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Abstract

The mosaic nature of the Miocene ape postcranium hinders the reconstruction of the positional behavior and locomotion of
these taxa based on isolated elements only. The fossil great ape Pierolapithecus catalaunicus (IPS 21350 skeleton; 11.9 Ma)
exhibits a relatively wide and shallow thorax with moderate hand length and phalangeal curvature, dorsally-oriented
metacarpophalangeal joints, and loss of ulnocarpal articulation. This evidence reveals enhanced orthograde postures
without modern ape-like below-branch suspensory adaptations. Therefore, it has been proposed that natural selection
enhanced vertical climbing (and not suspension per se) in Pierolapithecus catalaunicus. Although limb long bones are not
available for this species, its patella (IPS 21350.37) can potentially provide insights into its knee function and thus on the
complexity of its total morphological pattern. Here we provide a detailed description and morphometric analyses of IPS
21350.37, which are based on four external dimensions intended to capture the overall patellar shape. Our results reveal
that the patella of Pierolapithecus is similar to that of extant great apes: proximodistally short, mediolaterally broad and
anteroposteriorly thin. Previous biomechanical studies of the anthropoid knee based on the same measurements proposed
that the modern great ape patella reflects a mobile knee joint while the long, narrow and thick patella of platyrrhine and
especially cercopithecoid monkeys would increase the quadriceps moment arm in knee extension during walking,
galloping, climbing and leaping. The patella of Pierolapithecus differs not only from that of monkeys and hylobatids, but also
from that of basal hominoids (e.g., Proconsul and Nacholapithecus), which display slightly thinner patellae than extant great
apes (the previously-inferred plesiomorphic hominoid condition). If patellar shape in Pierolapithecus is related to modern
great ape-like knee function, our results suggest that increased knee mobility might have originally evolved in relation to
enhanced climbing capabilities in great apes (such as specialized vertical climbing).
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Introduction

The partial hominoid skeleton IPS 21350 from the locality of

Barranc de Can Vila 1 [1–8], situated in the local stratigraphic

series of Abocador de Can Mata (ACM/BCV1; els Hostalets de

Pierola, Vallès-Penedès Basin, NE Iberian Peninsula), constitutes

the holotype (and so far only known individual) of Pierolapithecus

catalaunicus. With an estimated age of 11.9 Ma (late Aragonian,

Middle Miocene) [9,10], Pierolapithecus is the oldest undisputed

extinct member of the great-ape-and-human clade—i.e., the

Hominidae [1,2,6,7,11].

IPS 21350 comprises more than 80 bones or bone fragments,

including the splanchnocranium, key regions of the wrist and ankle

complexes, a clavicle, vertebrae and ribs, as well as fragmentary

remains of the pelvis and an almost complete patella [1]. The

preserved anatomy provides strong evidence of advanced ortho-

grade postures as compared to previous apes [1,5,8], although the

fragmentary pelvic remains indicate only slight differences from

Proconsul [8], stressing the mosaic nature of the postcranial skeleton

evolution in Miocene apes [12]. At the same time, hand length

proportions and phalangeal anatomy indicate that modern ape-

like below-branch suspensory adaptations are lacking. In partic-

ular, the hand displays only a moderate length and phalangeal

curvature ([2,4,13] but see [14,15] for a different interpretation),

the metacarpophalangeal joints are dorsally oriented, and the

pollical distal phalanx is long and wide at the base relative to the

distal phalanges of the lateral rays [4,16]. These features indicate

that Pierolapithecus—as in other Miocene apes—relied significantly

on above-branch palmigrady with a thumb-assisted grasping

during arboreal locomotion [12,17]. Moreover, and as in extant

great apes, the triquetrum was distally situated on the wrist,

showing a crevice for attachment of a meniscus instead of an
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articular facet for the ulnar styloid process [1]. The combination of

