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Abstract

Background: Diabetes management is complex, and program personalization has been identified to enhance engagement and
clinical outcomes in diabetes management programs. However, 50% of individuals living with diabetes are unable to achieve
glycemic control, presenting a gap in the delivery of self-management education and behavior change. Machine learning and
recommender systems, which have been used within the health care setting, could be a feasible application for diabetes management
programs to provide a personalized user experience and improve user engagement and outcomes.

Objective: This study aims to evaluate machine learning models using member-level engagements to predict improvement in
estimated A1c and develop personalized action recommendations within a remote diabetes monitoring program to improve clinical
outcomes.

Methods: A retrospective study of Livongo for Diabetes member engagement data was analyzed within five action categories
(interacting with a coach, reading education content, self-monitoring blood glucose level, tracking physical activity, and monitoring
nutrition) to build a member-level model to predict if a specific type and level of engagement could lead to improved estimated
A1c for members with type 2 diabetes. Engagement and improvement in estimated A1c can be correlated; therefore, the doubly
robust learning method was used to model the heterogeneous treatment effect of action engagement on improvements in estimated
A1c.

Results: The treatment effect was successfully computed within the five action categories on estimated A1c reduction for each
member. Results show interaction with coaches and self-monitoring blood glucose levels were the actions that resulted in the
highest average decrease in estimated A1c (1.7% and 1.4%, respectively) and were the most recommended actions for 54% of
the population. However, these were found to not be the optimal interventions for all members; 46% of members were predicted
to have better outcomes with one of the other three interventions. Members who engaged with their recommended actions had
on average a 0.8% larger reduction in estimated A1c than those who did not engage in recommended actions within the first 3
months of the program.

Conclusions: Personalized action recommendations using heterogeneous treatment effects to compute the impact of member
actions can reduce estimated A1c and be a valuable tool for diabetes management programs in encouraging members toward
actions to improve clinical outcomes.

(JMIR Form Res 2022;6(3):e33329) doi: 10.2196/33329
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Introduction

Diabetes is a chronic progressive disease affecting 34 million
Americans with 1.5 million newly diagnosed each year [1,2].
Individuals living with diabetes are at greater risk of health
complications including increased hospitalizations that result
in 1 of every 4 health care dollars spent on diabetes-related care
in the United States [3]. An essential factor in successfully living
with diabetes is effective self-management, which has shown
to improve glycemic control and reduce hospital admissions
and the overall lifetime cost of health care [4].

Diabetes self-management efficacy and improved glycemic
control is supported by programs that offer education, coaching,
glucose monitoring, and physical activity [5-7]. Diabetes
management programs have shown to be as or more effective
than usual care in providing a significant reduction in
hemoglobin A1c (HbA1c) [8-10]. Additionally, structured
self-monitoring of blood glucose (SMBG) has been observed
to improve glycemic variability and provide greater self-efficacy
in management by helping an individual understand lifestyle
behaviors’ impact on blood glucose (BG) values over time
[2,11]. However, while advances in diabetes treatment options,
diabetes management programs, new technologies to support
self-management, and the rise in digital health are rushing the
market, half of individuals with diabetes have an HbA1c value
of 7.0% or higher and struggle to obtain consistent glycemic
control [1]. This alludes to potential gaps in self-management
programs, technology, and delivery to the individual [12].

Personalization has been identified as a key tool in digital health
to enhance user engagement for improved outcomes, which is
often a missing factor in the development of diabetes digital
health programs [12]. Self-management best practices and user
preference must be taken into consideration to effectively
provide a personalized experience within a diabetes management
program. This study has proposed and analyzed the feasibility
of using heterogeneous treatment effect models for personalizing
action recommendations within a digital remote diabetes
monitoring program (RDMP).

