly positively amphicheiral symmetry32), but omitting the two other small vortex loops

occurring in this eigenfunction. In each case, the phase in a plane through the centre of the complex random wavefunction is represented, coloured by hue.

Supplementary Movies 1–3 show these wavefunctions from varying viewpoints.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12346 ARTICLE

NATURE COMMUNICATIONS | 7:12346 | DOI: 10.1038/ncomms12346 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


5. Riess, J. Nodal structure, nodal flux fields, and flux quantisation in stationary
quantum states. Phys. Rev. D 2, 647–653 (1970).

6. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc.R. Soc. 336, 165–190
(1974).

7. Weiler, C. N. et al. Spontaneous vortices in the formation of Bose-Einstein
condensates. Nature 455, 948–951 (2008).

8. Dennis, M. R., O’Holleran, K. & Padgett, M. J. in Progress in Optics Vol 53
(ed. Wolf, E.) 293–363 (Elsevier, 2009).

9. Barenghi, C. F. Knots and unknots in superfluid turbulence. Milan J. Math. 75,
177–196 (2007).

10. Nahum, A., Chalker, J. T., Serna, P., Ortuño, M. & Somoza, A. M. Length
distributions in loop soups. Phys. Rev. Lett. 111, 100601 (2013).

11. Vilenkin, A. & Shellard, E. P. S. Cosmic Strings and Other Topological Defects
(Cambridge University Press, 1994).

12. O’Holleran, K., Dennis, M. R., Flossmann, F. & Padgett, M. J. Fractality of
light’s darkness. Phys. Rev. Lett. 100, 053902 (2008).

13. Kleckner, D. & Irvine, W. T. M. Creation and dynamics of knotted vortices.
Nat. Phys. 9, 253–258 (2013).
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