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Abstract

Plant leaf area (LA) is a key metric in plant monitoring programs. Machine learning methods

were used in this study to estimate the LA of four plum genotypes, including three green-

gage genotypes (Prunus domestica [subsp. italica var. claudiana.]) and a single myrobalan

plum (prunus ceracifera), using leaf length (L) and width (W) values. To develop reliable

models, 5548 leaves were subjected to experiments in two different years, 2019 and 2021.

Image processing technique was used to extract dimensional leaf features, which were then

fed into Linear Multivariate Regression (LMR), Support Vector Regression (SVR), Artificial

Neural Networks (ANN), and the Adaptive Neuro-Fuzzy Inference System (ANFIS). Model

evaluation on 2019 data revealed that the LMR structure LA = 0.007+0.687 L×W was the

most accurate among the various LMR structures, with R2 = 0.9955 and Root Mean

Squared Error (RMSE) = 0.404. In this case, the linear kernel-based SVR yielded an R2

of 0.9955 and an RMSE of 0.4871. The ANN (R2 = 0.9969; RMSE = 0.3420) and ANFIS

(R2 = 0.9971; RMSE = 0.3240) models demonstrated greater accuracy than the LMR and

SVR models. Evaluating the models mentioned above on data from various genotypes in

2021 proved their applicability for estimating LA with high accuracy in subsequent years. In

another research segment, LA prediction models were developed using data from 2021,

and evaluations demonstrated the superior performance of ANN and ANFIS compared to

LMR and SVR models. ANFIS, ANN, LMR, and SVR exhibited R2 values of 0.9971, 0.9969,

0.9950, and 0.9948, respectively. It was concluded that by combining image analysis and

modeling through ANFIS, a highly accurate smart non-destructive LA measurement system

could be developed.
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Introduction

European nations introduced the first plum varieties, including damson (Prunus domestica
subsp. insititia) and greengage (Prunus domestica subsp. italica var. claudiana.). Greengages

are indigenous to continental Europe [1]. Plums, which are members of the Prunus genus, in

production among the stone fruits are in second place after peaches and nectarines. Due to the

genus’s diversity center’s proximity to the origin of the first human civilizations, it was one of

the first fruits considered by humans [2]. However, the genus’s antiquity dating back to

Roman times [3] and natural intraspecific crosses may account for the existence of more than

2,000 varieties, although only a few of them are commercially valuable [4, 5]. Plums are effec-

tive in the prevention and treatment of many diseases due to the presence of beneficial com-

pounds to human health such as antioxidant and phenolic compounds, dietary fiber, isatin,

lutein, cryptoxanthin, zeaxanthin sorbitol, potassium, fluoride, iron, and vitamins A, C, and B-

complex groups such as vitamin B-6, pantothenic acid, and niacin [4].

Iran’s indigenous wild fruit trees are poorly documented, with only a few cases reported

[3]. Cherry plum (Prunus divaricata Ledeb.) is a diploid wild plum species that grows to a

height of 10 meters as a thornless deciduous shrub or tree and is self-incompatible with edible

fruits. The Balkan Peninsula, Central Europe, the Caucasus, and Central Asia, including north-

ern Iran, are native to this species [6]. Various non-wood forest products and forest fruits,

including Prunus divaricata Ledeb, contribute significantly to the economic well-being of

some rural households in northern Iran’s forests, both directly and indirectly. Due to its exten-

sive use as spring fruits and as a rootstock, this wild species increases resistance to root-knot

nematodes in peach and plum nurseries, making it an ideal candidate for further study and

domestication [5].

Determining the effective parameters affecting plant yield is a goal shared by many crops

and horticulture researchers. Meanwhile, measuring the leaf area (LA) plays a vital role in eval-

uating plant growth and development in a variety of ecophysiology and physiology studies [7–

9]. LA is an essential structural feature of plants and has long been a focus of research in plant

science. It is the main level of exchange of matter and energy between the tree canopy and the

atmosphere and is associated with various processes such as light absorption, evaporation,

transpiration, and photosynthesis [9, 10].

Accurate LA measurement is critical for plants whose fruit size is economically valuable, as

fruit load and LA are correlated [9, 11]. Additionally, it is essential to evaluate tree pruning sys-

tems and determine the pest population density [12]. LA and its derived parameters, such as

leaf area index (LAI), net assimilation rate (NAR), specific leaf area (SLA), specific leaf weight

(SLW), and leaf area duration (LAD), are significant for evaluating the relationship between

plants and their environment [7, 8]. Because LA and yield are related, evaluating LA can aid in

identifying superior genotypes, particularly under abiotic stress conditions. LA has been dem-

onstrated to be reduced by drought, and drought-resistant Jerusalem artichoke genotypes

could retain LA [13]. The LA was identified as a significant morpho-physiological trait in the

screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance [14].

Sravanthi and Ratnakumar [15] demonstrated that the superior sesame (Sesamum indicum L.)

genotype IC-204966 for LA was significantly different from other genotypes under deficit

moisture stress.

Regarding the physiological and ecological significance of leaf area, accurate measurement

of LA is necessary for elucidating the interaction between plant growth and the environment.

Today, mathematical models used to predict the growth of plant components provide reliable

criteria. Numerous methods have been developed to facilitate LA measurement. These factors

can be determined destructively or non-destructively [16, 17]. Harvesting leaves is required for

PLOS ONE Artificial intelligence for non-destructive leaf area measurement

PLOS ONE | https://doi.org/10.1371/journal.pone.0271201 July 11, 2022 2 / 25

https://doi.org/10.1371/journal.pone.0271201


conventional and destructive methods, which is costly and a time-consuming and challenging

process. On the other hand, these methods may indicate the impossibility of studying leaf

growth trends throughout the growing season, thereby lowering the accuracy of assessments.