Methods

Livongo for Diabetes
Livongo for Diabetes is an RDMP focused on empowering
members with education and tools to self-manage their diabetes

through mobile technology. The program offers members a
cellular-enabled, two-way messaging device that measures BG
and delivers personalized insights into their glycemic
management; free unlimited BG test strips; real-time support
from diabetes response specialists 24 hours a day, 7 days a week,
365 days a year; and access to certified diabetes care and
education specialists (CDCESs) for support and goal setting.

Livongo members’ glucose meter use was captured remotely
through the cellular-enabled device. Members also had access
to a mobile phone app that tracked historical SMBG readings
and provided reminders for SMBG checking, physical activity,
and food log tracking; asynchronous chat with coaches; ability
to schedule private coaching sessions with CDCES; educational
content for diabetes self-management; and allowed members
to send historical reports of SMBG readings to care providers,
family members, and friends.

Study Design
A retrospective feasibility study was conducted to compute
heterogeneous treatment effect for five different action
categories in the reduction of estimated A1c for members
enrolled in Livongo for Diabetes with type 2 diabetes and to
identify which actions could be most effective for each member.
Within each action category, members were classified into a
treatment or control group defined by engagement level. The
effectiveness of each action category was assessed by computing
the heterogeneous treatment effect for each action category for
each member.

Population Selection
Members enrolled in Livongo for Diabetes for a minimum of
4 months with a baseline estimated A1c ≥7.5% at 30 days post
enrollment were included in the study. Additional inclusion
criteria were a self-reported diagnosis of type 2 diabetes at
enrollment, ≥5 SMBG measures between 50 and 400 mg/dL in
month one and month four of their program, and had not
self-reported the use of a continuous glucose monitor (see Figure
1). Member demographics, self-reported preferences around
communication and health-related interests, and level of
engagement with various program features within 3 months
following enrollment were used as covariates for modeling
outcomes.

JMIR Form Res 2022 | vol. 6 | iss. 3 | e33329 | p. 2https://formative.jmir.org/2022/3/e33329
(page number not for citation purposes)

Kamath et alJMIR FORMATIVE RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Study population funnel with inclusion and exclusion criteria. HbA1c: hemoglobin A1c.

Ethics Approval
The institutional review board approval was granted by Aspire
IRB (#520160099), and guidelines outlined in the Declaration
of Helsinki were followed.

Action Categories
Various program features were categorized and grouped to form
five action categories, otherwise known as interventions per the
causal inference formulations (see Textbox 1 for action category
descriptions).

Textbox 1. Action category name and descriptions.

Monitoring

Number of self-monitoring blood glucose checks a member performed on the device

Coaching

Number of scheduled certified diabetes care and education specialist coaching sessions or asynchronous chat with a coach

Physical activity

Physical activity recorded using synced steps data

Nutrition

Members engagement with nutrition- and meal plan–related nudge recommendations and food log

Content

Members’ engagement with educational content nudge recommendations

Measures

Estimated A1c

Estimated A1c was calculated using the A1c-derived average
glucose model where estimated A1c = [mean BG over past 30
days + 46.7] / 28.7 [13]. Mean BG was calculated using SMBG
values gathered through the member’s device.

The intervention outcome, Y, is defined as the difference
between estimated A1c in month four and month one post
enrollment for members with a starting self-reported HbA1c

≥7.5%. Therefore, members with a more negative Y have a
better clinical outcome.

Model Features
Treatment effect was modelled using self-reported member
information and member engagement during the first 3 months
post enrollment. The following variables were used as covariates
in the model:

• Demographics: age, gender, BMI, race
• Self-reported medical information: self-reported HbA1c at

enrollment, diabetes management level of self-efficacy,
insulin use, on oral diabetes meds, received flu vaccine,
smoking behavior

• Self-reported preferences: preferred channels of
communication, interest level in becoming active and
healthy

• Engagement: average days between Livongo website use;
average days between Livongo mobile app use; number of
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days of Livongo mobile app use; average days between
SMBG checks; estimated A1c at month two and three; days
with SMBG hypoglycemia readings in month one, two, and
three; days with SMBG hyperglycemia readings in month
one, two, and three

