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Abstract: Electromyographic signals have been used with low-degree-of-freedom prostheses, and
recently with multifunctional prostheses. Currently, they are also being used as inputs in the human–
computer interface that controls interaction through hand gestures. Although there is a gap between
academic publications on the control of an upper-limb prosthesis developed in laboratories and its
service in the natural environment, there are attempts to achieve easier control using multiple muscle
signals. This work contributes to this, using a database and biomechanical simulation software, both
open access, to seek simplicity in the classifiers, anticipating their implementation in microcontrollers
and their execution in real time. Fifteen predefined finger movements of the hand were identified
using classic classifiers such as Bayes, linear and quadratic discriminant analysis. The idealized
movements of the database were modeled with Opensim for visualization. Combinations of two
preprocessing methods—the forward sequential selection method and the feature normalization
method—were evaluated to increase the efficiency of these classifiers. The statistical methods of cross-
validation, analysis of variance (ANOVA) and Duncan were used to validate the results. Furthermore,
the classifier with the best recognition result was redesigned into a new feature space using the
sparse matrix algorithm to improve it, and to determine which features can be eliminated without
degrading the classification. The classifiers yielded promising results—the quadratic discriminant
being the best, achieving an average recognition rate for each individual considered of 96.16%, and
with 78.36% for the total sample group of the eight subjects, in an independent test dataset. The study
ends with the visual analysis under Opensim of the classified movements, in which the usefulness
of this simulation tool is appreciated by revealing the muscular participation, which can be useful
during the design of a multifunctional prosthesis.

Keywords: electromyography; classification model; biomechanical simulation

1. Introduction

Research in prosthetic hand control applications most often involves the decoupling
of the surface electromyography (sEMG) signal to decipher the natural regulation. Interpre-
tation of the sEMG signals is an active area of research. One objective is to achieve efficient
control of prostheses, similar to the natural movements of the body. Within these research
publications, one can find studies searching for the ideal place for the electrodes in the
muscular region of interest [1–4]; studies focused on the importance of the type, size, shape
and material of the electrode to be used [5–9]; studies using data mining to find features in
the raw sEMG signals to achieve their decoding [10–12]; and studies evaluating the imple-
mentation to detect the target movements [13–15], aiming to implement the processing in
systems embedded in microcontrollers.
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Prosthetic electronic devices increasingly have more degrees of complexity; however,
it is reported that, within these devices, 60% have 1 to 4 degrees of freedom (DoFs), 30%
have 5 to 10 DoFs and only 10% have more than 10 DoFs [16]. A DoF within a prosthetic
device should be understood as the motion in one direction of the possible movements
of a natural joint. Devices and applications evolve into more complex systems; therefore,
control systems with a greater number of functionalities are necessary, but they must be
intuitive for human control, which is possible with machine learning techniques [15]. A
considerable number of investigations work with machine learning for the classification
and interpretation of EMG signals [17–20]; however, there is still no model that is applicable
in complex systems and outside of controlled environments in laboratories. In our inves-
tigations regarding the decoding of the sEMG signal, we found the use of deep learning
can be used as a method to improve classic classifiers but demands a large amount of data
through many layers of processing [18], the reduction in dimensionality through specific
methods [19] allows the selection of a smaller number of features with higher information
quality, and the use of time–frequency features [20] allows extracting information hidden
in the raw EMG signal and the transfer to new spaces to extract relevant information.
Even though diverse research approaches and applications are emerging in the state of
the art, such as the mathematically intense genetic algorithms and adaptive neuro-fuzzy
systems [21,22] which are powerful methods to solve difficult regression problems, the
load of monitoring the progress of each of the DoFs involved in the movement control
would make it impractical with these models. The control of upper-limb prosthetic systems
requires further research regarding practical utility, and here using traditional methods to
classify multiple discrete targets brings an elegant and viable solution.

It is difficult to obtain real-time applications with multifunctional prostheses due to,
among other issues, the nature of the sEMG signal and the large number of processing
operations required to analyze it. Another drawback regarding progress is the limited
availability of standardized EMG databases, but still, there are some databases that help
address the complexity of multifunctionality and which have sEMG signal conditioning
best practice elements. There are known sites for online multifunction EMG databases
that include movements specific to the hand and fingers [23–29]. Some of the sites have
more than one dataset with different features [24,25,28,29]. The amounts of electrodes and
movements vary, but the movement experiments are captured with EMG surface electrodes,
and some of the databases also contain information from other types of sensors.

In a previous work [17], a first attempt was made to create a simple classification
model of EMG signals, to be combined with a modified virtual biomechanical model of
the wrist and hand in Opensim [30]. In this work, we propose using an online database
to decode the coordinated muscle activity obtained from an array of sEMG electrodes
in the forearm, to develop a model that classifies 15 hand movements, and to transform
the classification sequence into virtual movement with the Opensim environment. In
Opensim, the evolution of muscle movements can be virtually observed from the results of
the classification model and visually compared with those of the ideal movement.

2. Materials and Methods
2.1. Database of Predefined Finger Movements

Although the relatively poor repeatability of the surface EMG measures is a known
issue [31], an exhaustive search was conducted to find databases published online that
were open access [23–29], to determine which was the most convenient to use. A database
found in an EMG repository was selected [25] since it was one of the most complete with
movements that encompassed each finger. This database consists of 15 finger movements,
both individual and combined. Data were acquired in line with the standard protocol
described in [25,32,33] and summarized next.
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2.1.1. Electrode Application Protocol

A ring array of eight sEMG electrodes were equally spaced across the circumference
of the right forearm, with an electrode initially placed over the palmaris longus muscle,
and the complete electrode set is pictured in Figure 1a,b. According to the electrode
position pictures and the given reference descriptions, an illustration that approximates
the distribution of the electrodes on the volume of the forearm is shown in Figure 1c. The
datasets were recorded using the Bagnoli desktop EMG system (Delsys, Inc., Boston, MA,
USA) [34] with the DE-2.1 sensor with 10.0 × 1.0 mm contact dimensions and 10 mm
contact spacing, in differential detection mode, with an overall noise of ≤1.2 uV (RMS,
R.T.I), and a bandwidth of 20–450 Hz. A 2-slot adhesive skin interface was applied on each
of the sensors to firmly stick them to the skin. A conductive adhesive reference electrode
(Dermatrode reference electrode) was placed on the wrist of each of the subjects during
the experiments. The collected EMG signals were amplified using a total gain of 1000. A
12-bit analog-to-digital converter (National Instruments, BNC-2090) was used to sample the
signal at 4000 Hz; the signal data were then acquired using Delsys EMGWorks Acquisition
software. The EMG signals were then bandpass filtered between 20 and 450 Hz with a
notch filter implemented to remove the 50 Hz line interference.
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Figure 1. Electrode placement on the right forearm. (a) Anterior electrode positions; (b) posterior
electrode positions; (c) muscle zones and electrodes placed on the cross-section of the forearm.
(a,b) are reprinted/adapted with permission from Ref. [32], Copyright 2012, IEEE.

