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Man Zhao2, Linhong Mo2, Wenshan Li1, Xiaoshuang Xi1,

Peiling Huang2 and Weijun Gong1,2*

1Beijing Rehabilitation Medicine Academy, Capital Medical University, Beijing, China, 2Department of

Neurological Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China

Background: Evidence for the e�cacy of cognitive-motor dual-task (CMDT)

training in patients with post-stroke cognitive impairment (PSCI) and

no dementia is still lacking. More importantly, although some studies

on the cognitive e�ect of CMDT training show an improvement in

cognitive performance, the results are still controversial, and the intervention

mechanism of CMDT training on cognitive function improvement is not clear.

The main purpose of this study was to analyze the e�ects of CMDT training on

cognitive function, neuron electrophysiology, and frontal lobe hemodynamics

in patients with PSCI.

Methods: Here we tested the e�ects of CMDT training on cognitive function

in PSCI patients. Forty subjects who met the criteria of PSCI were randomly

assigned to control and experimental groups. CMDT training or cognitive

task (CT) training was administered to each patient in the experimental

and control groups, respectively. All subjects performed Mini-mental State

Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scale before

and after the intervention, and the event-related potentials (ERP) and functional

near-infrared spectroscopy (fNIRS) were used to evaluate the changes in

neuron electrophysiology and hemodynamics.

Results: Forty patients were randomized across Beijing Rehabilitation Hospital

Capital Medical University in Beijing. At the end of the intervention, 33 subjects

completed the experimental process. The CMDT group showed significant

improvement in the MMSE (P = 0.01) and MoCA (P = 0.024) relative to the CT

group. The results of ERP and fNIRS showed that CMDT training could shorten

the latency of P300 (P = 0.001) and the peak time of oxygenated hemoglobin

(P = 0.004). The results showed that CMDT training shortened the response

time of central neurons and significantly increased the rate of oxygen supply

to the frontal lobe.

Conclusion: CMDT training in patients with PSCI improved global cognitive

function, which was supported by the improved neural e�ciency of associated

brain areas.

Clinical trial registration: http://www.chictr.org.cn, identifier

ChiCTR2000034862.

KEYWORDS
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Introduction

Stroke is one of the leading causes of death and adult

disability, and it is highly associated with an increased

risk of cognitive impairment (1). The Stroke and Cognition

Consortium (STROKOG) harmonized data from 13 studies

based in eight countries found that 44% of hospitalized

stroke participants were impaired in global cognition (2).

In China, a community-based study involving 599 stroke

patients showed that the incidence of post-stroke cognitive

impairment (PSCI) was as high as 81.0%, with 48.9% of cases

being PSCI patients with non-dementia and 32.1% being post-

stroke dementia patients (3). PSCI is a broad concept that

covers the full spectrum from mild cognitive impairment to

dementia and includes cases with solely vascular pathology

or mixed pathologies (4). It refers to a series of syndromes

that meet the diagnostic criteria of cognitive impairment

after stroke, emphasizing the potential causal relationship

between stroke and cognitive impairment and the correlation

of clinical management between them (5, 6). The active clinical

management of stroke may reduce the occurrence of PSCI, and

the intervention of PSCI may also contribute to better recovery

from stroke dysfunction.

Previous studies have shown that cognitive training (CT),

including cognitive behavioral training and computerized

cognitive training, can improve cognitive impairment by

enhancing the functional connection of related brain regions

and cerebral cortical activity and increasing the thickness and

volume of the cerebral cortex (7, 8). Exercise training has a

beneficial effect on cognitive function by increasing cerebral

blood flow and reducing cardio-cerebrovascular risk factors

(9, 10). But traditional cognitive rehabilitation training has

many limitations in terms of efficacy and implementation.

At present, it is suggested that cognitive-motor dual-task

(CMDT) training may have a synergistic effect on improving

cognitive function (11). A network meta-analysis by Gavelin

et al. (12) shows that combined intervention can effectively

improve the cognitive function of the elderly with and without

cognitive impairment. The impact of CMDT training on

cognitive function has been studied extensively and some

creative points need to be addressed. Due to the lack of high-

quality randomized controlled trials (RCT) studies, the outcome

of combined intervention in the improvement of cognitive

function in PSCI patients is not consistent. More importantly,

the neurophysiological manifestations and cerebral blood flow

changes of CMDT training are not clear.