Computing Heterogeneous Treatment Effect
The sample was defined to be composed of members with
covariates, X, in treatment or control cohorts, denoted by T=t1
or t0, respectively, and intervention outcome, Y. Ideally,
treatment effect, τ, would be measured for each member as:

τ (t0, t1, x) = E[Y (t1) – Y (t0) | X=x ]

However, this was not possible in a real-world data set where
a member could only be in one cohort, treatment or control, at
a time and not in both. Therefore, observed samples were
assumed to be from a joint distribution modeled by the
equations:

Y = g (T, X) and T = f (X)

and the treatment effect was expressed as:

τ (t0, t1, x) = E[g(t1, X) – g(t0, X) | X=x ]

where g (T, X) denoted the likelihood of outcome for a member
given an intervention, and f (X) denoted propensity of a member
to be in the treatment or control cohort of the intervention.

With the assumption that all potential confounders were
observed, the heterogeneous treatment effect for each member
was computed using the doubly robust (DR) learning algorithm
[14-17]. Treatment effect was computed by the DR algorithm
using three different models. The first model performed
regression on [T, X] to predict outcome Y. The second model
preformed classification on X to predict T. Lastly, the two
models are combined to compute the heterogenous treatment
effect where the estimated outcome from the regression model
is debiased by adding the inverse propensity weighted model
residual. This method provided robust predictions with only
one of the two predictive models needed to have a small error
to obtain an unbiased treatment effect estimator [18].

Engagement Thresholds for Control and Treatment
Cohort Assignment
Engagement level was used to split data into control and
treatment groups. The application of the DR learning algorithm
enabled intervention outcomes from the treatment and control
groups to be representative of the same population because the
propensity model, f (X), incorporated any differences in
population while computing the treatment effect.

Member engagement was measured for each action category
during the initial 3 months post enrollment. The level of member
engagement with each action category was used to assign
members into the treatment or control groups through a defined
threshold. If a member had higher engagement than the
threshold, then the member was assigned to the treatment cohort,
and the members who did not achieve the threshold were
assigned to the control cohort. The treatment and control split

only included member’s engagement in the action category of
the program. Members in the control cohort received
communication from Livongo in the form of emails and
newsletters.

The engagement thresholds were defined independently for
each action category. The threshold value impacted the size
imbalance between the control and treatment groups, thereby
affecting noise in the data set and consequently the model
performance. For this reason, engagement thresholds for each
action category were selected that minimize the modelling error
while optimizing treatment effect.

Results

Modeling Heterogeneous Treatment Effect for
Coaching Intervention
Treatment effect for the five actions categories were modelled
independently. The action category of coaching is used to detail
the process of selecting an engagement threshold and evaluate
the heterogenous treatment effect model. Treatment effects
across all action categories are then reported, followed by a
proposed method to personalize action recommendations to
optimize clinical outcomes.

Members who completed sufficient scheduled coaching sessions
or asynchronous coaching chat sessions were assigned to the
treatment cohort, with members not meeting the criteria assigned
to control. This intervention engagement threshold was observed
to have an impact on the DR model performance. As the
threshold increases, so does the control-treatment size imbalance
and noise in the data. The control-treatment size imbalance for
different thresholds is shown in Figure 2.

For a member to be considered as receiving treatment, the data
is split into training and validation data sets, which was split by
a ratio of 65:35. The treatment effect was modelled with a forest
DR learner algorithm using a gradient boosting classifier and
a random forest regressor to model the likelihood of the
outcome, g, and treatment propensity, f, respectively. The mean
squared error (MSE) of the model was a good indicator of
confidence in predicting treatment effect. A threshold value that
optimizes treatment effect while having lower MSE and
sufficient sample size was selected for treatment and control
assignment.