an orthograde body plan and the loss of ulnocarpal articulation

(i.e., enhancing ulnar deviation of the hand) with no specific

below-branch adaptations suggests that vertical climbing—and not

suspension per se—might have been the primary target of natural

selection in Pierolapithecus, since it is the only other common

behavior to the hominoid crown group [1,2]. The mosaic nature

of the Miocene ape postcranial skeleton should prevent straight-

forward locomotor reconstructions based solely on isolated

anatomical parts in these fossil forms. Instead, different anatomical

regions should be considered together (when possible) to more

accurately reconstruct their locomotor adaptations. However,

although hind limb long bones of Pierolapithecus are not preserved

(other than shaft fragments), the morphology of its preserved

patella (IPS 21350.37) can potentially provide hints of its knee

function, as previous studies have shown for other Miocene taxa

[18]. Here we provide a detailed description of the patella from the

holotype of Pierolapithecus (IPS 21350) as well as an exhaustive

morphometric analysis with selected extant anthropoids and

available fossil hominoids. Therefore, the aim of this study is to

shed light on the patellar morphology and inferred knee function

of Pierolapithecus catalaunicus.

Materials and Methods

The studied specimen (IPS 21350.37) is housed at the Institut

Català de Paleontologia Miquel Crusafont (Sabadell, Spain). To

compare this specimen with the patellae of other (extant and

extinct) anthropoids, four variables were measured following Ward

et al. [18]: total proximodistal height of the patella (PD);

proximodistal height of the articular surface (PDAS); anteropos-

terior thickness (AP); and mediolateral breadth (ML). These

variables are intended to capture the overall proportions of the

patella while being biomechanically meaningful. Measurements

were taken using a digital caliper to the nearest 0.1 mm. The

individual values for Pierolapithecus were compared with the sample

of extant anthropoids used by Ward et al. (their Tables 1 and 2)

[18], as well as selected fossil hominoid specimens, for which

measurements were taken from the literature [18–20]. In all cases,

only adult specimens for whom all measurements were available

were included in the analyses. The fossil hominoid sample

included: KPS PT3 and KPS PT4 (Proconsul heseloni) [18]; KNM-

RU 17382 (Proconsul nyanzae) [18]; KNM-BG 15535 (Nacholapithecus

kerioi, referred to Kenyapithecus in [18]); BAC 122 (Oreopithecus

bambolii, measured by S.A. from a cast: PD = 22.2 mm, PDAS

= 19.9 mm, AP = 8.9 mm, ML = 23.0 mm); and KNM-MB

24738 (Equatorius africanus) [19].

For shape comparisons, linear dimension were divided by

overall patellar size, which was approximated by the geometric

mean (GM) of the four original lengths. Scaling the patellar linear

dimensions by the GM gives individual dimensionless Mosimann

shape ratios that are independent of the remaining sample (unlike

residuals derived from regressions) [21,22]. Comparisons of

patellar size (GM) and shape (Mosimann variables) were depicted

by means of boxplots. Further, major patterns of patellar shape

variation between extant anthropoids and fossil hominoids were

summarized by means of a principal components analysis (PCA)

performed on the covariance matrix of the taxa means. Individual

PC scores were computed and plotted a posteriori in order to show

variation within extant anthropoids. The method, known as

between-group PCA (bgPCA), is extensively described elsewhere

[23]. Shape variables were log-transformed (using natural loga-

rithms) before being introduced into the analysis. Statistical

differences between the bgPC scores obtained (bgPC1 and bgPC2
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in our case) from our extant sample of primates were inspected by

means of analyses of their variance (ANOVA), as well as

multivariate analyses of variance (MANOVA; to inspect both

principal axes together), and their associated Bonferroni post hoc

multiple comparisons. All shape analyses were performed with the

statistical packages SPSS v 15 and PAST v 2.15.

Patellar mediolateral breadth (ML) has been found to scale with

body mass (BM) in non-human hominoids [24]. We inspected the

scaling of ML against BM and GM in our sample of non-human

anthropoid primates by means of phylogenetic generalized least-

squares (PGLS) regressions of the log-transformed, sex-specific

means. The regression coefficients and the error term are all

computed by means of maximum likelihood [25], with phyloge-

netic signal [26,27] incorporated into the error term. The degree

of phylogenetic signal is given by l, which varies between values of

0 (no signal) and 1 (strong signal) [26,27]. All PGLS regressions

results are based on female species means; the male results were

similar and therefore are not shown. PGLS regression statistics

were calculated using the ‘base’ and ‘caper’ libraries of R (v 2.9; R

Development Core Team, 2008). The consensus topology and

branch lengths for the extant primate sample were taken from the

10 k Trees website (v3) [28].