Developing LA estimation models that are adjusted for leaf L and W enables a non-destructive,

precise, and rapid evaluation process and the ability to track leaf growth accurately and moni-

tor plant health more effectively.

Artificial neural network (ANN) is one of the most widely used and reliable approaches in

various sectors of the food and agricultural industries. The ANN algorithm is a supervised

machine learning algorithm that simulates the human brain’s classification function for regres-

sion-type applications [18, 19]. An ANN structure consists of an input layer, an output layer,

one or more processing layers referred to as hidden layer(s), and a collection of processing ele-

ments referred to as neurons. Each neuron’s weight and bias values are adjusted throughout

the training process to minimize errors and optimize classification or prediction accuracy

until the predefined performance conditions are satisfied [20]. ANNs have been used in a vari-

ety of agricultural studies, including the prediction of plant biology processes [21], the predic-

tion of genetic merit for flowering traits [22], the identification of plants and weeds [23, 24],

and yield prediction [25, 26]. Moreover, there are some excellent review articles on the applica-

tions of ANNs in agriculture [27–29].

Kumar et al. [11] utilized the ANN model to estimate durian LA based on leaf L and W.

The best-fitting result was obtained by an ANN with one hidden layer and two neurons in the

hidden layer. The values of coefficient of determination. The R2 and RMSE of this model were

0.94 and 4.81 on test data, respectively. Another study used an ANN with a single hidden layer

of six neurons to estimate the LA of the invasive Wedelia plant, with R2 and RMSE values of

0.96 and 0.379, respectively [30]. Furthermore, several other publications report on the suc-

cessful use of ANN in estimating plant LA [31–35].

Adaptive Neuro-Fuzzy Inference System (ANFIS) is a more recent intelligent supervised

hybrid machine learning technique that solves classification and modeling problems by com-

bining the learning capabilities of ANNs and fuzzy logic systems [36]. Shastry and Sanjay [37]

describe the fundamental concept and architecture of ANFIS, as well as some of the applica-

tions of ANFIS in agriculture. Sabouri and Sajadi [38] demonstrated the efficacy of using

ANFIS and ANN modeling to predict the LA of bread wheat, durum wheat, and triticale plants

using image-extracted L and W dimension values. Additionally, ANFIS was successfully used

to predict LA plant species using leaf L, leaf W, plant type, and a specific coefficient defined for

each plant with an R2 = 0.997.

Support Vector Regression (SVR) is a generalization of Support Vector Machine (SVM)

that incorporates regression functions into SVM to solve regression problems [39, 40]. As a

supervised machine learning algorithm, SVR has a high capability in regression modeling [41,

42]. SVR is a kernel-based technique in which the kernel function projects the input data into

higher-dimensional feature space to find the hyperplane with the lowest error margin and the

best fit to the regression line [43, 44]. A comparison study conducted by Abdel-Sattar and

Aboukarima [45] proved the superiority of ANN and SVR methods over linear regression

methods (LRM) for predicting the mass of Indian jujube fruits based on their axial dimen-

sions. Sabouri and Sajadi [46] recently reported that using ANFIS and SVR methods, they

were able to predict the LA of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa
Willd.) with high accuracy (R2 > 98%), while demonstrating that methods based on artificial

intelligence are capable of accurately estimating a plant’s LA.

To our knowledge, there is no study comparing the capability of soft computing methods

for the estimation of plum LA. The main contribution of this work was to introduce a model

to be used for the non-destructive measurement of plum leaf area based on its length and
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width values. To reach this aim we collected a big database that can also be used by researchers

for their further works. Thus, this study aimed to investigate the LA measurement applications

of LRM, ANN, ANFIS, and SVR algorithms. To this end, various modeling strategies were

compared, and the most successful plum LA estimator was introduced. Furthermore, the

approaches mentioned above’ generalizability were investigated to develop a comprehensive

tool for estimating the LA of multiple plum genotypes using a single universal model.

Materials and methods

Data collection

Three greengage genotypes [Prunus domestica (subsp. italica var. claudiana.)] with local

names Gavali, Ghandi and Shahryari and a myrobalan plum (prunus ceracifera) with the local

name of Jangali were used to develop and validate the LA prediction models. The age of the

trees varied between 15 and 26 years. Leaf samples were picked carefully and placed in a cooler

and immediately were transported to the laboratory. These genotypes were determined as an

example of greengage and myrobalan plums throughout the northern region of Iran. Images

of the studied plums are presented in Fig 1. The fruits are also included in this figure to help

better understanding of readers about these genotypes.

Data collection was performed in two series. The first experiment was carried out during

the 2019 growing seasons by collecting 1224 undamaged leaves at all stages of development of

Gavali greengage randomly from different levels of the canopy in the four directions of the

crown from the research orchard of the Faculty of Agriculture, the University of Guilan, Rasht,

Iran (37˚16_N, 51˚3_E). The second data collection phase was done in 2021, in which all of

the four mentioned genotypes were experimented. The numbers of collected data for each

genotype are available in Table 1. It is also worth noting that data validation was performed

before data analysis and removed all data that were outliers or unacceptable.