The MSE of the heterogenous treatment effect estimator model
for different thresholds and computed average treatment effect
are shown in Figure 3. Based on Figures 2 and 3, a threshold
of at least 3 coaching sessions (scheduled or chat sessions)
within the initial 3 months post enrollment was used to assign
members to the treatment cohort.

Treatment effect of the coaching action category computed with
the DR learner algorithm shows most members having a
negative treatment effect, therefore, promoting a greater impact
of coaching on estimated A1c (see Figure 4). Members with
positive treatment effects were those who the intervention did
not improve the outcome.
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Figure 2. Control and treatment cohort sample size for different minimum number of coaching sessions defined as engagement threshold.

Figure 3. Top left: MSE of the doubly robust model to predict treatment effect of coaching intervention for different number of coaching sessions
threshold. Top right: predicted treatment effect of coaching intervention for different thresholds. MSE: mean squared error.

Figure 4. Distribution of computed treatment effects of coaching intervention.

Evaluation of Heterogenous Treatment Effect Model
for Coaching Intervention
A direct evaluation of causal models cannot be made on
observational data where the true treatment effect is not known
due to an inability to observe the effect of being treated or not
for a particular sample simultaneously. Our causal model
performance was evaluated indirectly by comparing the
cumulative gain of the outcome when members are ranked by
model prediction when compared to random sorting [19].

Cumulative gain is cumulative uplift multiplied by sample size,
where uplift is defined as the difference between average
outcomes of treatment and control cohorts. A model that
performs well will have large uplift values in the first quantiles

and decreasing values for larger ones. By comparing the
cumulative gain of members sorted by treatment effects and
randomly sorted, model performance can be inferred. The higher
the area under the uplift curve (AUUC) in prediction when
compared to random assignment, the better the model prediction.

The cumulative gain in the outcome for the coaching action
category when members are ranked by model predicted
treatment effect and when randomly ordered is shown in Figure
5. The cumulative gain curves plotted are the negative of the
outcome variables; therefore, the higher gain values reflect
better results. The AUUC score for random assignment and
assignment using the inferred treatment effect are 0.5 and 1.1,
respectively.
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Figure 5. Cumulative gain of coaching intervention when members are sorted by predicted treatment effect (solid blue line) and with random sorting
(dashed orange line). The cumulative gain plotted is the negative of uplift from intervention outcome variable (change in A1c) so that higher gain values
reflect better results.

Modeling Heterogeneous Treatment Effect for Five
Action Categories
The control-treatment cohort assignment for each of the five
action categories for each member was inferred independently.
From these independent analyses, engagement thresholds were

defined for the five action categories optimizing treatment effect
and sample size while lowering model MSE (see Textbox 2).
The treatment and control cohorts vary across interventions
depending on if they satisfied the engagement threshold
condition for that intervention.

Textbox 2. Engagement thresholds within 90 days of enrollment for treatment.

Monitoring

≥70 days with self-monitoring blood glucose checks

Coaching

≥3 coaching sessions (scheduled coaching sessions or asynchronous chat sessions with coach)

Physical activity

≥30 days with 2000 daily steps

Nutrition

≥2 food logs or ≥50% yes responses to nutrition-related nudges

Content

≥50% yes responses to content-related nudges

Action Category Distribution and Outcomes
Figure 6 displays the total number of members within the
treatment cohort of each of the five action categories and
outcome Y related to the action category. Members with
insufficient engagement in all action categories are assigned to
the “other” category or control cohort.

As shown in Figure 6, the action categories had varying sample
sizes. This is a result of engagement rates affected by member
preferences or desired support to manage their condition.
Members who engaged with coaching and physical activity had
better outcomes (ie, more negative change in estimated A1c).
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Figure 6. Top: distribution of members in the treatment cohort within the five different intervention categories or other category as a fraction of total
data set sample size. Bottom: outcome (difference in estimated A1c level) for the different interventions.