2.1.2. Subjects

Eight normal subjects (six males and two females) aged between 20 and 35 years were
recruited to perform the required finger movements, and the execution of each movement
was repeated 12 times. They were all from Sydney, with a random sampling; i.e., no specific
sampling requirements were reported. The subjects were all normally limbed with no
neurological or muscular disorders. All participants provided informed consent prior to
participating in the study as was approved by the university research ethics committee and
consented to their data being used for research purposes [25,32].
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2.1.3. Database Protocol

Subjects were seated on an armchair, with their arms supported and fixed at one
position. The 15 movements correspond to flexions, including the flexion of each individual
finger and combinations between them: thumb (T_T); index (I_I); middle (M_M); ring
(R_R); little finger (L_L); the combinations T_I, T_M, T_R, T_L, I_M, M_R, R_L, I_M_R, and
M_R_L; and the closed hand (HC). Table 1 indicates the class label assigned to each of the
movement types in the database. The measured region has a signal detection volume that is
assumed to lie between the largest number of muscular bodies and the region of the joints
of the elbow; the relevance of the use of an array around the circumference of the forearm
is because it also applies to trans-radial amputees [33]. In this ring electrode arrangement,
the information related to the generated movement is found in the surrounding tissue
and is transmitted in all directions by that section of the forearm. Although it is not
possible to indicate a specific muscle for each electrode of the ring, all the electrodes pick
up signals from all the muscle distribution layers. The information available is that there
were electrodes in a given position when the database was captured; repeatability is likely
to be acceptable as long as the same experimental protocol conditions are maintained in
every test subject.

Table 1. Relationship of movement types of the database and their class labels assigned. Flexion of
the fingers involved is indicated.

Class Label Movements Evaluated Description

1 HC Closed hand
2 I_I Index
3 I_M Index–middle
4 IMR Index–middle–ring
5 L_L Little finger
6 M_M Middle
7 M_R Middle–ring
8 MRL Middle–ring–little
9 R_L Ring–little

10 R_R Ring
11 T_I Thumb–index
12 T_L Thumb–little
13 T_M Thumb–middle
14 T_R Thumb–ring
15 T_T Thumb

2.2. Raw Data, Elimination of Outliers, Windowing and Preparation of Feature Matrix

The database consists of 8 subjects and 15 movements, in which each subject per-
forms 12 repetitions for each movement; that is, the database contains 1440 repetitions
of some type of movement. A repetition of a movement is equivalent to collecting, at a
rate of 4000 samples per second, the signals of eight sEMGs for 5 s. An sEMG is encoded
with 12 bits, but it is read as a floating-point unit. Therefore, a repetition of a movement
is equivalent to (4000 samples/s) × (5 s) = 20,000 data sample packages, including eight
electrode signal channels at each sample time.

The database was downloaded from [25], where a zip file can be obtained with eight
folders, one folder for each subject. Within each folder are files in CSV format named with
the name of the movements. The data were loaded with MATLAB’s csvread function. For
each subject, a matrix was created for each movement, named with the abbreviation of
the movement. These matrices comprised eight sEMG columns and 240,000 rows of data,
which represent the total of 12 repetitions of a movement per subject. In addition, a column
with a class label number was added that identifies the type of movement, according to
Table 1, so that at all times it is known which sample corresponds to each subject, type of
movement and sEMG electrode number.
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A folder was created in MATLAB for each subject in which the 15 matrices of the
movements of each subject were stored. The 15 matrices of a subject were concatenated
into a new matrix named sub(i). This matrix was 3,600,000 rows by 9 columns, and it was
saved for each subject. Then, in a global matrix, the data of the eight subjects were stored,
forming a matrix of 28,800,000 rows and 9 columns, all of which are indicated in Figure 2
with circle 1. It should be clarified at this point that the data are ordered from subject 1
to subject 8; that is, the data in the matrix start with movements 1–15 of subject 1, then
include movements 1–15 of subject 2, and so on until the movements of subject 8. When in
a consecutive row, there is a change in column 9, of movement type, from label class 15 to
label class 1, indicating the data edge that exists between two subjects.
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Figure 2. Experimentation conducted to determine the best option for creating a classification model
considering recognition percentage and simplicity of the model. MU = single matrix (all eight subjects
concatenated), MP = matrix per subject (eight matrices are formed). The number of circles defines
the order of processing. The nomenclature (A–D) serves for Duncan’s significance test treatment
identification that compares the output of each experiment.

Due to the nature of the signal and the large number of data, these were preprocessed
with cleanup and reduction methods to concentrate the information before creating classi-
fiers. This preprocessing included the steps of removing outliers, grouping clean data into
a single global matrix and across multiple matrices (by individual subjects), setting up a
data window to extract information, and measuring features per window to characterize
the EMG signals.

2.2.1. Method of Elimination of Outliers by a Chi-Square Distribution

According to the literature, an outlier is an observation that deviates from other
observations and raises suspicions about being generated by mechanisms external to
natural ones. Some statistical methods for the detection of multivariate outliers use the
data distribution center and an established distance; in our case, the Mahalanobis distance
was used to determine which data are outliers. The outlier elimination method with a chi-
square distribution was also used [35]. The global matrix, composed of the eight subjects,
was used to find outliers in the entire database. During the outlier elimination, when an
irregular reading of an EMG electrode was detected, the entire line with all its eight EMG
signal channels was eliminated, when the channel corresponding to that atypical event was
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included. This method was implemented in MATLAB, delivering a global matrix without
outliers; the pseudocode for this process is shown in Algorithm 1. From this updated
matrix, a separation into new matrices by individual subjects was carried out manually,
and eight matrices with different lengths were obtained given the nature of the elimination
of outliers. As a result of this process, the information regarding the data values eliminated
and those maintained was known, as the sum of both must coincide with the total data.

Algorithm 1 Pseudocode for Outlier Removal

The data to evaluate are imported.
Statistical parameters (Mean, Covariance) are calculated.
Calculation of the parameters (New_Data, inverse covariance) to obtain the Mahalanobis distance.
- Calculation of New_Data = data minus the mean.

- Inverse covariance is calculated.

Product of New_Data and inverse covariance.
Critical value is obtained according to a chi-square distribution with the function ncx2inv
with MATLAB.
Data are separated according to the critical value.
Outliers are removed and maintained matrices are created.

2.2.2. Preparation of Matrices and Transformation of Data into Functional Features

With the data no longer containing outliers, we created two datasets: The first was a
global matrix updated with the EMG data of all the subjects, which is called MU and has
26,778,435 data packets; 7.02% of data were eliminated for being atypical elements. The
second was a dataset including the data of each subject separately, in eight matrices (called
MPs), with lengths between a minimum and a maximum of 3,147,328 and 3,540,137 data
packets per subject.