Event-related potential (ERP) is a neuron electrophysiology

detection method for the cognitive function of the brain

(13). The generation and changes of EEG can express the

activity process of brain cells in real-time, and the ERP

can record the cognitive processing in real-time (14). It has

the advantages of high time resolution, real-time, objectivity,

popularity, and so on. ERP including P300, N200, MMN, and

other different components can be used in the detection of

cognitive impairment, among which P300 is the most classic and

widely used. P300 is an endogenous component of ERP, which is

not affected by external stimuli and can objectively evaluate the

electrical activity process of the brain (15). Studies have shown

that the main manifestation of P300 in patients with vascular

cognitive impairment is prolonged latency and no significant

decrease in amplitude, indicating that prolonged latency is a

more characteristic manifestation (16).

The current research provides strong evidence that

neurovascular coupling plays a causal role in the pathogenesis

of vascular cognitive impairment. Neurovascular coupling is a

critical homeostatic mechanism in the brain, responsible for the

adjustment of local cerebral blood flow to the energetic needs

of the active neuronal tissue (17). Functional near infrared

spectroscopy (fNIRS) is a new non-invasive brain function

monitoring technique. Its spatial resolution is better than that

of EEG, and its time resolution is better than that of magnetic

resonance technology. JÖBSIS first used f-NIRS to observe the

changes in blood oxygen content in the brain of animals in 1977

(18). The principle of f-NIRS is to detect the light source energy

after scattering by using the good permeability of near-infrared

light to human tissue. The hemodynamic changes of the

cerebral cortex were reflected by calculating the concentration

of oxygenated hemoglobin(oxy-Hb), deoxyhemoglobin, and

total oxygen (19). This indirectly reflects the activation and

functional changes of the relevant brain regions.

Thus, we conducted a proof-of-concept single-blind RCT

study to provide evidence of the efficacy of CMDT training for

cognitive function improvement among patients with PSCI. At

the same time, we used ERP and fNIRS to explore a potential

neural mechanism for cognitive functional changes.

Materials and methods

Study design, registration, and patient
consent

The study included three parts: Baseline measurements, a 4

week intervention phase, and measurements at the end of the

intervention period. Participants with PSCI were recruited from

Beijing Rehabilitation Hospital at Capital Medical University.

Ethical approval was obtained from the Ethics Committee of

Beijing Rehabilitation Hospital at Capital Medical University

(2020ky59). The trial was registered under chictr.org.cn

(ChiCTR2000034862). All the participants provided written

informed consent.

Participants

Adults with a clinical diagnosis of PSCI were included in the

study (20). All patients met the following inclusion criteria: (1)

patients with the first stroke and lesions located in the cerebral
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hemisphere; (2) ages 18–80; (3) cognitive function evaluation:

informant questionnaire on cognitive decline in the elderly

(IQCODE) ≤ 3.3, 9 < Mini-mental State Examination (MMSE)

< 27, and 9 < Montreal Cognitive Assessment (MoCA) <

26; (4) able to follow the learning guide clearly; (5) walking

function: Holden grade > 2, orthostatic balance ≥ 2; (6)

attending physician evaluated the cardiopulmonary function

of the subjects and determined that they could complete

the aerobic exercise. Exclusion criteria were as follows: (1)

participants who exhibited disorders other than PSCI that

would affect cognition; (2) taking drugs that would affect

cognitive impairment; (3) clinically significant gastrointestinal,

renal, hepatic, respiratory, or other systemic diseases; (4) severe

deafness, blindness, or major physical diseases that led to

communication disorders and made the patients unable to

participate in screening; (5) seriously impaired limb function

that made the patients unable to complete the corresponding

exercise training; (6) participation in other trials or other

treatments at the same time.

Randomization and blinding

We used the online Research Randomizer to generate

the allocation sequence and used block randomization to

achieve two groups with a 1:1 ratio. The personnel involved

in conducting the study and data analysis were masked to the

patient randomization. All evaluators and data analysts were

blinded to treatment assignment throughout the study.

Sample size

There were two groups in the study, the CMDT group,

and the CT group. We used G∗Power software 3.1 prior power

analysis to estimate the sample size (α = 0.05, and 1 – β = 0.8).