To accelerate the process of extracting the required information from a large number of leaf

samples, the image analysis method was used. In order to acquire the desired images, the col-

lected leaf samples were placed on a mate white platform and the images were captured using

Fig 1. The leaves and fruits of three greengage genotypes [Prunus domestica (subsp. italica var. claudiana.)] with

local names Gavali (1), Ghandi (2) and Shahryari (3) and a myrobalan (4) plum (prunus ceracifera) with local

name of Jangali.

https://doi.org/10.1371/journal.pone.0271201.g001
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a smartphone which was placed perpendicularly above the samples with a constant vertical dis-

tance of 55 cm. The acquired images having the frame size of 5312 × 2988 pixels, were trans-

ferred to the computer for further processing.

Image processing and feature extraction

Fig 2 shows the diagram of the methodology used in this study for LA estimation model devel-

opment. To extract L, W, and LA values of the sample leaves, the RGB images of leaves were

loaded into and processed in the image processing toolbox of MATLAB programming soft-

ware (The MathWorks, USA, version R2018b). The primary images were in RGB space, there-

for the red (R), green (G), and blue (B) color layers were extracted. Regarding the green color

of the plum leaves, the popular Excessive Green index (EGI) method was used to identify leaf

regions in images. The ExG component was calculated using Eq 1 [47]:

ExG ¼ 2g � r � b ð1Þ

where the r, g, and b values were extracted using Eqs 2 to 4 [47]:

r ¼
R

Rþ Gþ B
ð2Þ

g ¼
G

Rþ Gþ B
ð3Þ

b ¼
B

Rþ Gþ B
ð4Þ

Otsu optimal thresholding method [48] was applied on the ExG image to segment leaf

regions from the image background. The attained binary image contained the leaves regions

in white (with 1 value), as regions of interest (ROI), the image background in black (with zero

value), and also having some possible unwanted white points. Thereupon, morphological

opening (an erosion followed by a dilation) was applied using “imopen” function in the

MATLAB programming software, to remove these noises. Regions of different leaves in the

resulting black-and-white (binary) image were labeled and the leaf L, W and LA values were

extracted from the leaf binary images.

Image of a white square with known 1 cm ×1 cm dimensions was captured in a similar con-

dition to leaves and used to convert the pixel-based extracted values of leaves to centimeters.

Regression models

Linear regression analysis was performed to build the best model for predicting LA by using

the Excel 2016 software (Microsoft Corporation, Redmond, WA). With considering different

subsets of leaf data, including W, L, W2, L2, L+W, product (L×W), (L+W)2, and the square

Table 1. Performance values of image processing technique for measuring the leaf shape features.

Shape feature R2 RMSE

Leaf length 0.9999 0.0100

Leaf width 0.9999 0.0084

Leaf Area 0.9999 0.0225

https://doi.org/10.1371/journal.pone.0271201.t001
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root of (L×W)2, as independent variables, and LA as the dependent variable, regression model-

ing was conducted.

ANN

In this study, the well-known Multi-Layer Perceptron (MLP) neural network with one hidden

layer was developed in MATLAB programming software to estimate the LA based on L and W

values. Error backpropagation algorithm was used to adjust the weights and biases of net-

works. Different MLPs were developed and compared by changing the number of neurons in

the hidden layer (1 neuron to 30 neurons), the type of transfer function (Tangent sigmoid (TS)

and logarithmic sigmoid (LS)), and the training technique (Levenberg-Marquardt (LM),

Scaled conjugate gradient (SCG), and Bayesian regularization (BR)). The transfer function of

the output layer was pure-line. Values of leaf L and W were fed into the MLPs as input data

Fig 2. Methodology diagram of the LA estimation model development.

https://doi.org/10.1371/journal.pone.0271201.g002
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and the LA values were the target data. The dataset was divided randomly into training data

(60%), cross-validation data (20%) and model test data (20%).

ANFIS

Sugeno-based ANFIS models were developed in MATLAB programming environment using

grid partitioning technique for the estimation of plum LA based on leaf L and W values. Dif-

ferent types of input Membership Functions (Gaussian, Sigmoidal, and Triangular), output

Membership Functions (linear and constant MFs), and Optimization Methods (Back-Propa-

gation and the hybrid), besides different number of Membership Functions (2, 3, and 4 Mem-

bership Function for each input variable) were evaluated to find the most accurate ANFIS

estimator model. The dataset segmentation for ANFS training, cross-validation, and test was

performed such as that described previously for the ANN model.

SVR

The foundational parameters of SVR algorithms are kernels. The accuracy of SVR models hav-

ing different kernels, including Linear, Polynomials (2 and 3 dimensional), RBF, and Sigmoid

were evaluated to find the most efficient SVR algorithm for LA estimation.

Evaluation of developed models

In order to find the most suitable LA estimator engines, the developed models were selected by

simultaneously considering the highest coefficient of determination (R2) and the least RMSE

[49]. These criteria were calculated using Eqs 5 and 6:

R2 ¼ 1 �

Pn
i¼1
ðLAmea;i � LAest;iÞ

2

Pn
i¼1
ðLAmea;i � � LAmeaÞ

2

" #

ð5Þ

RMSE ¼
1

n

Xn

i¼1

ðLAmea;i � LAest;iÞ
2

" #0:5

ð6Þ

where, LAest,i, LAmea,i, LAmea , n and k, are the ith estimated value, the ithe measured value, the

average of observed values, the total number of LA data, and the number of model parameters,

respectively.