Results

Description and Measurements
The left patella IPS 21350.37 (Fig. 1) is well preserved, except

for very minor damage on its proximal (caused during excavation;

Fig. 1B,E) and medial (Fig. 1B,D) portions, as well as some

superficial abrasion on the distal end. However, this very minor

abrasion did not preclude taking complete measurements of the

relevant dimensions. IPS 21350.37 extends more mediolaterally

(ML = 24.9 mm) than proximodistally (PD = 21.9 mm), and

exhibits moderate anteroposterior thickness (AP = 9.7 mm) that

slightly wedges distally. The anterior side displays a rough surface

on the proximal half for the insertion of the muscles vastus

lateralis, medialis, intermedius and rectus femoris (i.e., quadriceps

muscle group) and their associated tendons. The posterior side is

almost completely covered by the articular surface for the femoral

patellar groove. The lateral portion of the articular surface is larger

than the medial one, and the contour of the latter is slightly

damaged. The proximodistal height of the articular surface can be

reliably measured (PDAS = 17.1 mm). Running through the distal

edge, a rough area for the attachment of the patellar ligament is

evident and courses medially. This attachment is slightly abraded

(Fig. 1F).

Mosimann Shape Variables
The range of variation of the patellar size (GM), as well as the

Mosimann shape variables for the different extant genera and

fossil individuals, are depicted in Figure 2 by means of boxplots

(see Fig. 3 for patellar morphological comparisons). Regarding the

overall patellar size (GM), African apes and, especially, humans

have the largest patellae (Fig. 2A). Apart from P. heseloni and

Nacholapithecus, which are similar to hylobatids and monkeys

(platyrrhines and cercopithecoids), the rest of Miocene apes,

including Pierolapithecus, have patellae of intermediate size between

the monkey-hylobatid group (except Papio) and African ape-

human group, overlapping with the ranges of orangutans and

baboons.

Monkeys and hylobatids exhibit proximodistally longer patellae

than extant great apes and humans (Fig. 2B). That of Symphalangus

is exceptionally large, its lower non-interquartile range overlap-

ping only with the upper range of cercopithecoid monkeys, but not

with that of Hylobates. As for extant great apes, only the uppermost

range of Pan overlaps with that of monkeys and Hylobates.

Pierolapithecus (similarly as Oreopithecus) falls within the interquartil

range of all great apes and humans, while the rest of Miocene apes

exhibit slightly proximodistally longer patellae, falling in an

intermediate position between monkeys-Hylobates and great apes.

For PDAS, differences between genera are less clear (Fig. 2C).

Although most ranges overlap, humans, cercopithecoids and Cebus

show proximodistally shorter articular surfaces than Pan, Pongo,

hylobatids and Ateles. Gorillas display a wide range, overlapping

with the interquartile ranges of the remaining great apes and all

monkeys. Hylobates shows the highest values of PDAS, closely

followed by Ateles. Pierolapithecus overlaps with humans, gorillas and

monkeys (although only slightly with the lowermost range of Ateles).

Oreopithecus shows one of the lowest values for this ratio, conversely

to the rest of Miocene apes, whose ratios overlap with those of

Hylobates, Ateles and the uppermost part of the interquartile range

of great apes and Symphalangus.

In contrast, marked differences are observed concerning

anteroposterior thickness (Fig. 2D). Hylobatids display the thinnest

patellae, whereas cercopithecoids and humans show the opposite

condition. Platyrrhines and great apes display a more intermediate

position, as Pierolapithecus. Oreopithecus, Nacholapithecus and Proconsul

show slightly thinner patellae than great apes, overlapping with the

lowest range of Pan. Equatorius is more similar to humans and

cercopithecoids, although it also falls in the range of gorillas.

Finally, cercopithecoids display the narrowest patellae (Fig. 2F),

followed by platyrrhines, hylobatids, and great apes and humans.

Miocene apes overlap with the ranges of the last two groups,

showing one specimen of P. heseloni (KPS PT 4) and P. nyanzae the

lowest values of ML among fossils. Equatorius, Oreopithecus, the other

individual of P. heseloni (KPS PT 3) and Nacholapithecus show

intermediate values for fossils, being Pierolapithecus the specimen

with the broadest mediolateral length of the patella.