Taking a group of 250 rows to form a measurement window, the data were transformed
into functional features. Of the 250 rows of data in the window, 12 features were calculated
for each EMG channel (see Section 2.3.1), which were concatenated horizontally, resulting
in a single vector of 96 electrode features for each window. In addition, the class of the
motion type, to which the new vector belongs, was added in column 97. This vector of
features was stored in a new matrix, continuing with each window, updating the matrix of
features until reaching the end of a movement type. The final window of a specific motion
type was calculated with the remaining data, which can range from 1 to 250 data rows.

The arrays have a column with the class label, and depending on the class, the data
can be separated into motion subarrays. For any of the two groups of matrices (global or
per subject), the MATLAB find() function was used to select the movements that belong
to classes 1 through 15; find() gives us the position in which the rows of the specific
movement searched were found. A submatrix of features was created for each movement
with subscript j, which went from movement 1 to movement 15. Within this cycle of
measurement of features, the first submatrix was taken, that is, movement 1, and once it
was finished with the movement type, it started with the next one, and so on until the
15 movements were finished. At this point, 15 submatrices of each movement with their
corresponding feature vectors resulted.

Upon having the features’ measurements, a rearrangement was performed to obtain
the matrix of a particular subject or the one corresponding to the total MU matrix. From
having the first subject, the cycle was repeated manually, adding the data of subject 2
and so on until subject 8 was reached. At the end of this process, we have the features in
two types of data blocks: a matrix that groups all the subjects and their movements, named
NMU, and the eight matrices that group the movements by subjects (called NMPs). These
procedures are encapsulated in Figure 3.
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Figure 3. General sequence of data manipulation: from the database files to the preparation of feature
matrices, before the experiments being carried out.

Some investigations work only with data from individual subjects, and when modeling
the classifiers by subject, very good classification percentages are obtained. Although
in other studies the clustered data of a group of subjects are used to generate a single
classification model applied to the people in the group, with less promising results, in this
study, we compare the classifiers designed with the two types of data groups.

2.2.3. Selected Features from the Literature

The literature consulted revealed that features useful for extracting information from
raw EMG signals are divided into those of the time domain and those of the frequency
domain, both widely used in classifiers. As one objective of this work is to generate the
simplest and quickest processing in terms of execution speed, it was decided to use only
features in the time domain. As mentioned in [36], one of the major disadvantages of these
types of features is that a stationarity property is assumed, a property that does not coincide
with the nature of the EMG signal; however, they have provided good gesture classification
results in the past (see [32]).

For the size of the data windows, it is necessary to consider the processing time given
to the calculation of the features. In this case, the aim is for the classification to be applied in
real time; therefore, it is convenient to work with small data windows. A non-overlapping
window was used to process the raw EMG data, with a length of 250 rows of raw data per
window. A period of 62.5 ms is required to cover this window length since a row of raw
data is captured at the sampling rate of 4 KHz.

Twelve features were proposed to be extracted from the raw EMG data, and their
definitions are in [37]: mean absolute value; mean square value; simple square integral;
square mean; EMG variance; TM3, TM4 and TM5 time moments; length of wave; zero
crossings; myopulse percentage ratio; and curve sign change. The 12 proposed features
were measured in each of the eight EMG channels and were concatenated, producing a
vector of 96 data (features) for each window per subject. The windowing follows after being
an MU or MP matrix, evaluating the 12 features per EMG channel to create new matrices:
MU > Windowing > Features > NMU, or MP > Windowing > Features > NMPs. This data
transformation process is conceptually visualized in Figures 2 and 3 and was developed to
go along with the classical methods in machine learning and pattern recognition to extract
information from the raw EMG signal; variations can be observed in the window sizes and
in the selected features.

2.3. Classification Models
2.3.1. Machine Learning

Classification problems are often divided into two stages: the decision stage and the
inference stage. These two stages are visualized in Figure 4. The decision stage is when
the model is being trained. The inference stage is used in classification to predict data
once the model is already trained. These stages were used extensively in this study. The
methodology in Figure 3 was established.
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Figure 4. Creation of the classification model. The decision and inference stages of machine learning
can be observed in the creation of classification models.

The classifiers considered for their simplicity were naive Bayes, LDA and QDA, all
with a Bayesian foundation and probabilistic theory. The importance of these classifiers
is that they are very efficient, as well as simple, and they have been used to implement
machine learning in microcontrollers [38]. The MATLAB function fitcdiscr was used to
create LDA and QDA, and the fitcnb function was used for naive Bayes.

Four classification schemes were developed, as conceptualized in Figure 2, generating
combinations of two preprocessing methods; the forward sequential selection method and
the normalized one, were evaluated, in addition to the version without preprocessing.
The intention was to investigate the efficiency of these classifiers, comparing the different
versions in case there were any statistically significant differences, and to decide the best
route for conversion to a new input data space that increases the recognition of the classifier
model and/or assists in reducing the number of required features.

2.3.2. Cross-Validation

One of the most used methods in the validation of classification models in machine
learning is cross-validation. This enables, within a defined dataset, considering all data
as training, validation and test data, and it validates that the results are independent of
the data partitions; the calculations were based on [35]. The methodology in Figure 5
establishes the order in the separation of the data to conduct an adequate cross-validation.
This process was performed for each matrix of the eight subjects and for the matrix with
the data of the eight subjects (NMU). Matrices were created for training, validation and
testing. A MATLAB function called cvpartition was used to separate the data (partition) for
cross-validation. This function was used to separate the original set of data into 10 parts,
9 of which were assigned a TRN-VAL label and 1 of which was assigned a TST label. In
this way, we had 10 parts of our original data. Next, the function created 10 datasets by
traversing the TST label to each part of the original set (divided into 10). The function was
used twice, once to separate the original set of data into 10 parts and create two blocks
called TRN-VAL and TST from the original set and once to separate the data from the
TRN-VAL block into two TRN sub-blocks and VAL. This process is illustrated in Figure 5:
below each cvpartition block are columns of data with 10 sections, which are assigned
a name. For the first block, the columns form two blocks: TRN-VAL (with nine parts)
and TST (with one part). This method creates 10 datasets with the same total data. In the
second cvpartition block are another 10 columns below, which is how one of the previous
TRN-VAL datasets of the first block was divided. Then, 1 of those 10 sets was divided into
10 subsets of data composed of 9 parts of TRN and 1 part of VAL in each of the 10 columns.
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partitions of data into subsets for model training and evaluation.

At this point, we had 10 datasets divided into TRN-VAL and TST. In the same way,
the 10 sets of TRN-VAL were now divided each into 10 new subdatasets in TRN and VAL.
That is, we had 100 TRN models validated with 100 sets of VAL. Each result was averaged
to calculate a real percentage of training and validation. At the end of the methodology
in Figure 5, we obtained 100 classification models in which the first partition of the test
(10 in total) of each dataset was tested in 10 subsets of TRN and VAL. Those results were
averaged for each classifier separately.