Model validation

A proposed model is valuable if it can be applied with high reliability in next experiments even

in future years. In this regard, the models developed by the data of 2019, were validated using

the data of the 2021 experiments on four genotypes. One genotype was the same as that was

used for developing the model (greengage Gavali) and three more genotypes including Ghandi

and Shahryari genotypes from greengage (prunus domestica) and Jangali genotype from plum

myrobalan (prunus ceracifera). Leaf W, L, and actual LA values were measured for 1470 leaves

of Gavali genotype, 899 leaves of Shahryari genotype, 925 leaves of Ghandi genotype, and 1030

leaves of Jangali genotype, respectively. The L and actual LA of 2021 samples were fed into

pre-developed models. The R2 and RMSE values between actual 2021 LA values and the corre-

sponding estimated values were calculated to show the effectiveness of trained LRM, ANN,

ANFIS, and SVR models.
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Results

Image processing

A gallery of the results of different image segmentation steps is provided in Fig 3. It can be

seen that all the leaves were completely separated from the image background to be then used

for dimension extraction.

In order to provide a reliable application of image analysis for plum leaf characteristics, a

number of 100 leaves were selected randomly and the image extracted L and W values were

compared to the manual measurements.

The evaluation results are presented in Table 1 which shows that the image processing

method has a very high ratio of performance in leaf characteristic measurement. The R2 values

of more than 0.9999 show the very high degree of accuracy and applicability of the image

Fig 3. Results of image segmentation steps; a) primary RGB image, b) EXG image, c) first obtained binary image after implementing optimal

threshold on the EXG image, and d) final binary image after removing small objects (noises) and filling inside leaf regions.

https://doi.org/10.1371/journal.pone.0271201.g003
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processing technique for the measurement of leaf shape characteristics. So this method was

used to extract leaf data to be used for model development operations.

Descriptive statistics of collected data from leaves

Descriptive statistics of three leaf morphology measures including L, W, and LA values are pre-

sented in Table 2 for three greengage genotypes and one myrobalan plum based on collected

data in 2019 and 2021.

LRM model

Fitting LRMs on 2019 data to develop the model. Different mathematical equations for

estimating the LA of plum (Accession 1) in 2019 are shown in Table 3. The Independent vari-

able L and W product (L×W) was identified as the best model, giving the lowest RMSE

(0.4037) value, also the highest R2 (0.9955).

The model which was regressed independent variable only leaf length (L) had the lowest R2

value and the highest RMSE value, resulting it is less acceptable to plum LA estimation. While

the use of only the leaf width in regression modeling of LA estimation appeared more

successful.

Based on selection criteria including lowest RMSE and highest R2, the best equation includ-

ing product of L and W (LA = 0.007 + 0.687 L×W) was selected to accurately predict the plum

LA. Fig 4 shows the predicted values by this model vs. the LA values measured in 2019.

Evaluation of the 2019 data-based LRM model with 2021 data. Data of Gavali accession

and two other greengage accession from prunus cerasifera and one myrobalan plum cultivar

(prunus cerasifera) in 2021 were used for validation of the selected model. In this regard,

about 1000 leaves of four genotypes were taken during 2021. The W, L and actual LA were

Table 2. Descriptive statistics of leaf Length (L), width (W) and area (LA) of three greengage genotypes with local names Gavali, Ghandi and Shahryari and a myro-

balan plum with the local name of Jangali.

Genotype name year Population size Leaf L (cm) Leaf W (cm) LA (cm)2

Mean±SE Min Max Mean±SE Min Max Mean±SE Min Max

Gavali 2019 1224 4.5753±0.0400 1.3045 9.1903 2.6192±0.0284 0.8485 6.4840 9.1375±0.1725 1.0271 39.8978

Gavali 2021 1470 4.2248±0.0287 0.9129 20.6068 2.3995±0.0170 0.5052 4.4509 7.5005±0.0966 0.3952 20.9407

Shahryari 2021 899 3.5501±0.0450 0.9562 7.6593 1.7086±0.0271 0.4664 4.8096 4.8274±0.1403 0.3246 25.1487

Ghandi 2021 925 2.9602±0.0334 0.9267 8.1396 1.4453±0.0201 0.4195 4.2884 3.2748±0.0798 0.3106 20.9286

Jangali 2021 1030 2.5951±0.0279 0.9906 6.4329 1.2001±0.0147 0.4989 3.3662 2.3161±0.0516 0.3549 11.9520

https://doi.org/10.1371/journal.pone.0271201.t002

Table 3. Fitted models to estimate the LA from leaf length (L) and leaf width (W) in plum (prunus vachuschtii,
Alucheh Gavali) in 2019.

Model A B R2 RMSE

1 LA = a+b(L×W) 0.0074 0.6871 0.9955 0.4037

2 LA = a+b(L+W)2 -0.2942 0.1646 0.9912 0.5648

3 LA = a+b(W)2 1.2158 1.0100 0.9757 0.9406

4 LA = a+bW -6.4560 5.9535 0.9578 1.2401

5 LA = a+b
p

(L×W) -8.3383 5.0598 0.9566 1.2569

6 LA = a+b(L+W) -8.7924 2.4922 0.9478 1.3792

7 LA = a+b(L)2 -0.8958 0.4383 0.9464 1.3973

8 LA = a+bL -9.5096 4.0756 0.8942 1.9624

https://doi.org/10.1371/journal.pone.0271201.t003
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measured and LA predicted using the selected model. The estimated regression parameters, R2

and goodness of fit test between modeled and observed LA in four genotypes are shown in

Table 4.

Interestingly, the selected model in 2019 was not only able to predict LA for the same plum

accession, but also succeeded in predicting the LA in large size populations for the other three

Fig 4. Scatter plot of the estimated LA values by LA = 0.007 + 0.687 L×W model vs. the corresponding measured LA values of 2019 dataset.

https://doi.org/10.1371/journal.pone.0271201.g004

Table 4. Validation of “LA = 0.6871LW + 0.0074” model for estimation of LA of three greengage genotypes with local names Gavali, Ghandi and Shahryari, and a

myrobalan plum with the local name of Jangali, recorded in 2021.