Size Scaling of Patellar Mediolateral Breadth
Regression results are given in Figure 4 and Table 1. For both

the ML vs. BM and ML vs. GM, the results are near expectations

based on isometric dimensional scaling. Mediolateral patellar

breadth exhibits a strong correlation with BM, and scales with a

slope of 0.37660.025. Because l= 0.000, the 95% confidence

Table 2. Results of the Between Groups Principal
Components Analysis (BgPCA) based on patellar
measurements.

BgPC1 BgPC2

% variance 61.371 30.285

Variable loadingsa

PD 20.18 0.61

PDAS 0.34 0.38

AP 20.73 20.41

ML 0.57 20.57

Abbreviations: bgPC, between-group principal component; PD, total
proximodistal height of the patella; PDAS, proximodistal height of the articular
surface; AP, anteroposterior thickness; ML, mediolateral breadth. a Each original
variable was size-adjusted by the geometric mean (GM) of the four variables
and log-transformed (using natural logarithms) prior incorporation into the
analysis. The variables with absolute loadings of 0.5 or more are marked in bold.
Only the two first bgPC axes provided meaningful discrimination and are
therefore shown.
doi:10.1371/journal.pone.0091944.t002

Great Ape-Like Patella in Pierolapithecus
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intervals (CI) was calculated using a t distribution for small samples

(DF = 8, t = 2.306, a= 0.05), yielding a slope CI of 0.318–0.433,

which overlaps the isometric expectation of 0.333. ML also

exhibits a strong correlation with GM, and scales with a slope of

1.190. The l= 1.000 complicates use of standard statistical tables

in this instance. However, it is likely that this scaling pattern shows

a significantly positive allometry by a small margin (est. 95% CI

1.020–1.360), based on an isometric expectation of 1.000.

Therefore, the above-explained differences between hominids

and the hylobatid-monkey group in the Mosimann ratio ML/GM

(Fig. 2F) may be due to scaling effects.

Between-Group Principal Components Analysis
Most of the patellar shape variation (91.6%) among extant and

fossil taxa is explained by the two first between-group principal

components (bgPCs; Fig. 5; Table 2). bgPC1 (61.4% of variance) is

highly correlated with positive values of mediolateral patellar

breadth (ML) and especially negative values of anteroposterior

patellar thickness (AP). This axis completely separates apes from

cercopithecoids. However, platyrrhines and humans overlap on

this axis and occupy an intermediate position between cercopith-

ecoids and apes (overlapping with both). Differences in bgPC1

scores between taxa are statistically significant (F = 50.378,

p,0.001; see Table S1 for specific differences). These results

highlight the fact that monkeys and, especially, cercopithecoids

have anteroposteriorly thicker and mediolaterally narrower

patellae than extant great apes (see also Fig. 3). Symphalangus

exhibits the extreme condition for hominoids, being statistically

different from the remaining taxa except for Hylobates (p = 1.000;

Table S1). Conversely, modern humans, although in the range of

platyrrhines, show significant differences with all cercopithecoids

and extant ape genera (p,0.05; Table 2). bgPC2 (30.3% of

variance) is highly correlated with positive values of proximodistal

patellar length (PD) and negative values of mediolateral breadth

(ML). bgPC scores for this axis also show statistical differences

among genera (F = 14.882, p,0.001). Cercopithecoids, platyr-

rhines and hylobatids display overall significant differences from

extant great apes and humans (p,0.05; Table S1). Thus, although

there is overlap in the bgPC2 ranges of all great apes with those of

hylobatids and monkeys, the two latter groups show relatively

longer and narrower patellae than great apes and humans (see also

Fig. 3). Again, Symphalangus shows the extreme positive values

along bgPC2, by having the highest relative patellar proximodistal

length and lowest anteroposterior thickness. The MANOVA

Figure 1. Patella of Pierolapithecus catalaunicus. IPS 21350.37 is shown in anterior (A), posterior (B), lateral (C), medial (D), proximal (E) and distal
(F) views.
doi:10.1371/journal.pone.0091944.g001

Figure 2. Boxplots representing patellar size (GM) and Mosimann shape variables. A, patellar size (GM); B–F, shape variables standardized
by GM based on the four original variables. Vertical lines represent the median, boxes the interquartile range (between 25th and the 75th
percentiles), whiskers the extreme values, circles the outliers and asterisks the extreme outliers. Colors indicate the major taxonomic groups: blue,
cercopithecoids; red, platyrrhines; orange, hylobatids; green, great apes; purple, humans. Pierolapithecus is highlighted by a star and the grey vertical
line in every boxplot is meant to facilitate the visual comparison with the remaining taxa.
doi:10.1371/journal.pone.0091944.g002