2.4. Preprocessing Techniques Prior to Classification

When working with classification models obtained through machine learning, it is
desirable to have features that generate maximum differentiation between classes; therefore,
it is necessary to use preprocessing of features. This way, the classification models will
perform better. Therefore, one task was to find the features that best separate the motion
classes in their corresponding spaces and that improve prediction. A feature-selection
method was used that reduces the data volume based on the quality of each feature.
Another method used was the normalization of the features. Finally, the best possible
combination of preprocessing was converted to a new space by the sparse matrix method.

2.4.1. Sequential forward Selection (SFS)

SFS is an iterative method that provides a direct route to determine which features
improve the classification results. With 12 features measured for each electrode, 96 features
were generated; that is, 96 operations must be executed for each window. A large number
of simple operations might work for a real-time procedure; however, the aim was to reduce
the number of electrode features since some can impair the performance of the classifier.

Generally, this method analyzes each feature in an orderly manner from 1 to 96 and is
an iterative process. Once the method has analyzed each feature individually, it will take
the feature that provides the best percentage of recognition; the process will then form
groups of two. Once it has determined the best of the individual features, the process will
join this feature with each of the 95 remaining ones; this process is detailed in Algorithm 2.
Then, the feature that offers the highest percentage to the classifier is selected, and so on
until the percentage stagnates.
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Algorithm 2 Pseudocode Implemented for forward Sequential Selection

SPACE = 1 . . . L //L = number of total features.
EXIT = false
WHILE NOT EXIT
FOR i =1 TO |SPACE|
TEMP(i) = J(SUBSET V SPACE(i)) //TEMP = Temporal variable.
END
BEST_i = ARGMAX(TEMP) //The maximum value of the

//TEMP vector is stored in BEST.
IF TEMP(BEST_i) > BEST_EVAL //Comparison between the best stored
SUBSET = [SUBSET, SPACE(BEST_i)] //evaluation and the best evaluation
BEST_EVAL = TEMP(BEST_i) //of the new subset.
SPACE = SPACE-SPACE(BEST_i)
ELSE
OUTPUT = true
END
END
RETURN SUBSET, BEST_EVAL

Each classifier considered seeks to separate the classes in its own way, and therefore, it
can take the features that offer the best results. All the features’ data were taken from each
of the subjects and from the NMU matrix, and a classifier was generated for each dataset
and for each model (NB, LDA and QDA). That is, the percentage of training was calculated,
and the groups of features were saved based on this. By having the groups of features
for each classifier considered the best, the data were taken again and separated into TRN,
VAL and TST. With 10 × 10 cross-validation, a group of models was generated for each
classifier. It is evident how many features remained and what percentage of classification
was obtained for TRN, VAL and TST. A more detailed description can be found in [39].

2.4.2. Normalization

If the set of measured features is transformed into a normal dataset (i.e., it has a zero
mean and a standard deviation of 1), all the measurements of all the evaluated features
are put in the same range of values. Therefore, a feature in a classifier could operate more
efficiently. The procedure was conducted in a general way for the three classifier models.
The description of this data transformation can be found in [35].

2.4.3. Conversion to Sparse Matrix Space

The conversion of features into new spaces, although it increases the processing
load, can provide good results regarding increasing the recognition of the classifier model
and/or reducing the number of features. It was decided to use this method because it is an
innovative method that has not been widely used and its performance on muscle signals
has not been reported. This algorithm is used in the first instance to increase the distances
between the evaluated classes and reduce the distances between the two data of the same
class. The description of this method is in [40]. The method was carried out only with
the preprocessed data that provided the best results; the group of features that increased
performance was taken, and these were transformed into a new space, to apply later only
the best efficiency classifier model and to calculate the recognition percentage. Figure 6
illustrates the concept of conversion into a new space to improve the classification model.

2.5. Methods of Statistical Validation of the Results

Guided by the statistical tests from similar investigations, the proposed schemes of
ANOVA method, multiple comparison test of Duncan and statistical formulations are used
below for the comparison of results.
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conversion into a new space.

2.5.1. ANOVA Method

The ANOVA method was used to compare and study the effect of the methods applied
to our data regarding the means of the recognition percentages obtained from the evaluated
classifiers. This analysis is a statistical test to use when comparing the means of two or
more groups. The null hypothesis, from which the different types of ANOVA start, is
that the means of the groups are statistically equal; that is, the mean is the same in the
different groups.

2.5.2. Duncan’s Method

This method is a multiple comparison test that enables us to compare the means of the
treatments (procedures applied to the data and resulting in a percentage of recognition)
after having rejected the null hypothesis.

2.5.3. Statistical Formulations

The sensitivity, specificity, precision and F1 score are statistical parameters that enable
us to evaluate the results obtained. These parameters are visualized in Table 2. They
can also be obtained via a confusion matrix, in which a class of movement is compared
against the other classes of movement, specifically locating each error that occurred when
classifying the data. These parameters should be close to 100% for the model to be ideal.

Table 2. Statistical formulations, in which TP = true positive, FP = false positive, TN = true negative
and FN = false negative.

Formulation Operation

A = Sensitivity TP/(TP + FN)
B = Specificity TN/(TN + FP)
C = Precision TP/(TP + FP)
D = F1 score 2TP/(2TP + FP + FN)

2.6. Opensim Model of the Wrist and Hand Used for the Analysis

Opensim software is an open access biomechanical simulation program. Among its
characteristics, it enables muscle evaluation and movement analysis with visualization files
with a MOT extension. In Opensim’s repository of models, there is a limited model of the
wrist with 10 degrees of freedom, 28 joints and 23 actuators (muscles) with movement in
the forearm, wrist, thumb (no flexion) and index [41]. This original model was modified
for this study by adding the missing degrees of freedom in the thumb, middle finger, ring
finger and little finger to reproduce the total movements that a human hand can perform.
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Figure 7 shows how the hand model appears in the graphical interface of the Opensim
version 4.0 main screen.
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Figure 7. Screenshot of the software application displaying the degrees of freedom of the model used
in Opensim.

The completed model was used for the simulation of the hand movements performed
in the analyzed database. This model is found in free form in [30] and has 21 degrees of
freedom and 36 joints, allowing any possible hand movement to be carried out. Table 3 lists
the relationship of the degrees of freedom of the model with the movements considered
from the database.

Table 3. Relationship degrees of freedom (DoFs) of the Opensim model of the wrist with the
movements of the database.