Genotype name Botanical classified Intercept (SE) Coefficient regression (SE) R2 RMSE

Gavali prunus domestica 0.0137(0.0188) 1.0155(0.0229) 0.9926 0.3485

Shahryari prunus domestica -0.0289(0.0374) 0.9901(0.0420) 0.9971 0.2441

Ghandi prunus domestica 0.0799(0.0415) 0.956(0.0325) 0.9936 0.2336

Jangali prunus cerasifera 0.068(0.01287) 0.9312(0.0279) 0.9941 0.2017

https://doi.org/10.1371/journal.pone.0271201.t004
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genotypes. The coefficient of determination fitted regression between measured LA and pre-

dicted LA were more than 0.99 for four genotypes (Table 4). Moreover, the regression lines of

predicted versus measured LA data were not significantly different from the slope (= 1) and

intercept (= 0) 1:1 line (Fig 5a to 5d). Axis bounds are selected the same for all scatter plots to

help better comparison.

Calibration of a universal model for LA estimation for plum by pooling data. We cali-

brated a LA estimation model derived from each genotype using collected data in 2021.

Table 5 shows the results of regression analysis for four genotypes. According to the results,

regression coefficients of four equations were not significantly different (Table 5). In addition,

distribution of predicted LA data using the selected model derived from a single accession for

all four genotypes were homogenous with their actual LA data (Table 5). Therefore, these

results suggest that there is possible to calibrate a universal model for estimation of plum LA

by pooling all data of four genotypes in 2021.

Fig 5. Scatter plots of the estimated LA values by LA = 0.007 + 0.687 L×W model (developed by 2019 data) vs. the corresponding measured LA

values of 2021 dataset for different genotypes; a) Gavali, b) Ghandi, c) Shahryari, and d) Jangali.

https://doi.org/10.1371/journal.pone.0271201.g005
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After approving those linear models derived from four genotypes for estimating LA are not

significantly different, all 2021 data were pooled and a comprehensive model was developed to

estimate the LA using product of L and W as the independent variables [LA = a+b(L×W)].

The resulting universal equation of the estimation model was LA = -0.039+0.6922 L×W (R2 =

0.9950, RMSE = 0.2723). the scatter plot of the estimated vs. measured LA values are presented

in Fig 6, in which closeness of LA points to 1:1 line shows the high accuracy of this model.

Table 5. The results of regression analysis for three greengages (prunus domestica) and a myrobalan plum (prunus cerasifera) genotypes to estimate the LA using

the product of leaf length (L) and width (W) as independent variable [LA = a+b(L×W)] using collected data in 2021.

Genotype name Botanical classified a b R2 RMSE

Gavali prunus domestica 0.0208 0.6977 0.9925 0.3194

Shahryari prunus domestica -0.0220 0.6802 0.9971 0.2277

Ghandi prunus domestica 0.0886 0.6568 0.9936 0.1944

Jangali prunus cerasifera 0.0745 0.6398 0.9941 0.1277

https://doi.org/10.1371/journal.pone.0271201.t005

Fig 6. Scatter plot of the estimated LA values by universal regression model (LA = -0.039+0.6922 L×W) vs. the corresponding measured LA values

of 2021 dataset containing all studied genotypes.

https://doi.org/10.1371/journal.pone.0271201.g006
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ANN results. Different combinations of ANNs were trained and evaluated using 2019

data and the most accurate ANN models were selected based on the performance criteria. The

selected ANN structures are presented in Table 6. Regarding the statistical criteria, the ANN

model with LM training function, LS transfer function, and 21 neurons in the hidden layer

(LM-LS-21), was the most accurate ANN model having R2 and RMSE values of 0.9969 and

0.3420, respectively, on the training data.

Fig 7a depicts the variations of the Mean Squared Error (MSE) values during the training

process of the optimal ANN for training, validation and test datasets. It can be observed that

the training was terminated by validation check at epoch 14 for the data of 2019. The least

MSE value of this model on the validation data obtained 0.25813.

In Fig 8, the effect of the number of neurons in the hidden layer on the performance values

of the LM-LS arrangement is graphically presented. It can be observed that, for the 2019 data,

the highest R2 and the smallest RMSE value of the ANN model were obtained when 21 neu-

rons were used in the hidden layer (Fig 8a and 8b).

This optimize ANN model was evaluated on a separated test set of 2019 recordings which

was not involved in the training process. The resulting R2 and RMSE measures were obtained

0.9966 and 0.3618, respectively. Fig 9a and 9b depict the graphical results of the ANN model

on the training and test dataset. Closeness of the points to the one-to-one line (red line) both

train and test datasets shows the high prediction ability of the ANN model.

The selected ANN model was also evaluated on the data of the 2021 data gathering experi-

ments and the statistical values are presented in Table 7. The statistics in Table 7 prove the

high ability of the ANN model trained with the data of one year to be used for LA estimation

of plum genotypes even in future years.