Great Ape-Like Patella in Pierolapithecus
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results reveal that, when the two first bgPC axes are considered

together, differences are also statistically significant. All cercopith-

ecoid taxa are statistically different from the ape taxa, and

Symphalangus shows differences with the remaining primate genera

to the exception of Hylobates (p,0.001). Modern humans display

differences with apes and cercopithecoids (p,0.05), but not with

platyrrhines (p = 1.000; Table 2). Thus, to some degree, patellar

shape differences (as identified by our bgPCA) relate to phylogeny.

Great apes are more similar among them than to hylobatids,

cercopithecoid taxa are more similar to each other than to great

apes, and this is also the case of platyrrhine taxa. However,

concerning bgPC1 (the axis that explains the highest amount of

variance), cercopithecoids are more distinct from hominoids than

are platyrrhines (intermediate between both).

Most fossil apes (the two species of Proconsul, Nacholapithecus and

Oreopithecus) fall close in the bgPC1-bgPC2 morphospace, highly

overlapping with Symphalangus and great apes (mainly the

specimens KPS PT 4, BAC 122 and KNM-RU 17382) for

bgPC1. These fossil apes occupy a central position along bgPC2,

overlapping with extant apes and monkeys. BAC 122 (Oreopithecus)

shows the lowest values among the above-mentioned Miocene

apes, and KNM-RU 17382 (P. nyanzae) the highest. Overall, the

patella of these Miocene apes is relatively thin anteroposteriorly

and wide mediolaterally, in the uppermost range or just above the

extant great ape range (bgPC1), and in the upper range of great

apes for bgPC2 (by discounting one Pan outlier), but fully within

the monkey range for the latter axis. Two fossil ape patellae depart

from the others: KNM-MB 24738 (Equatorius) and IPS 21350.37

(Pierolapithecus). They show both lower bgPC1 (especially Equatorius)

and bgPC2 values than the remaining Miocene apes. When both

bgPC axes are inspected together, to the exception of KPS PT4 (P.

heseloni, which overlaps with Pan and is also close to Pongo), the

other Proconsul, Nacholapithecus and Oreopithecus specimens fall in a

unique region of the morphospace. Equatorius shows its closest

affinities with modern humans, and Pierolapithecus overlaps with

Pongo and Gorilla.

Figure 3. Patellar 3D virtual models of selected extant anthropoid genera and Pierolapithecus. Anterior (left), posterior (middle), and side
(right) views of: A, Cercopithecus (right, reversed); B, Colobus (right, reversed); C, Papio (right, reversed); D, Ateles (right, reversed); E, Cebus (left); F,
Hylobates (left); G, Symphalangus (right, reversed); H, Gorilla (left); I, Pan (right, reversed); J, Pongo (right, reversed); K, Homo (left); and L,
Pierolapithecus (IPS 21350.37, left). Patellae were scanned by a superficial laser scan (provided by P. Ibáñez). Then 3D models were created and scaled
to the same proximodistal size for a better visualization. Scale bars equal 1 cm.
doi:10.1371/journal.pone.0091944.g003
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Discussion

Patellar Shape and Function in Extant Anthropoids
Differences in patellar morphology between monkeys and

hominoids (especially great apes) have been previously noted on

the basis of the external dimensions used herein (PD, PDAS, AP,

and ML): monkeys exhibit proximodistally taller, anteroposteriorly

thicker and mediolaterally narrower patellae than great apes

(Figs. 3 and 5) [18,20,29]. These external dimensions have been

used to make functional inferences for Miocene apes [18]. In

particular, Ward and colleagues [18] concluded that differences in

external proportions of the patella between monkeys and apes

indicate biomechanical differences in their knee function, related

to bone stresses. However, it should be noted that only few

mechanical models of the non-human primate knee joint have

considered the coronal plane [30,31,32], and this is not the case of

the above-mentioned study on Miocene apes. Taking that into

account, the biomechanical notes that follow are only meant to

discuss patellar shape differences between monkeys and apes in the

light of available mechanicals models of the knee—restricted to the

sagittal plane—that have been previously used to infer hind limb

function in Miocene apes.