Database Finger Movements
DoF HC I IM IMR L M MR MRL RL L TI TL TM TR T

MCP2_lateral x x x x x
MCP2_flex x x x x x
PIP_flex x x x x x
DIP_flex x x x x x
MCP2M_flex x x x x x x x
MPIP_flex x x x x x x x
MDIP_flex x x x x x x x
RCP2M_lateral x x x x x x
RCP2M_flex x x x x x x
RPIP_flex x x x x x x
RDIP_flex x x x x x x
LCP2M_lateral x x x x x x
LCP2M_flex x x x x x x
LPIP_flex x x x x x x
LDIP_flex x x x x x x
thumb_abd x x x x x x
thumb_flex x x x x x x
TCP2M_lateral x x x x x x
TCP2M_flex x x x x x x
TCP2M2_flex x x x x x x

Simulation of Movement in Opensim

The movements were idealized for the simulation of the real movement trajectory;
these must be stable and smooth in their execution. We consider that the 15 movements of
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the database are of this type, and each represents a complete cycle (or repetition) recorded
by means of sEMG signals and described by photographs. The information on the database
was used, the photographs included, but there were no other spatial measurements pro-
vided. With the EMG signal classifiers designed here, the type of movement that an input
data window brings is estimated. With the predictions of the type of movement and its
window time, a reproduction of the movement can be created virtually through Opensim.
Every 62.5 ms (the duration of a data window), an output generated in the classifier de-
mands the next video frame for the virtual model in Opensim. For this reason, advancement
vectors were created for each of the movement classes, which contain the degree of rotation
of each joint involved capable of reproducing any of the movements in the database.

In principle, we deduce the 15 ideal movements that the database contains. Therefore,
the initial and final positions of the movements were taken as a reference based on their
description [32]. Considering that each movement lasts for 5 s and that the number of
decisions of the classifier in that period is 80 window times, and with the full range
of motion of each of the involved joints, their degree of rotation was calculated as the
progress of the movement video frame. Thus, the 15 advance vectors were formed for
each movement class; Table 4 lists all of them. Then, after obtaining the tag predictions
of the classifier and having the table of advance vectors, a motion file can be created for
any complete finger movement input, as shown in Algorithm 3. In addition, 15 ideal
motion files with the MOT extension can be created by simply accumulating the specific
advancement vector itself 80 times, corresponding to the 5 s of a movement repetition. Once
the MOT files are obtained, any movements can be viewed using the Opensim platform.

Algorithm 3 Pseudocode for the Creation of a Motion File From Classification. MOV_NUMBER
Matrix Corresponds to Advancement Vector Table 4

MOV_MATRIX = [zeros]
count = 0
FOR i TO |MAX Window number|
Decision = Model Decision(i)
IF Decision is 1
if count < 18
MOV_MATRIX(i + 1,:) = MOV_MATRIX(i,:) + MOV_NUMBER(1,:)
count = count + 1
else
MOV_MATRIX(i + 1,:)= MOV_MATRIX(i,:) + MOV_NUMBER(2,:)
ELSE
MOV_MATRIX(i + 1,:)= MOV_MATRIX(i,:) + MOV_NUMBER(Decision + 1,:)
END
RETURN MOV_MATRIX

It is possible to observe the movements characterized by classification errors. The vi-
sualization of a badly classified movement can offer a glimpse of how serious or acceptable
that error may be; it is simply a tool to discern a movement classification. The test data can
be separated to verify which of the subjects has a worse ranking. This process identifies
the worst movement evaluated to appreciate a real reproduction (with complete data) of a
subject´s repetition movement in the simulation.

3. Results
3.1. Preprocessing and Processing of the EMG Signal
3.1.1. Elimination of Outliers

The total raw data for each movement were 240,000 lines per subject. However, due
to eliminating outliers, these data were reduced, generating a number of data maintained
per movement and per subject. The percentage data eliminated by movements ranged
from 1.99% (in I_M) to 26.00% (in HC). The percentages of the data eliminated per subject
ranged from 1.66% (subject 5) to 12.57% (subject 4). Figure 8 is a graph encompassing the
maintained and eliminated values, with information on movement and subject, illustrating
what remains of the raw data per movement and per subject.
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Table 4. Advancement vectors for each of the movement classes. A vector contains the degrees of rotation for each of the joints considered in the movement. A
special case is the hand close motion, which required one of two possible vectors, depending on the time position of the motion. The labels of the joints correspond
to the Opensim model [30].

Joints/DoFs

MCP2_
lateral

MCP2_
flex

PIP_
flex

DIP_
flex

MCP2M_
lateral

MCP2M_
flex

MPIP_
flex

MDIP_
flex

RCP2M_
lateral

RCP2M_
flex

RPIP_
flex

RDIP_
flex

LCP2M_
lateral

LCP2M_
flex

LPIP_
flex

LDIP_
flex

thumb_
abd

thumb_
flex

TCP2M_
lateral

TCP2M_
flex

TCP2M2
_flex

HC1 −0.3225 1.4516 1.4516 1.4516 0 1.4516 1.4516 1.4516 0.0483 1.4516 1.4516 1.4516 0.3225 1.4516 1.4516 1.4516 0 0 0 0 0
HC2 −0.3225 1.4516 1.4516 1.4516 0 1.4516 1.4516 1.4516 0.0483 1.4516 1.4516 1.4516 0.3225 1.4516 1.4516 1.4516 0.14 1.26 −0.4 0.2 0.84
I_I −0.3225 1.4516 1.4516 1.4516 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

I_M −0.3225 1.4516 1.4516 1.4516 0 1.4516 1.4516 1.4516 0 0 0 0 0 0 0 0 0 0 0 0 0
IMR −0.3225 1.4516 1.4516 1.4516 0 1.4516 1.4516 1.4516 0.0483 1.4516 1.4516 1.4516 0 0 0 0 0 0 0 0 0
L_L 0 0 0 0 0 0 0 0 0 0 0 0 0.3225 1.4516 1.4516 1.4516 0 0 0 0 0

M_M 0 0 0 0 0 1.4516 1.4516 1.4516 0 0 0 0 0 0 0 0 0 0 0 0 0
M_R 0 0 0 0 0 1.4516 1.4516 1.4516 0.0483 1.4516 1.4516 1.4516 0 0 0 0 0 0 0 0 0
MRL 0 0 0 0 0 1.4516 1.4516 1.4516 0.0483 1.4516 1.4516 1.4516 0.3225 1.4516 1.4516 1.4516 0 0 0 0 0
R_L 0 0 0 0 0 0 0 0 0.0483 1.4516 1.4516 1.4516 0.3225 1.4516 1.4516 1.4516 0 0 0 0 0
R_R 0 0 0 0 0 0 0 0 0.0483 1.4516 1.4516 1.4516 0 0 0 0 0 0 0 0 0
T_I 0 0.3625 0.675 0.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7875 −0.25 0.2875 0.1273
T_L 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0585 0.95 0.8812 0.175 1.125 −0.25 0.4125 0.1825
T_M 0 0 0 0 −0.0412 0.28 0.875 0.9875 0 0 0 0 0 0 0 0 0.1875 0.575 −0.25 0.3825 0.325
T_R 0 0 0 0 0 0 0 0 0 0.1691 0.9875 0.875 0 0 0 0 0.1812 0.875 −0.25 0.3678 0.3125
T_T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14 1.26 −0.4 0.2 0.84
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3.1.2. Feature Selection

After removing the outliers from the total set of raw data, windows of 250 data
rows were created in the resulting matrix, in which each row has the digitized signals of
the eight sEMG channels. In each window, 12 features were measured for each sEMG
channel, according to the processes in Section 2.2.3, resulting in 96 electrode features per
window. Then, the SFS algorithm evaluated the performance of each feature in each of the
considered electrodes.