In order to include the information of all genotypes in the process of model building, to

obtain a more comprehensive plum LA estimator model, the 2021 recorded characteristics of

plum leaves were used to train ANNs. The performance criteria of the most appropriate ANN

structures on the training set are given in Table 8. Table 8 shows that all the selected structures

have a high capability to be used as a universal LA estimator. It can also be observed that the

optimized comprehensive ANN model is comprised of 27 neurons in the hidden layer, LM

training algorithm and LS activation function (LM-LS-27). This model gave an R2 of 0.9969

and an RMSE of 0.2131 on the training set. The training behavior of the selected ANN model is

shown in Fig 7b. It can be seen that the training process of this model was stopped at epoch 12

by validation check and the best validation MSE reached to 0.056069 during the training. Fur-

thermore, the changes of the R2 and RMSE values of the LM-LS combination by changing the

number of neurons in the hidden layer is presented in Fig 8c and 8d, respectively, for 2021 data.

The selected LM-LS-27 ANN model was tested on the independent data which was not

used for the training, and found to be very promising, with R2 of 0.9967 and RMSE of 0.2267.

High agreement between experimental and estimated LA values can be seen in Fig 9c and 9d.

Table 6. The most accurate ANN models trained with 2019 data for estimation of LA based on leaf length and width.

Training function Transfer function Neurons in hidden layer R2 RMSE

Bayesian regularization Logarithm sigmoid 25 0.9966 0.3532

Tangent sigmoid 22 0.9964 0.3695

Levenberg-Marquardt Logarithm sigmoid 21 0.9969 0.3420

Tangent sigmoid 17 0.9967 0.3568

Scaled conjugate gradient Logarithm sigmoid 24 0.9957 0.4045

Tangent sigmoid 21 0.9953 0.4195

https://doi.org/10.1371/journal.pone.0271201.t006
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ANFIS results

Performance statistics of the top five ANFIS structures for LA estimation based on leaf L and

W values are reported in Table 9. The highest accuracy was obtained by an ANFIS model

trained using the hybrid optimization method, sigmoid input membership function, linear

output membership function, and four membership functions for each input variable. This

Fig 7. Variations of MSE value for training, testing and validation datasets during the training process of the

optimized ANNs; a) the LM-LS-21 model for 2019 data, b) the LM-LS-27 model for 2021 data.

https://doi.org/10.1371/journal.pone.0271201.g007
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model resulted in R2 and RMSE values of 0.9971 and 0.3240, respectively, on the training data-

set. This model yielded the R2 of 0.9967 and RMSE of 0.3435 on the test data.

Linguistic rules of the most accurate ANFIS model are illustrated in Fig 10. Having four

membership functions for each input variable, this ANFIS model generated 16 rules that are

relating two input variables (leaf L and W) to the output (LA). As an example, it can be

observed from Fig 10 that when the input 1 (leaf L) is 5.25 mm, and the input 2 (leaf W) is

3.25 mm, the final output (LA) will be calculated by the model as 11.7 mm2.

The most optimal 2019 data-driven ANFIS model was validated against the LA data from

2021 experiments to estimate the LA of four different plum genotypes. The corresponding R2

and RMSE values are available in Table 10. The data in Table 10 show the reliability of this

ANFIS model to be used for the measurement of the plum LA future years.

ANFIS was used to develop a single comprehensive LA estimator for all of the studied geno-

types, and the performance values of the most accurate models are presented in Table 11.

Same as that resulted from the analysis of 2019 data, the combination of the Hybrid optimiza-

tion algorithm with sigmoid input membership function, linear output membership function,

Fig 8. Performance criteria for ANN models with different numbers of neurons in the hidden layer, a) variation of the R2 value of the LM-LS-21

model for 2019 data, b) variation of the RMSE value of the LM-LS-21 model for 2019 data, c) variation of the R2 value of the LM-LS-27 model for

2021 data, d) variation of the RMSE value of the LM-LS-27 model for 2021 data.

https://doi.org/10.1371/journal.pone.0271201.g008
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Fig 9. Scatter plots of the estimated LA values of selected ANN models v. the corresponding measured values; a) the 2019 data-driven ANN on the

training dataset, b) the 2019 data-driven ANN on the test dataset, c) the 2021 data-driven ANN on the training dataset, and d) the 2021 data-

driven ANN on the test dataset.

https://doi.org/10.1371/journal.pone.0271201.g009

Table 7. Evaluation results of the 2019 data-driven ANN model on the data collected in 2021 from three green-

gage plum genotypes and one myrobalan plum.

Genotype name R2 RMSE

Gavali 0.9927 0.3433

Shahryari 0.9964 0.2365

Ghandi 0.9943 0.2289

Jangali 0.9930 0.2262

https://doi.org/10.1371/journal.pone.0271201.t007
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and four membership functions for each input variable, resulted in the most accurate model

with R2 of 0.9971 and RMSE of 0.2101. The top-ranked model was validated using test data,

and the obtained R2 and RMSE measures were 0.9964 and 0.2260, respectively. The ANFIS

estimated values vs. the experimentally observed LA values for the training and testing dataset

of the 2019 data-driven ANFIS are shown in Fig 11a and 11b, respectively. It can be seen that

the data points are close to the ideal fitting line.

It can be seen from Tables 9 and 11 that the ranking of the top five ANFIS models for 2021

data is almost similar to that of the 2019 model (there was only one difference in raking)

Table 8. The most accurate ANN models trained with 2021 data for estimation of LA based on leaf length and width.

Training function Transfer function Neurons in hidden layer R2 RMSE

Bayesian regularization Logarithm sigmoid 16 0.9968 0.2206

Tangent sigmoid 14 0.9967 0.2224

Levenberg -Marquardt Logarithm sigmoid 27 0.9969 0.2131

Tangent sigmoid 20 0.9968 0.2156

Scaled conjugate gradient Logarithm sigmoid 12 0.9953 0.2633

Tangent sigmoid 19 0.9961 0.2430

https://doi.org/10.1371/journal.pone.0271201.t008

Table 9. Performance criteria of the five most accurate ANFIS structures trained with 2019 data for LA estimation.