Our results agree with a previous study [24] according to which,

in non-human hominoids, the mediolateral breadth of the patella

scales with geometric isometry to body mass (BM), and further

indicate that this assertion holds not only for apes, but for monkeys

as well. Humans, in contrast, are clear outliers in this regression,

due to their bipedal locomotor behavior (Fig. 4A). Since no

significant grade shifts between monkeys and apes (only hylobatids

are slightly upshifted) have been found [18,24] (see also Fig. 4A), it

has been hypothesized that mediolateral patellar breadth is

relatively unaffected by the type of locomotion [18], further

providing a good surrogate of BM irrespective of phylogenetic

constraints.

However, PD and AP seem to display a strong functional signal

[18,29]. Our results, in agreement with previous work [18], show

that anteroposterior thickness of the patella is relatively higher in

cercopithecoids than in platyrrhines and apes, respectively

(Fig. 2D); whereas PD is higher in monkeys and hylobatids

(displaying Symphalangus the proximodistally highest patella) than in

great apes (Fig. 2B). This latter fact might be related to the

presence of a large non-articular surface, the apex, in the patellae

of monkeys and hylobatids (Fig. 3). Therefore, PD and AP mainly

differentiate monkeys and great apes. Both parameters have been

previously associated with the increase of the moment arm of the

quadriceps tendon-ligamentum patellae about the knee joint

[18,33]. In the case of AP, a thicker patella mainly separates the

ligamentum patellae from the center of rotation of the knee in the

Figure 4. Allometric bivariate plots. A, mediolateral breadth (ML) vs. body mass (BM); B, ML vs. patellar size (GM). The OLS and PGLS allometric
regression equations are reported in Table 1; black line denotes female means of non-humans primates OLS regression (see text for further
explanation). Because of the isometric relationship between ML and BM, the former can be used as a surrogate of BM (see text).
doi:10.1371/journal.pone.0091944.g004

Figure 5. Between Groups Principal Components Analysis (BgPCA) performed on extant taxa and individual fossil patellae. The first
two axes explain up to 91.6% of the total variance (BgPC1, 61.4%; BgPC2, 30.3%). Major taxonomic groups are indicated by colors as follows: blue,
cercopithecoids; red, platyrrhines; orange, hylobatids; green, great apes; purple, humans. Pierolapithecus is highlighted by a star. See Material and
methods and Table 1 for more details.
doi:10.1371/journal.pone.0091944.g005
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sagittal plane, changing the angle of action of the quadriceps

muscle mainly during flexed knee positions as well as increasing

the moment arm of the muscle. Regarding PD, the greater length

of the patella (including the apex) increases the lever arm of the

quadriceps muscle from a flexed posture of the knee, thus

enhancing the torque or rotational force of the joint [18,34].

Therefore, the higher moment arms generated by a large

proximodistal and thick anteroposterior patellae about the knee

joint probably favor the forceful extension of that joint from fully-

flexed positions [18,33,35,36]. Although not mentioned in

previous studies, a higher moment arm also implies a lower

angular velocity [37], hindering a quick extension of the knee

mainly during leaping. In this regard, further work is needed to

solve this dichotomy and better understand the biomechanics of

the primate knee and its relationship with patellar morphology.

Thus, when AP and PD are assessed within a positional context, it

can be observed that primates which rely on leaping and galloping

(with predominant excursions of the joint from a full-flexed knee to

extended positions) display higher values of these two parameters

(Figs. 2 and 5) [18,29]. The proximodistally short and anteropos-

teriorly thin patellae of great apes have been associated with a

more versatile knee, with a wider range of positions and no

habitual full flexion of the knee [18,29]. The locomotor repertoire

of these taxa (probably related to their large body mass) does not

include frequent leaping or galloping. Instead they practice more

frequently orthograde behaviors, such as vertical climbing, below-

branch suspension, clambering and bridging (e.g., [18,38,39]).

Since great apes show fully-flexed knee positions in a notably lower

frequency than monkeys (only orangutans clearly full-extend the

knee during arboreal bipedalism) [18,39–42], so that their shorter

anteroposteriorly and proximodistally patellae might reflect these

different biomechanical demands relative to non-hominid anthro-

poids (i.e., lower moment arms in the knee).