No previous randomized trial had examined the effect of CMDT

training on cognitive function in PSCI. We chose an effect size

of 0.4, and the calculated minimum sample size was 34 cases.

Assuming that the drop-off rate of the whole experiment was

10%, the total sample size was calculated to be 38 patients with

PSCI. The patients were randomly divided into two groups with

a 1:1 ratio, and the final number of patients in each group should

be 19. Finally, a total of 33 participants in the CMDT group

and CT group were included in our study because seven patients

dropped out during the study.

Procedures

Patients in the CT group received an individualized

multidomain progressive training program for 4 weeks.

Participants were required to complete 40min of training

per day, 5 days a week. Within each domain, high accuracy

(>90%) was required to upgrade to the next difficulty

level (7). The training domains are determined according to

the results of cognitive evaluation before training, including

calculation, reasoning, working memory, processing speed,

executive control, and attention. Patients in the CMDT group

received simultaneous cognitive training and motor training.

The content of cognitive training was the same as that of the

CT group. Exercise training included 20min of rehabilitation

treadmill training (plus tolerable resistance) and walking on a

flat surface for 20min (at a speed acceptable to the patient).

The patients’ attention had to be allocated to both motor

tasks and cognitive tasks. The intervention began directly

after randomization. All the outcomes were assessed at the

baseline and end of intervention after randomization to measure

the effect.

Outcomes

The primary outcome measures were global cognitive

function, measured by MMSE and MoCA. Based on previous

studies, we hypothesized that CMDT training could enhance

neural reactivity and increase cerebral blood flow. The secondary

outcomes of the present study, therefore, included the amplitude

and latency of P300, a key indicator linked with neural reactivity

(21), and the changing trend of oxy-Hb concentration, which is

associated with cerebral blood supply.

ERP data

The ERP data were acquired via the classical oddball

paradigm. The patients sat in front of the computer screen that

presented the cognitive task and placed a healthy hand on the

mouse. The screen randomly showed the number 2 or 8. The

standard stimulus and deviation stimulus were displayed 70 and

30% of the time randomly. The number two was the target

stimulus. Before training, it was explained to the patient that

they should press the left mouse button when the screen showed

2 and not press anything when the screen showed 8. The whole

test lasted 2min. The analysis of the P300 components included

the presence of latency and amplitude. The P300 components

were obtained at the Fz electrode sites. The P300 latency was

identified manually in the time window of 300–700ms and

amplitude was defined as the maximum peak within the same

time window.

fNIRS data

The fNIRS data were acquired via the ETG-4000 Optical

Topography system. The mode was continuous wave
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FIGURE 1

VFT task-based experiment protocol.

FIGURE 2

The flowchart for this study.

technology, and the changing trend of oxy-Hb concentration

was measured. The acquisition frequency of the fNIRS signal

was 10Hz, and the measuring depth was 2.0–3.0 cm. During the

experiment, all participants fixated on the screen to perform

the verbal fluency (VFT) task (Figure 1). Before measuring

fNIRS signals, an introduction and exercises for the VFT task

were preceded to ensure participants fully understood the

task. After the introduction and exercises, each participant

performed a VFT task session. The session consisted of three

trials. Trials consisted of three different characters with the

same pronunciation (20s / a Chinese character). Record the

reaction time and operation accuracy of all participants for

data analysis.

Statistical analyses

Statistical analysis was performed using the SPSS 22.0

software package (IBM Corporation, Armonk, NY). The

significance of the difference between the two groups of

variables was determined by the t-test and described by

mean (standard deviation), with the measurement data

that did not conform to the normal distribution analyzed

using the Mann–Whitney U test and described by median

(quartile spacing). A statistically significant difference

was P < 0.05.

Results

Participants’ characteristics

Forty individuals were recruited between November 2019

and March 2021. The flow of participants through the

study is shown in Figure 2. Baseline characteristics and

neuropsychological assessment data are shown in Table 1. We

found no differences in age, sex, or duration of education.
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The average course of disease (SD) in the dual task group

and cognitive training group was 3.2 (1.1) months and 3.1

(1.089) months respectively, which was in the middle stage

of stroke recovery. The neuropsychological testing scores

were matched between the two groups. Concerning their

neuropsychological test performance, both groups performed

comparatively (P = 0.301–0.336). All participants completed

more than 90% of the training requirement.