The SFS algorithm was applied in two scenarios, one scenario using the features in
their originally measured range and the other scenario using the normalized features,
which are the experiments marked 6 and 8, respectively, in Figure 2.

3.1.3. Classification Models

The results regarding the classification models generated the Tables 5–8, which are
displayed according to the experimentation set out in Figure 2, carried out to determine
which is the best option for creating a classification model considering the recognition
percentage. The experimentation was conducted using a 10 × 10 cross-validation of TRN,
VAL and TST for each classifier generated from NB, LDA and QDA. Table 5 lists the
recognition percentages when all 96 features were used without preprocessing. Table 6 lists
the number of features obtained from the SFS algorithm and the percentage of recognition
obtained. In Table 6, with all 96 features, the best classifier created was LDA; however, in
Table 6, with the selected features, the best classifier is QDA, which improves significantly
and has a lower number of features than those initially considered.

Table 7 contains the results of the classification with the set of 96 features used but
normalized. The worst classifier is NB, and the best classifier belongs to QDA. Subsequently,
in Table 8, the best normalized features are selected. The worst classifier continues to be NB,
and the best QDA, both for individual subjects and for the sample group. Although NB has
a smaller number of necessary features, the difference between the recognition percentages
is considerable. The total of normalized features for Table 7 is 96, and in Table 8 the total of
necessary normalized features is reduced but depends on each classifier with SFS.
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Table 5. Experimentation 5: Percentage of recognition using a 10 × 10 cross-validation by dividing
the data into training (TRN), validation (VAL) and test (TST). The subject column is divided into
two parts for each classifier; 1 . . . 8 indicates that an average was performed between the data of the
eight subjects; S1:8 indicates that the total data were a single set of the eight individuals.

Experimentation No. 5 without SFS

Sub TRN VAL TST

NB 1 . . . 8 89.38 89.38 89.38
S1:8 29.3 29.3 29.3

LDA 1 . . . 8 93.22 93.21 93.23
S1:8 53 52.99 52.96

QDA 1 . . . 8 67.5 68.1 68.01
S1:8 33.43 29.84 29.79

Table 6. Experimentation 6: Percentage of recognition using a 10 × 10 cross-validation by dividing
the data into training (TRN), validation (VAL) and test (TST). The subject column is divided into
two parts for each classifier; 1 . . . 8 indicates that an average was performed between the data of the
eight subjects; S1:8 indicates that the total data were a single set of the eight individuals. The N.F
column is the number of features selected through SFS.

Experimentation No. 6 with SFS

Sub N.F TRN VAL TST

NB 1 . . . 8 21 90.71 90.72 90.72
S1:8 27 39.15 39.16 39.18

LDA 1 . . . 8 57 93.08 93.10 93.11
S1:8 80 53.18 53.19 53.15

QDA 1 . . . 8 30 94.68 94.72 94.73
S1:8 24 77.71 77.88 77.86

Table 7. Experimentation 7: The format of the table is the same as Table 5, with the total number
of features used in the tests; normalization was applied to the data before they were used to create
the model.

Experimentation No. 7 without SFS

Sub TRN VAL TST

NB 1 . . . 8 89.94 89.97 89.96
S1:8 29.31 29.3 29.30

LDA 1 . . . 8 93.6 93.61 93.60
S1:8 54.79 54.8 54.78

QDA 1 . . . 8 94.06 94.06 94.05
S1:8 51.15 51.04 51.07

Table 8. Experimentation 8: The format of the table is the same as Table 6, with the number of features
selected for each subset of tests from SFS; normalization was applied to the data before they were
used to create the model.

Experimentation N. 8 Normalization with SFS

Sub N.F TRN VAL TST

NB 1 . . . 8 21 91.33 91.36 91.34
S1:8 27 39.15 39.16 39.18

LDA 1 . . . 8 40 93.10 93.12 93.12
S1:8 69 54.73 54.74 54.75

QDA 1 . . . 8 25 96.09 96.14 96.16
S1:8 49 78.34 78.36 78.36
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The effect that the normalization of the data produces is evident in Tables 5 and 7
without SFS, using the 96 features. The normalization effect significantly improves the
recognition percentage of the QDA. However, as shown in Tables 6 and 8, when the
electrode features are selected, the normalization only produces a slight increase in the
recognition percentage of QDA, which had already been improved with the pure selection
of features without normalization. From Tables 6 and 8, it is evident how many features-
electrodes can be discarded without affecting the percentage of classification obtained for
TRN, VAL and TST.

3.2. Statistical Parameters, ANOVA and Duncan Method

The results in Tables 5–8, regarding the performance of the four treatments outlined in
Figure 2, indicate not only the good results of QDA, but also that the selection of features
and normalization is an important factor in the performance of this type of classifier. An
advantageous difference is that SFS reduces the number of features considered.

Among the tests carried out was an inquiry with subsequent statistical validation
trials regarding which of the four treatments are significant. Therefore, the eight subjects,
who are part of the same population, were taken with the results of their individual QDA
classifier. The four data treatments established were the following:

(A) Normalization and SFS (Table 8);
(B) Only normalization (Table 7);
(C) Only with SFS (Table 6);
(D) Without any processing (Table 5).

Table 9 lists the averages of the 10 × 10 cross-validation of the TST data subset of each
treatment of each subject. The ANOVA test performed exhibited a significant difference
between the means of the results (alpha = 0.05, F = 34.37, p-value < 0.00001), rejecting the
null hypothesis.

Table 9. Percentage of recognition for each treatment for each subject with QDA.

Treatments

Subjects Without Any
Processing Only with SFS Only

Normalization
Normalization

and SFS

1 65.97 96.53 96.68 98.27
2 88.82 95.38 96.37 97.76
3 59.06 91.80 87.57 91.87
4 71.41 92.26 92.32 93.93
5 73.89 97.06 97.48 98.94
6 72.09 95.47 96.92 97.44
7 65.46 95.35 96.06 97.06
8 47.36 94.01 89.04 93.98

Average 68.01 94.73 94.01 96.16

Duncan’s method was applied to determine which of the treatments are statistically
the same and which are different. As shown in Table 10, Duncan’s method revealed that
µA = µC, µA = µB, µC = µB, µC 6= µD, µC 6= µD and µB 6= µD; therefore, treatments A,
B and C are statistically the same and D is different. Therefore, we can select any of A, B
and C. However, as A provides us with a low number of features and a higher value in the
recognition percentage, it was decided to use QDA with normalization and SFS to continue
working with these conditions.