Furthermore, African apes and orangutans differ in type of

locomotion and frequency of arboreal behaviors [42–45]. The

former are characterized by the practice of knuckle-walking, which

implies an assemblage of specific adaptations [38,46,47]. In

contrast, orangutans are more arboreal, and mostly rely on

below-branch suspension and clambering for traveling horizon-

tally [40,41,48,49]. Apart from some degree of suspension, vertical

climbing (upright trunk progression on arboreal supports employ-

ing hind limb propulsion and hands and feet grasping) seems to be

the common locomotor behavior among all extant apes [40,50].

Hylobatids, and especially Symphalangus (which employ vertical

climbing even more often than great apes [50]), employ less

abducted hind limb positions than the latter during vertical

climbing [41,50]. It is noteworthy that African apes and

orangutans practice vertical climbing in different frequencies,

and that there are also some differences in the hind limb use, since

in orangutans the knee is less flexed and more extended, and the

hip is more flexed and abducted, than in African apes [40,41,48].

Likewise, orangutans possess a larger mass of knee flexor muscles

relative to the extensors, thus favoring the rotation and flexion of

the knee as well as a wider variety of postures at this joint [49].

However, these differences are not reflected in the overall

proportions of the patella as captured by our analyses (Figs. 2

and 5). Nonetheless, African apes display a trapezoidal patellar

surface in the distal epiphysis of the femur (Fig. 3), which might

reflect a decreased mobility of the knee joint compared to

orangutans [20]. Thus, although further studies are needed in this

regard, the African ape configuration might be slightly derived

among extant great apes, being potentially related to an increase in

knee stability during knuckle-walking. In fact, orangutans show a

greater capability of knee rotation, as well as a higher range of

motion of their joints, when compared to African apes [40,49].

Inferences on Knee Function and the Evolution of
Pierolapithecus and Other Miocene Apes

In the above-mentioned regards, the patella of Pierolapithecus is

essentially similar to that of great apes (and especially orangutans

and gorillas; Figs. 2, 3 and 5). The comparable patellar

morphology of Pierolapithecus and great apes suggests a similar

biomechanical loading regime (and associated joint positions), with

no habitual and stereotyped flexion-extension of the knee joint.

This positional hypothesis is compatible with the orthograde body

plan inferred for Pierolapithecus on the basis of its thorax

morphology [1]. In this taxon, the lack of extant ape-like specific

adaptations to below-branch suspensory behaviors (e.g., moderate

hand length and phalangeal curvature), combined with its

orthograde body plan and loss of ulnocarpal contact, led previous

authors to suggest that enhanced vertical climbing capabilities

(compared to previous apes) was the main target of natural

selection [1,2,4,13]. Previous inferences of above-branch palmi-

grady for Pierolapithecus, based on hand morphology (e.g., dorsally

oriented metacarpo-phalangeal joints) [1,4,13], are a priori less

consistent not only with orthogrady, but also with the great ape-

like patellar morphology observed for this taxon in our analyses.

However, the above-branch quadrupedalism displayed by Pier-

olapithecus probably has no modern analog, due to its tailless

condition and powerful-grasping (thumb-assisted) capabilities

inferred for this and other Miocene apes [1,4,13,16,51].

Pierolapithecus also exhibits a pelvic morphology similar to Proconsul,

but with a slightly more marked lateral flaring of the ilia [8].

Unfortunately no femoral remains are available for this taxon,

although those available for other Miocene hominoids have been

found to share a similar proximal shape to each other [52]. This

fact may suggest similar and unique hip biomechanics for most

Miocene apes, which would display (like in Proconsul) a mosaic

postcranial morphology, combining in the case of Pierolapithecus an

orthograde body plan with above-branch palmigrady, great ape-

like knee function and hip joint with increased ape-like mobility

(e.g., [4,8,12,53]).

In evolutionary terms, our results suggest that cercopithecoids

might display, concerning the anteroposterior dimension, the most

derived patella among anthropoids (Figs. 2 and 5). However, great

apes show somewhat anteroposteriorly thinner patellae than

monkeys, although thicker than those of the fossil taxa (Fig. 5;

Table 2). Ward et al. [18] proposed that the patellar morphology

of stem hominoids such as Proconsul and Nacholapithecus would be

representative of the primitive hominoid condition—i.e., prox-

imodistally higher, anteroposteriorly thinner and mediolaterally

narrower patellae compared with those of extant great apes.