Evaluation of Heterogenous Treatment Effect Model
for Five Action Categories
The model performances were evaluated using a common
validation data set across interventions. The cumulative gain of
the outcome when members are sorted by model predictions

compared to random sorting for the five action category
outcomes independently is shown in Figure 7. The area under
the gain curve was larger when members were sorted by
predicted treatment effect compared to random ranking, which
confirmed that the model can infer causal effects of all the action
categories in the data.

Figure 7. Cumulative gain of outcome for the five different interventions by model predictions (solid blue) and random sorting (dashed orange).

Action/Intervention Recommendation Based on
Heterogeneous Treatment Effect
For each member, the intervention with the most negative
treatment effect is the action that the model predicted would
result in a larger reduction in estimated A1c (ie, optimal
intervention). The average change in estimated A1c for members
who were part of the treatment cohort in at least one action
category in the validation set is shown in dark blue if the
received intervention was the same as the predicted intervention
and shown in light blue if the received intervention was not the
same as the predicted intervention (see Figure 8). Within all
five action categories, the outcome is more negative when the

prediction matches the true intervention, which indicated that
the model was successful in identifying optimal outcomes.
Members who participated in interventions that matched their
optimal predictions had an estimated A1c reduction of 1.4%,
while those that did not participate in their predicted optimal
intervention had a reduction of only 0.57%. This 0.8% estimated
A1c reduction difference can be attributed to intervention
personalization. Members who had a predicted optimal
intervention of coaching and received coaching showed the
highest change in estimated A1c at 1.7%.

The distribution of predicted optimal intervention for each
member with negative predicted treatment effects were coaching
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(28%), SMBG checks (26%), physical activity (18%), content
(16%), and nutrition (12%). Interaction with coaches and SMBG
checks were observed to be the optimal intervention for 28%
and 25% of the sample size, respectively, and the most
recommended interventions. A balanced distribution of
recommendations for optimal clinical outcomes was observed
and opens an opportunity to prioritize recommendations based
on a heterogeneous causal effect model.

A comparison of average treatment effect with current
interventions and with recommended optimal intervention
predicted by the model is shown in Figure 9. Treatment effect
was larger with the recommended optimal intervention for all
action categories. On average, the recommended intervention
predicts a treatment effect of 0.07% compared to 0.02%, with
the current intervention producing a difference of 0.05% in
estimated A1c attributable to personalization.

Figure 8. Change in estimated A1c of members in different intervention treatment cohorts if the member received the model predicted optimal intervention
(dark blue) or not (light blue).

Figure 9. Computed treatment effect for members who received different interventions. The light blue bars denote the treatment effect for members
who were in the treatment cohort of our data set. Dark blue bars denote treatment effect for members if they received the optimal intervention.

Discussion

This study highlights the feasibility of analyzing the engagement
of members in an RDMP to develop a causal inference-based
recommender system for predicting actions driving optimal
clinical outcomes. Five action categories were identified upon
member engagement level, and the causal inference model
computed heterogenous treatment effect of each action per
member. Model predictions were evaluated by comparing uplift
gain when members were ranked by treatment effect to random

sorting, and AUUC of the model predicted gain curves were
larger for all actions, validating the method to infer treatment
effect. Coaching and glucose monitoring were found to be the
most frequently recommended actions for members to achieve
optimal clinical outcomes. On average, members who engaged
within their recommended actions had a 0.8% higher reduction
in estimated A1c than those who did not engage within
recommended actions in their first 3 months of the program,
with coaching showing the largest reduction in estimated A1c

at 1.7% when recommended and used by members.
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Machine learning has been used to study precision medicine in
diabetes care and complications, variables to predict the
development of diabetes, and individual characteristics related
to diabetes outcomes [20-22]. However, there is a lack of
evidence around practical solutions for real-world
implementation, specifically around diabetes self-management
behaviors, which are the foundation of successfully living with
the chronic condition [23]. It has been well-established that
diabetes management programs are effective in helping
participants obtain glycemic control, improve HbA1c values,
and increase self-efficacy with the support of diabetes coaches
and structured SMBG [2,5,7-9]. Therefore, as real-world data
has been made available around self-management behaviors
through RDMPs, mobile apps, and other technologies, it is
immensely valuable to use this data in machine learning
techniques to provide personalized recommendations to enhance
the future of diabetes care.