3.3. Conversion to a New Sparse Matrix Space

As established, this method was used to reduce further the number of features used,
to increase the percentage of model recognition and to generate a simpler model. Figure 9
illustrates the main features versus the recognition curve. The more main features are input,
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the more the percentage of recognition grows, but it was only possible to reach the highest
classification rate as before.

Table 10. Table for results of Duncan’s significance testing; the conclusion is that the means of the
results obtained from the procedures A, B and C are equal, and D (without any processing) is not
equal. Therefore, any of the treatments “normalization and SFS”, “only normalization” and “only
with SFS” can be chosen.

Population Difference Sample Difference Compared to Their Rp Range Decision

µA − µC 96.15–94.73 = 1.42 < 7.1 = R4 Not significant
µA − µB 96.15–94.05 = 2.10 < 7.0 = R3 Not significant
µA − µD 96.15–68 = 28.14 > 6.6 = R2 Significant
µC − µB 94.73–94 = 0.67 < 7.0 = R3 Not significant
µC − µD 94.73–68 = 26.75 > 6.6 = R2 Significant
µB − µD 94–68 = 26.04 > 6.6 = R2 Significant
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3.4. Statistical Formulations for QDA after Space Change

The statistical parameters considered—sensitivity, specificity, precision and F1 score—
for each of the 15 classes were calculated. Table 11 presents these parameters for the average
of the eight subjects evaluated individually; data for the group sample of the eight subjects
are presented in Table 12. As shown in Table 11, the classes 1 (HC), 8 (MRL), 10 (R_R)
and 12 (T_L) are movements that have an ideal classification; Figure 10 illustrates these
hand gestures.

3.5. Evaluation of the Movement in Opensim

Each new classification of a data window is translated into an advancement vector,
which integrates the joints involved in the movement detected, representing a progress
proportional to 62.5 ms of a total motion duration of 5 s. Figure 11 visualizes the com-
plete cycle, from the detection of the movement with the classifier to the choice of the
corresponding advance vector and the addition of this vector to the movement matrix.
Once the movement has finished, the motion file with the MOT extension was used for
the subsequent motion visualization in Opensim. With the generated movement files, we
performed biomechanical movement analysis in Opensim, verifying the activations and
muscular participation within the movements. Some ideal motion files and their videos are
in [30].
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Table 11. Average of the statistical parameters for the eight subjects evaluated individually.

QDA

Class Sensitivity Specificity Precision F1 Score

1 100 100 100 100
2 88.65 99.09 88.65 88.65
3 96.90 99.74 96.90 96.90
4 98.88 99.83 97.80 98.34
5 98.68 100 100 99.33
6 97.32 99.91 99.09 98.19
7 97.80 99.91 98.88 98.34
8 100 100 100 100
9 97.40 99.42 91.46 94.33
10 100 100 100 100
11 92.52 99.74 97.05 94.73
12 100 100 100 100
13 97.75 99.50 93.54 95.60
14 92.39 99.83 97.70 94.97
15 90.78 99.10 86.25 88.46

Table 12. Statistical parameters for the dataset formed by the group of eight subjects with
49 electrode features.

QDA

Class Sensitivity Specificity Precision F1 Score

1 83.26 99.78 97.11 89.65
2 78.99 98.09 78.77 78.88
3 81.87 96.74 70.18 75.57
4 70.71 98.06 77.05 73.75
5 70.05 98.87 85.00 76.80
6 79.25 96.81 68.87 73.69
7 86.20 94.82 58.36 69.60
8 83.33 98.42 81.63 82.47
9 52.60 98.76 78.73 63.06
10 69.56 98.77 82.90 75.65
11 87.71 98.15 80.85 84.14
12 79.65 99.78 97.25 87.58
13 93.19 97.81 79.06 85.54
14 84.44 98.17 81.02 82.69
15 77.91 98.37 81.18 79.51
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Figure 11. Cycle from classification to generation of the movement file for Opensim.

Evaluating the movement classified with an Opensim visualization is a way of illus-
trating the performance of the classifier. After analyzing the recognition of each subject
and its test data class label (type of movement), it was found that, on average, the worst
classified is the RL movement, with subject 6 having the worst recognition percentage for
this movement. Figure 12A illustrates the Opensim reproduction of the ideal RL move-
ment for 5 s. Figure 12B visualizes the classification of the complete repetition of the RL
movement of subject 6 (repetition 1 was taken). A complete move can take up to a maxi-
mum of 80 classification events if there are no outliers removed that reduced the number
of windows. In this repetition of RL, only 76 classifications were provided, of which 11
were erroneous for the RM movement (14.5%) and the others were for the IM movement
(85.5%). A predominance of the middle finger was observed in the misclassification of
movement. In Figure 12B, it is evident how the middle finger progresses most before any
other. How serious the misclassification can be depends on the task to be performed and
the application.
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4. Discussion

The objective of this work was the evaluation of an open access electromyography
database for the detection of 15 movements of the fingers of the hand through a simple
preprocessing-enhanced classifier to visualize the muscular participation of the predicted
movements in the virtual environment of Opensim and generate new insight for prosthetic
application. The usefulness of the Opensim musculoskeletal simulation environment
in the design of a multifunctional prosthesis was demonstrated, and the evolution of
muscle movements was virtually observed from the results of the classification model and
visually compared with the ideal movement. Working with multiple specific movements
(the flexion of each finger and combinations of flexions) from a database provided a
multifunctional complex system outside of laboratory environments, where the control of
upper-limb prosthetic systems can be investigated in a practical way. The standard models
of classification implemented with a short data window provided a good recognition rate
(in accuracy and number of classes) and will be easy to embed into microcontrollers to
classify a sequence of movements in real time in the future. A description of specific results
follows, along with a discussion of the limitations of the study.

The method for outlier elimination indicates that the closed hand movement was the
most affected, as seen in Figure 9. This was the most complex hand gesture because it
involved flexing all the fingers, which would have favored the proliferation of their outliers.
However, the closed hand flexion is one of the most common movements in daily life, and,
at the same time, it was one of the best-classified movements.

After the removal of outliers, without any type of preprocessing, of the four classifiers
created in Table 5 (experimentation 5 in Figure 2), the best of the algorithms is LDA for the
two groups of data matrices. Table 6 presents the results for when the features were selected
in the creation of the classifier. One more column is displayed, in which the number of
features selected in each classification algorithm is defined. With a set of features selected
from the total set, the classification percentages increase, with the most notable change
being in QDA, reaching 77.86% recognition of the global subject matrix and up to 94.73%
with the individual matrices of the subjects.