Primary index measurement

Table 2 shows the covariate-adjusted change from baseline

to 4 weeks (end of intervention) for the two primary outcome

variables. After 4 weeks, the patients in the CMDT group

had significantly improved compared to the CT group, as

measured by MMSE (P = 0.01) and MoCA (P = 0.024)

(Figure 3).

Secondary index measurement

Secondary index measures included the amplitude and

latency of P300 and the changing trend of oxy-Hb concentration.

TABLE 1 Baseline characteristics.

Variables CMDT

(n = 17)

CT

(n = 16)

P-value

Age (yr), mean (SD) 54.0 (14.0) 60.5 (10.6) P= 0.159

Sex, n females (%) 5 (29.4) 3 (18.8) P= 0.688

BMI, mean (SD) 25.7 (2.5) 24.8 (3.9) P= 0.121

Education (yr), mean (SD) 12.9 (3.8) 13.3 (2.7) P= 0.723

Type, n% (I/H)* 11 (64.7)/6 (35.3) 12 (75)/4 (25) P= 0.708

Course (month), mean (SD) 3.2 (1.1) 3.1 (1.089) P= 0.940

ADL, mean (SD) 75.0 (6.58) 75.9 (7.55) P= 0.794

MMSE baseline 21.8 (3.0) 22.9 (2.6) P= 0.336

MoCA baseline 17.9 (3.4) 19.4 (3.2) P= 0.301

SD, Standard Deviation; BMI, Body Mass Index; Course, course of the disease; ADL,

Activity of Daily Living Scale; MMSE, Mini-Mental State Examination; MoCA, Montreal

Cognitive Assessment; *I, infarction; H, hemorrhage.

The results of Table 3 showed that both P300 latency and

the time to the peak level of oxy-Hb (oxy-Hb Tmax)

differed significantly between the two groups. The P300

amplitude in lead Fz increased by 0.2150 µV in the CT

group and 0.3260 µV in the CMDT group. There was no

significant difference between the two groups (P = 0.061). The

mean P300 latency of Fz lead was shortened 11.25ms in

the CT group and 26.41ms was shortened to the CMDT

group. There was a significant difference between the two

groups (P = 0.001). The average peak level of oxy-Hb

(oxy-Hb max) in the frontal lobe increased by 0.0092

mmol/L∗mm in the CMDT group and 0.0025 mmol/L∗mm

in the CT group. There was no significant difference between

the two groups (P = 0.349). The average value of oxy-

Hb Tmax was shortened by 11.09 s in the CMDT group

and prolonged by 23.14 s in the CT group. There was a

significant difference between the two groups (P = 0.004)

(Figures 4–6).

Adverse events

No study-related adverse events occurred in either the

CMDT training or active control group.

FIGURE 3

Training e�ect on the primary outcome measurement.

TABLE 2 Estimated mean change (SD) and statistical significance in primary outcome variables.

Variables Group Baseline Outcome Difference Z P-value

MMSE CMDT 21.76 (2.95) 25.41 (2.92) 3.65 (1.46) −2.587 P= 0.01*

CT 22.88 (2.63) 25.06 (2.64) 2.19 (1.38)

MoCA CMDT 17.94 (3.41) 21.41 (3.83) 3.47 (2.10) −2.251 P= 0.024*

CT 19.44 (3.20) 21.31 (3.22) 1.88 (1.41)

*Statistical significance.
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TABLE 3 Estimated mean change and statistical significance in secondary outcome variables.

Variables Group Difference (mean) Z P-value

P300 amplitude (µV) CMDT 0.3260 −1.874 P= 0.061

CT 0.2150

P300 latency (ms) CMDT −26.41 −3.247 P= 0.001*

CT −11.25

oxy-Hb max (mmol/L*mm) CMDT 0.0092 −0.937 P= 0.349

CT 0.0025

oxy-Hb Tmax (s) CMDT −11.09 −2.846 P= 0.004*

CT 23.14

*Statistical significance.

FIGURE 4

Training e�ect on the secondary outcome measurement.