Therefore, the quadriceps muscle mechanical advantage may have

increased in the course of hominoid evolution, but never attaining

the extreme values of cercopithecoids. This fact might be related to

the more varied locomotor repertoire of great apes than that of

monkeys, being Pierolapithecus similar to the former group in this

regard. The external morphology of the patella of Equatorius, in

turn, is closer to that of African apes, and even to that of modern

humans (Figs. 2, 3 and 5). This fact might be explained by the

pronograde, semi terrestrial behaviors inferred for this taxon [54–

56]. This type of locomotion, to a large extent, would be similar in

functional requirements to the locomotor repertoire of chimpan-

zees and bonobos, which rely on arboreal behaviors more

frequently than gorillas. This positional behavior requires a highly

versatile knee joint for combining orthograde locomotor behaviors

(such as vertical climbing and suspension) with quadrupedalism in
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both arboreal and terrestrial substrates. In addition to the

specimen KPS PT 4 (P. heseloni), the patellae of Pierolapithecus and

Oreopithecus—the only widely accepted orthograde taxa among the

analyzed fossil apes [1,5,57,58]—are those that most closely

resemble great-ape patellae (Figs. 2, 3 and 5), probably exhibiting

a versatile knee joint.

Given that the evolution of the locomotor apparatus in apes

during the Miocene apparently proceeded in a mosaic fashion

(e.g., [6,12,13,58]), and the current decimated diversity of extant

hominoids, there should not be surprising that there are no extant

locomotor analogs for these extinct taxa [1,6,8,58]. The above-

branch quadrupedal component and the lack of specific below-

branch suspensory adaptations inferred for Pierolapithecus suggest

that its great ape-like patellar morphology might be simply

attributable to the higher range of knee motion required by

orthograde vertical climbing, which would have been probably

most similar to that performed by extant great apes (with extended

hip joints and flexed knees, and more abducted hind limb positions

than in lesser apes) [1,4,5,13,40,41]. All extant hominoids share a

similar orthograde body plan, suitable for both vertical climbing

and below-branch suspensory behaviors (and bipedalism in

hominins) [40,41,48]. However, the evidence provided by

Pierolapithecus [1,2,4,8,13] suggests that the acquisition of suspen-

sory adaptations might have been decoupled from that of vertical

climbing (contra [11,14,15])—with clear suspensory adaptations

not being displayed until the late Miocene by Hispanopithecus/

Rudapithecus (see discussion in [59], but also [13–15,17,52,60–62]).

Concerning the latter taxa, the below-branch suspensory adapta-

tions observed on their femora [52,60,61,63,64] and other

postcranial remains [13–15,17,60–62] lead us to predict, based

on our analyses above, that the patella of Hispanopithecus (if ever

found) would probably resemble those of modern great apes, like

in Pierolapithecus and Oreopithecus.

Conclusions

Morphometric analyses of the patella of Pierolapithecus catalaunicus

reveal its closest shape affinities with those of extant great apes.

The great ape-like—i.e., proximodistally short, anteroposteriorly

thin and mediolaterally broad—patellar morphology displayed by

Pierolapithecus is functionally related (on the basis of available knee

mechanical models) to a wider range of movements at the knee

joint [18,29], thereby suggesting that this fossil great ape probably

exhibited a more versatile knee joint than the more stereotyped

configuration (full flexion-extension) characteristic of monkeys

(especially cercopithecoids). In contrast, the patellae of stem

hominoids (such as Proconsul or Nacholapithecus) differ by being

anteroposteriorly more compressed than that of Pierolapithecus (a

morphology that has been inferred to be the plesiomorphic

condition for hominoids). In turn, hylobatids display a patellar

morphology intermediate between those of monkeys and great

apes (an even autapomorphic to some degree). We hypothesize

that, taking into account the lack of specific suspensory adaptations

in the orthograde Pierolapithecus (which still heavily relied on above-

branch quadrupedalism), its great ape-like patellar morphology

probably evolved originally in conjunction with orthograde

behaviors (other than suspension) requiring increased versatile

movements of the knee joint, such as specialized vertical climbing.
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Oreopithecus bambolii pollical distal phalanx. Am J Phys Anthropol In press.
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