The next set of results is shown in Tables 7 and 8, in which the effects of normalization
are evidenced in both cases, either as a single preprocessing or in conjunction with the
selection of features. It is clear there is an improvement in all the algorithms, but again the
QDA model is especially improved. Selecting the features or making none predominate
in the magnitude of their effect helps the classifier. In Table 8, QDA has the best perfor-
mance for the 15 movements, with 96.15% recognition for subjects individually and 78.36%
recognition for the sample group with the eight subjects together.

For the input vector with 96 initial features, these features can be reduced without
degrading the recognition; and with selected features, they even improve the recognition of
the classifiers. In QDA, 25 electrode features remained, on average, for individual subjects,
and 49 remained for the sample group. A curious fact about the electrode features selected
and the position of the significant electrodes is that QDA achieved its classification rate
using practically only four electrodes. Electrodes 3, 4, 5 and 6 were the ones that behaved the
best and correspond to being better positioned to capture the signal from the active flexor
muscles, according to Figure 1. This point demonstrates how redundant the EMG electrode
ring array setup can become. As revealed by the SFS tests on the NB and QDA classifiers,
there is potential to tailor the methodology specifically with a few electrode features to an
individual (up to only 17 in a subject) and achieve a good classification percentage.

The results of each procedure performed are supported by the cross-validation in-
cluded in them and even by an ANOVA test. When the results obtained from the exper-
imental treatments were evaluated with Duncan’s multiple comparisons test, the latter
three experimental procedures (marked 6, 7 and 8 in Figure 2 and Tables 6–8) were similar;
that is, the means of the recognition percentage measurements were not statistically dif-
ferent. Therefore, we could use any of those three treatments; however, for the moment,
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to continue investigating, the chosen model was the quadratic model with a selection of
normalized features.

The statistical formulations of sensitivity, specificity, precision and F1 score of the eight
subjects evaluated separately (Table 11) reveal that the movements 1 HC, 8 MRL, 10 R and
12 TL all have a value of 100% recognition; Figure 11 illustrates these hand gestures. This
finding indicates that the QDA classifier trained for any subject could distinguish these four
gestures without any error. However, a perfect class recognition does not happen when the
data of the eight subjects are assembled into a single data group and processed to generate
a single model for all subjects (Table 12), as is often the case. In this group, a large specificity
is maintained for all classes, and the F1 score indicates a good performance for classes 1
HC and 12 T_L again, confirming them as two robust hand gestures. The class movement
13 T_M might appear to have good performance since it had the greatest sensitivity of the
group, but it had a low precision. Regarding the worst class prediction for the subjects
evaluated individually (Table 11), the flexion of the index finger (2 I_I) had the lowest
sensitivity and specificity, which is in agreement with other research [18], and also the
thumb flexion (15 T_T) presents the lowest precision and F1 score. This might correspond
to the high levels of fine motor dexterity developed between the thumb and index finger
that make them difficult to individually define. As for the whole group classifier (Table 12),
the F1 score is above 63%, with most classes being balanced, but class 9 (R_L) shows a loss
in sensitivity and class 7 (M_R) shows a loss in precision. In these two movements, which
involve the ring finger flexion and the middle finger, misclassification was observed; there
were repetitions with large classification errors and mistagging between themselves.

In Figure 9, it is possible to verify that there is no convenience in converting the
features into a new space through the sparse matrix method. It simply maintained the
recognition percentage already present, so no improvement was seen using the method,
and the increased processing load with its use in a microcontroller is not justified.

To simulate the movements in Opensim, after an output result of the classifier, an
advance vector was chosen and added to the construction of the simulation; therefore,
the class of the movement detected provides each joint of the biomechanical model of the
hand with a possible change in the degrees of rotation. At the end of the reading of the
5 s motion, there is a virtual movement matrix representative of the classification. In this
way, it was possible to reproduce the classified movements of any of the subjects, whether
they were of high hits or poor performance in the classification. Several videos with the
movements of all the joints are in [30,42]. With these movement files (MOT format), in
Opensim, we performed movement analysis and verified muscle participation within each
movement evaluated.

In the videos of a complete movement, the wrong classification of an event does not
necessarily affect the total movement generated. For example, a single error of a window
period translated into movement can be expressed in the same way as a movement executed
at 98%, and perhaps more if the correct movements of some joints are considered within the
errors. For example, if a classification indicates flexion of the index–middle–ring fingers,
and it is actually a movement of the index finger, this is a partially good classification,
as this movement partially helps the correct movement. Even in a normal human hand,
usually, when we want to execute a single movement, taking the ring finger as an example,
the hand generates some movements in the other fingers.

There are some issues to consider in this study. Although there was no significant
difference in the results of the SFS and SFS-normalized tests of the three algorithms, a
further discussion is required regarding the final specifications of the system, whether
to work with the minimum number of electrodes, whether to have the best recognition
or whether it is a matter of real-time implementation. There is a warning related to the
findings on the reduction in the numbers of electrodes and features before application;
although the database used in this research is of the multifunction type, it only included
flexion movements and there was never any extension of a finger. Therefore, further
experimentation with all kinds of finger motions would be required to optimize a classifier.
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An important argument in the works involving EMG signals is the repeatability in the
acquisition of these measurements [43], specifically the difficulty of electrode placement
accuracy. Since data mining and machine learning analyze the information as it is acquired,
a key point in obtaining more reliable classification models is ensuring the same conditions
of the experimental protocol during every measurement. We made sure that the selected
database complied with international best practices, although the material in the dataset
used did not include information about the repeatability of the EMG measurements, and
this is a limitation of the work; at any rate, statistical parameters for the reproducibility
of classification were calculated as a measure of performance. Another limitation of the
study was that the database did not have motion sensors or video recordings that would
allow us to have a direct relationship between EMG signal time and position in space.
The model of Opensim was controlled by the classification results of the machine learning
algorithms; for this reason, the simulated hand movements might be different from the
actual hand movements.

In the future, the validation of the Opensim model using a dataset including the
motion data, such as data from a 3D motion capture system or camera, will be important
to improve the results of this research and to confirm the virtually created movement
with the real movement position data. In addition, another task would be to bring the
15 discriminant functions of the QDA classifier, which are a sum of multiplications, to the
world of portability by embedding them in a microcontroller, which allows us to be one
step closer to real-time processing.

5. Conclusions

The development presented combined biomechanical simulation with automatic
classification of 15 finger movements. An open access database containing the signals
from an array of forearm EMG electrodes was used as input, and traditional machine
learning and signal preprocessing methods were used for the design of the classifiers.
The result turns out to be a nice tool for the practical design of hand prostheses or for
human–computer interface control through hand gestures. It allows one to visualize the
result of classifying a finger movement to consider its performance.

The algorithms created and their input data preprocessing provided good results
in the classification of the finger movements. The QDA algorithm with SFS and data
normalization provided the highest recognition rate (96.16%). The experiments suggest it is
possible to make a classifier specific to a person, using only 17 electrode features and 4 EMG
electrodes. This leads us towards a possible practical implementation and portability of
EMG matrix control.
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