Optimization Method Input Membership Function Output Membership Function Number of membership functions R2 RMSE

Hybrid Sigmoid Linear 4 0.9971 0.3240

Hybrid Gaussian Linear 4 0.9967 0.3543

Hybrid Sigmoid Linear 3 0.9966 0.3596

Hybrid Gaussian Linear 3 0.9965 0.3605

Hybrid Triangular Linear 4 0.9965 0.3623

https://doi.org/10.1371/journal.pone.0271201.t009

Fig 10. Fuzzy linguistic rules of optimized ANFIS model driven from 2019 data.

https://doi.org/10.1371/journal.pone.0271201.g010
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showing the superiority of these structures to be used for developing ANFIS based plum LA

prediction tool. All of the top accurate ANFIS models use the Hybrid optimization method

and linear output membership function. Fig 11c and 11d depict, respectively, the distribution

of the results of training and testing phases of the 2021 data-driven ANFIS, compared against

the measured LA data. The scatter dots are lie very close to the perfect agreement line, showing

the model’s high accuracy.

SVR results

The performance results of SVR models with different kernel functions for LA estimation are

provided in Table 12 for model development based on the data acquired in 2019 and 2021.

The performance criteria in Table 12 depict that linear kernel SVR was the most accurate

model among the evaluated SVRs. This model was able to predict LA based on leaf L and W

with R2 of 0.9955 and RMSE of 0.4871, when it was used to model LA data of 2019 experi-

ments. The graphical results of the linear SVR model of 2019 data can be seen in Fig 12a which

shows almost high concordance of the SVR estimated LA values with the measured LA values.

The SVR model that was derived from 2019 data, was validated using LA data of 2021

experiments, and the obtained R2 and RMSE values on four plum genotypes are presented in

Table 13. The highly desired criteria in Table 13 confirm the reliability of the SVR model as an

excellent LA estimator with R2 values of more than 0.992.

In another effort, the SVR models were used to develop a universal LA predictor model

based on the 2021 data. The performance values of different evaluated SVRs in this section are

also available in Table 12. In this case, the linear kernel SVR was the most accurate model giv-

ing the R2 and RMSE values of 0.9950 and 0.2959, respectively. The closeness of the scattered

points around the 1:1 line proves the robustness of the linear SVR model (Fig 12a and 12b).

Discussion

Four computational modeling techniques, including LRM, SVR, ANN, and ANFIS, were used

and compared to estimate the plum’s LA. Two distinct species were investigated, including

three greengage genotypes and one myrobalan plum. The evaluation results of the image pro-

cessing algorithm demonstrated that the dimensional leaf properties could be measured with

Table 10. Evaluation results of the 2019 data-based trained ANFIS model on the data collected in 2021 from three

greengage plum genotypes and one myrobalan plum.

Genotype name R2 RMSE

Gavali 0.9942 0.2188

Shahryari 0.9971 0.2071

Ghandi 0.9965 0.1489

Jangali 0.9965 0.1024

https://doi.org/10.1371/journal.pone.0271201.t010

Table 11. Performance criteria of the five most accurate ANFIS structures trained with 2021 data for LA estimation.

Optimization Method Input Membership Function Output Membership Function Number of membership functions R2 RMSE

Hybrid Sigmoid Linear 4 0.9971 0.2101

Hybrid Gaussian Linear 4 0.9971 0.2105

Hybrid Sigmoid Linear 3 0.9970 0.2149

Hybrid Triangular Linear 4 0.9970 0.2162

Hybrid Gaussian Linear 3 0.9970 0.2164

https://doi.org/10.1371/journal.pone.0271201.t011
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Fig 11. Scatters plot of measured vs. estimated LA values of selected ANFIS models; a) the 2019 data-driven ANFIS on the training dataset, b) the

2019 data-driven ANFIS on the test dataset, c) the 2021 data-driven ANFIS on the training dataset, and d) the 2021 data-driven ANFIS on the test

dataset.

https://doi.org/10.1371/journal.pone.0271201.g011

Table 12. Performance criteria of SVR models with different kernels for data of years 2019 and 2021.

Kernel type 2019 data 2021 data

R2 RMSE R2 RMSE

Linear 0.9955 0.4871 0.9950 0.2959

2 dimensional 0.7278 3.1519 0.7790 1.8055

3 dimensional 0.7889 2.8111 0.8280 1.6003

RBF 0.9967 0.3568 0.9863 0.5029

https://doi.org/10.1371/journal.pone.0271201.t012
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high accuracy using image analysis techniques. As a result of a large number of leaves col-

lected, image analysis was used to extract the desired data for model development. The capabil-

ity of the aforementioned modeling techniques was evaluated using two different sets of data

from the years 2019 and 2021.

In terms of performance criteria, all of the approaches above successfully estimated the LA

from leaf L and W values. This is primarily due to the high intrinsic correlation between the W

Fig 12. Scatter plots of estimated LA values by linear SVR model vs. the corresponding measured LA values, a)

2019 experiments, and d) 2021 experiments.

https://doi.org/10.1371/journal.pone.0271201.g012
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and L values of the resulting plum leaves and their area. Additionally, the high accuracy of the

LRM method, compared to the linear SVR method, demonstrates a strong linear correlation

between perpendicular dimensions and the area of plum leaves. The R2 and RMSE values of

linear kernel SVR for LA estimation were 0.9955 and 0.4871, respectively when fitted to 2019

data. Concerning LRM, the LA = 0.007 + 0.687 L×W model was able to estimate LA with an R2

= 0.9955 and an RMSE = 0.4037 using the product of leaf L and W. There is a wide range of

reported accuracy values for LA estimation using the product of L×W, ranging from 0.68 for

citrus [50] to 0.980 for loquat [9].