FIGURE 5

Changes in [oxy-Hb max] across 22 channels. Error bars represent one standard error of the mean. *Statistical significance.
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FIGURE 6

Changes in [oxy-Hb Tmax] across 22 channels. Error bars represent one standard error of the mean. *Statistical significance.

Discussion

PSCI is a functional disorder with a high incidence after

stroke. The treatment of cognitive impairment after stroke has

great significance for improving the quality of life of patients

and reducing the social burden. The purpose of this proof-

of-concept randomized trial was to investigate the efficacy

of CMDT training in patients with PSCI. The strengths of

our study include its active control design and use of both

neuropsychological evaluation and ERP and fNIRS as outcomes.

For primary index measurement, we found that, relative to

the CT, CMDT training led to a significant improvement in

global cognitive function, as measured by MMSE andMoCA, by

the end of the 4 week intervention. This result is consistent with

findings from recent meta-analyses of CMDT training (12, 22).

It shows that CMDT training has more advantages than single-

cognitive training in improving cognitive impairment. Our

results provide a significant update to the current understanding

of the effects of CMDT training. We confirm the positive effects

of combined interventions on cognition reported in previous

studies (20, 23, 24).

Concerning secondary index measurement, ERP and fNIRS

tests showed that, compared with CT, dual-task intervention

could significantly shorten the latency of P300 and the oxy-Hb

Tmax. The result of this study is an important supplement to the

research on the improvement of the cognitive field of dual-task

training. Previous studies have shown that MAP training

(combining meditation and aerobic exercise) can improve

cognitive function after stroke and increase the amplitude of

P300 (25, 26). Our study also found that after CMDT training,

the P300 amplitude increased, but there was no statistical

difference compared with the CT group. More importantly,

our results show that the P300 latency in the CMDT group is

significantly shorter than that in the CT group. It is well known

that the latency of P300 reflects the time it takes for the brain

to respond to stimulation (27, 28). The results showed that after

dual-task training, the reaction time of cognitive tasks decreased.

Many studies have shown that the latency of P300 is a more

sensitive index than amplitude in patients with stroke (21, 29).

Some studies have found that the latency of P300 in patients

with vascular cognitive impairment is significantly prolonged,

but the amplitude of P300 has no significant difference from that

of normal subjects (30). The results of this study confirmed that

P300 latency is a sensitive index to detect the improvement of

cognitive function in patients with PSCI from the point of view

of cognitive improvement.

A study by Dong et al. (31) points out that oxy-Hb Tmax

correlating with the reaction time means that the latency reflects

the speed of cognitive processing. Our results showed that the

oxy-Hb Tmax of the CMDT group was significantly shorter

than that of the CT group. Therefore, the results of oxy-Hb

Tmax once again confirmed that CMDT training can reduce the

task-related reaction time of patients. It suggests that the brain

could increase oxy-Hbmore rapidly under the stimulation of the

cognitive task and excite central neuronal cells, thus significantly

accelerating nerve conduction velocity and cognitive processing

speed (32). This is consistent with the results of ERP.

Through the analysis of the results of neurocognitive

psychology, our study demonstrated that CMDT training

significantly improved PSCI compared with cognitive training,

and the results of fNIRS and ERP suggested that CMDT training

could significantly shorten cognitive reaction time and improve
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cognitive processing speed. The present study was subject to

several limitations. The evaluation scale of cognitive function

in the outcome index of this study evaluated overall cognitive

function, and the index was not detailed enough. In future

experiments, evaluation methods for each cognitive domain

(such as attention, memory, computing power, orientation, and

executive function) could be refined to determine the specific

areas in which the training method could improve cognitive

function. Future research could also increase the follow-up time

and explore the long-term effect of CMDT training. Owing

to equipment limitations, fNIRS only collected data from the

frontal lobe. Further research could collect other information

from the other brain lobes.

Conclusion

In general, compared with cognitive training, CMDT

training had more obvious advantages in improving the

cognitive function of PSCI patients. CMDT training shortened

the reaction time of central neurons and accelerated the

nerve conduction velocity to accelerate the speed of cognitive

processing and improve cognitive function more effectively.

Although our study demonstrated the effectiveness and safety of

CMDT training in PSCI patients, more clinical trials are needed

to support these findings.
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