Our study observed better outcomes for members who engaged
in their recommended actions over members who did not, across
all action categories. On average, members who engaged within
their recommended actions had a significant improvement
estimated A1c than those who did not engage within
recommended actions. Therefore, we propose RDMPs develop
recommended actions of engagement that are more likely to
lead to better outcomes based on computed heterogeneous
treatment effects with the most optimal action having the most
negative treatment effect. By offering personalized
recommendations, members can receive a more effective
experience through both digital and human coaching allowing
for not only a medical cost saving for the individual through
improved health outcomes but also a more cost-effective
approach for the RDMP by directing the member to the most
valuable program features.

Type 2 diabetes management is complex and dependent upon
many factors such as nutrition, physical activity, and medication
adherence, which varies widely among this population as a
whole; therefore, to generate successful personalized
recommendations, all variables must be gathered to match an
individual’s specific needs [24]. Our study presents one way
that treatment effects can be computed from the causal model
for recommending future interventions to drive clinical
outcomes. Strong evidence around coaching, SMBG, education,
nutrition, and physical activity has informed the development
of diabetes management programs; however, the individual’s
education gaps, lifestyle, available resources, and personal
priorities get lost in the wide range of program features
available. This could lead to overwhelm, burnout, and even

distress from not knowing where one should place their focus.
By offering our method to develop a recommender system for
program feature engagement, we hope that guiding members
to program features that are considered most effective in
supporting clinical outcomes will lessen any burdens of disease
management.

This study has several strengths, including the report of
real-world data, as well as insight into the demographics and
program engagement of members participating in an RDMP.
Members were not provided incentives to participate in the
program or study beyond the Livongo for Diabetes program
being provided as a benefit through their employer or health
plan package. The study also had some limitations, including
the retrospective analysis study design. Members in the Livongo
for Diabetes program received promotional engagement outreach
in the form of mobile app nudges, emails, and text messages;
therefore, observational data collected for the study contained
a diverse set of engagement behaviors within the program
features and did not provide a clean treatment and control cohort
split. Improvement in estimated A1c was calculated from
participants’ SMBG values, which has been successfully
correlated with laboratory HbA1c values; however, it does have
some limitations and is best used as a population-level tool.

Nonetheless, this study demonstrates how engagement
thresholds that minimize modelling errors can be used to create
control-treatment samples in observational data and compute
treatment effects. The recommended action within the study is
based solely on the likelihood of the member attaining a better
outcome and member preferences, and propensity to engage in
an action during prediction was not considered. Therefore,
real-life implementation of the recommender system would
have to include the likelihood of engagement and likelihood of
outcome while personalizing the action recommendations.
Although treatment effects were computed, it was assumed that
the interventions were independent of each other and analyzed
separately; however, using Bayesian inference of treatment
effect would have accounted for dependencies between
interventions and is recommend for a future study to further
explore RDMP personalization.

Personalized action recommendations using heterogeneous
treatment effects to compute the impact of member actions
within an RDMP to significantly reduce estimated A1c can be
a valuable tool in driving member behaviors toward actions that
are more likely to impact clinical outcomes. Future research is
recommended to implement and evaluate this model
prospectively within an RDMP.
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Abbreviations
AUUC: area under the uplift curve
BG: blood glucose
CDCES: certified diabetes care and education specialist
DR: doubly robust
HbA1c: hemoglobin A1c

MSE: mean squared error
RDMP: remote diabetes monitoring program
SMBG: self-monitoring of blood glucose
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