Using data from 2019, the ANN and ANFIS models demonstrated superior performance

criteria during the model development process. R2 values for ANN and ANFIS models were

0.9969 and 0.9971, respectively, while RMSE values for ANN and ANFIS were 0.3420 and

0.3240, respectively. Examining these values in aggregate demonstrates that neurocomputing

approaches outperform classical modeling techniques such as LRM and SVR.

Küçükönder and Boyaci [31] showed that the ANN method outperformed the regression

method for estimating the LA of tomato plants. Asriani [35] reported a considerable perfor-

mance value of 99.99% in predicting the LA of seven plant species based on leaf L and W.

These species included palm leaves, maize, thatch, chili, pepper, betel, and kale. Azeem and

Javed [30] conducted a comparative study and demonstrated the superiority of the ANN

(R2 = 0.96) over the mathematical method (R2 = 0.94) for estimating the LA of rabbits paw

weed. Similarly, reports on the LA estimation of durian [11], Ormosia paraensis [51], pear cul-

tivars [52], red chief apple [53], and bell pepper [54] have been published. Moreover, Amiri

and Shabani [55] described the ANFIS method as accurate (R2 = 0.997) for LA prediction.

The most accurate models developed using the 2019 dataset were validated using new sets

of data from four distinct plum genotypes collected in 2021. As a result of the significant accu-

racy (R2 > 0.992), all methods can be considered highly appropriate for non-destructive plum

LA estimation.

In another research phase, a universal model was developed using data from 2021, and it

was determined that the ANFIS method was again the most accurate model, with an

R2 = 0.9971 and an RMSE = 0.2101. ANN was ranked first (R2 = 0.9969; RMSE = 0.2131), fol-

lowed by LRM (R2 = 0.9950; RMSE = 0.2723), and Linear SVR (R2 = 0.9950; RMSE = 0.2959).

These results indicate that ANFIS outperforms the ANN, SVR, and LRM methods for estimat-

ing the LA from L and W values.

The ANFIS model was the most accurate LA estimator in the study’s performance criteria.

This finding is consistent with Sabouri and Sajadi’s [38] findings, who reported that the

ANFIS was more accurate than ANN and regression methods for estimating the LA of wheat

and triticale leaves. Comparison of the selected models derived from each genotype with the

final model (achieved by pooling all genotypes data) proved that the developed models accom-

modated the effect of changes in leaf shape between genotypes and could be used for other

genotypes of plum with considerable accuracy. In order to achieve a reliable and accurate

model, the sample size is too important. In order to develop a prediction model, the sample

Table 13. Evaluation results of the 2019 data-based trained SVR model on the data collected in 2021 from three

greengage plum genotypes and one myrobalan plum.

Genotype name R2 RMSE

Gavali 0.9926 0.3360

Shahryari 0.9971 0.4834

Ghandi 0.9936 0.5492

Jangali 0.9941 0.1439

https://doi.org/10.1371/journal.pone.0271201.t013
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size must be large enough to ensure stable coefficients. The larger the sample size, the more

reliable results [56]. Using an inadequate sample size, the model may not predict well and be

acceptable for future subjects [57]. In this research, a large sample size for each genotype was

used, and stable performance coefficients were obtained. Given the evidence, it is possible to

conclude that the final universal model, which can accurately predict the LA of different plum

genotypes, can be used as a reliable LA estimator model for plum genotypes.

Conclusion

Plant LA estimation is a critical indicator of plant growth and health. The development of pre-

cise, reliable, non-destructive, and non-invasive techniques for LA monitoring continues to be

a focus of research. Conventionally, mathematical modeling has been used to estimate the LA

using leaf L and W values non-destructively. In this study, three machine learning techniques

of SVR, ANN, and ANFIS were compared with LRM method to determine the most powerful

algorithm for estimating LA based on leaf L and W. The experiments were performed across

two years, 2019 and 2021, and used a large sample size to ensure reliable results. Due to the

high accuracy of the image processing method in extracting the size parameters, it was

employed to collect dimensional data from a total number of 5548 leaves. The results indicated

that methods based on artificial intelligence are more accurate than those based on mathemati-

cal methods. For both years, the ANFIS model was the most accurate LA estimator. The R2

and RMSE values for the ANFIS, ANN, LRM, and SVR methods were 0.9971 and 0.3240;

0.9969 and 0.3420; 0.9955 and 0.4037; and 0.9955 and 0.4871, respectively, based on their per-

formance rank on data from 2019. For 2021 data, a similar performance rank order was

observed, with R2 and RMSE values of 0.9971 and 0.2101 for ANFIS; 0.9969 and 0.2131 for

ANN; 0.9950 and 0.2723 for LRM; and 0.9950 and 0.2959 for SVR. Furthermore, evaluation of

the developed ANFIS model using selected 2019 and 2021 data for various plum genotypes

demonstrated this approach’s broad applicability for estimating LA in the future. According to

the findings of this study, it is recommended that artificial intelligence be used to estimate LA

instead of the regression method. Moreover, it is very encouraging that the ANFIS modeling

method accurately estimated the LA from image extracted features. According to the findings

of this study, an accurate, portable, and simple-to-use of non-destructive LA estimation system

is conceivably close to being reached due to the high potential of artificial intelligence in the

development of PC and phone applications.
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