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A novel canine tibial plateau leveling osteotomy (TPLO) fixation device was recently

developed with design features such as titanium alloy (TA) material, distal monocortical

screw fixation, and a point contact undersurface specifically targeted to reduce surgical

site infection rates by ensuring tissue perfusion under the plate. The strength of the novel

TPLO construct was compared with that of a predicate stainless steel (SS) locking plate

construct with bicortical screws in 16 paired cadaveric canine limbs. The mean loads to

failure were 716.71± 109.50N (range 455.69–839.69N) and 629.50 ± 176.83N (range

272.58–856.18N) in the TA and SS groups, respectively. The average ratio of the loads

to failure of the paired specimens was 1.18 (p = 0.031). No failure of the TA constructs

involved the distal fixation with monocortical screws. Substantial mechanical equivalence

of this novel TA monocortical/bicortical fixation construct to an established SS bicortical

screw fixation construct is demonstrated. Clinical investigation of potential merits of this

novel TA, monocortical/bicortical locking screw/plate system is now warranted.

Keywords: TPLO, stifle, orthopedics, cranial cruciate ligament, locking plate, fixation

INTRODUCTION

Rupture of the cranial cruciate ligament (CCL) is a common cause of hindlimb lameness and stifle
osteoarthritis (OA) in dogs. In 2005, the annual cost of medical and surgical management of CCL
rupture in the USA was estimated to be >$1.3 billion and has likely increased since (1, 2). Tibial
plateau leveling osteotomy (TPLO) is one of the most commonly performed procedures for the
stabilization of cranial cruciate ligament deficient stifles in dogs (3).

Surgical site infection (SSI) is one of the most common complications after TPLO (4–
18). SSI undoubtedly has a negative impact on patient well-being, client satisfaction, and
financial burden and often necessitates an additional anesthetic episode and surgical procedure
for implant removal (19). Few of the TPLO fixation devices to date have sought to reduce
surgical site infection (SSI) rates (4). A novel TPLO fixation device was recently developed
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with design features such as titanium alloy (TA) material, distal
monocortical screw fixation, and a point contact undersurface
specifically targeted to reduce SSI rates by ensuring tissue
perfusion under the plate (20–33).

In the human orthopedic industry, it is commonplace for
novel devices to be evaluated by the Federal Drug Administration
(FDA) for “substantial equivalence” to a previously cleared device
(a so-called predicate device) in lieu of testing in independent
clinical trials. This FDA clearance mechanism is referred to as the
510K premarket notification process (34). With this established
process in mind, we sought to evaluate a novel, titanium
alloy (TA) distal monocortical locking screw/plate device for
substantial mechanical equivalence to a predicate stainless steel
(SS) bicortical locking/conventional screw/plate device before
pursuing clinical studies to investigate its abilities to affect SSI
rates. Our hypothesis for this phase I study was that there would
be no difference in load to failure between the two fixation devices
when evaluated as load-sharing TPLO implant–bone constructs
applied to paired canine cadaveric hind limbs.

MATERIALS AND METHODS

Cadaveric paired pelvic limbs were harvested by disarticulation
of the coxofemoral joint in eight mixed breed dogs (∼20–
30 kg) that were euthanatized for reasons unrelated to this
study. The dogs had been frozen immediately (−20◦C) after
euthanasia and thawed at room temperature for 48 h before limb
harvest. Limbs were then stored in a refrigerated environment
(2–8◦C) and tested within 48 h of thawing. All limbs were free
of radiographically detectable disease. Limbs were randomly
assigned via computer randomization to either a group with the
novel TPLO plate (Kyon Veterinary Surgical Products, Zurich,
Switzerland) construct (TA group) or a group with the predicate
stainless steel plate (DePuy Synthes, New Brunswick, NJ, USA)
construct (SS group). The contralateral limb of each cadaver was
assigned to the opposite treatment group to minimize variability.

In the TA group, TPLO was performed by a board-certified
surgeon (N.M.) experienced with the technique. Preoperative
radiographic planning was performed to determine the desired
rotation and saw blade positioning as for clinical cases. Care
was taken to ensure adequate tibial tuberosity size cranial to the
osteotomy (a minimum of 10mm or as judged by the surgeon
based off of patient size). A jig (Slocum Enterprises, Eugene,
OR, USA) was used during the procedure. The distal jig hole
was placed in the center of the tibial diaphysis to avoid a stress
riser during testing. All screws were 4.0-mm-diameter titanium
alloy locking screws; three of which in the distal segment were
monocortical per manufacturer recommendations and three of
which in the proximal segment were bicortical (Figure 1A).
The osteotomy was compressed with a conventional 3.0-mm-
diameter bicortical screw in the proximal hole after placement
of the distal screws. After filling all screws, the 3.0-mm proximal
conventional compression screw was replaced with a 4.0-mm
bicortical locking screw per manufacturer guidelines.

In the SS group, routine TPLO was performed with an
established stainless-steel locking TPLO plate by a board-certified

surgeon (R.P.) experienced with the technique. A jig (Slocum
Enterprises) was used during the procedure. The osteotomy
and rotation were performed to match the contralateral limb.
Three 3.5-mm-diameter bicortical conventional screws were
placed in the distal fragment and three 3.5-mm-diameter
bicortical locking screws were placed in the proximal segment
using a manufacturer-recommended compression technique
(Figure 1B). Bicortical screw fixation was assured, but screw
length was not optimized (excessive screw length was accepted)
to minimize screw inventory required for the study.

After removal of musculature, all limbs were tested in a
servo-hydraulic testing machine with a 5,000-N force transducer
(Mini Bionix 858 MTS Systems Corporation, Eden Prairie, MN,
USA) to measure load to failure (Figure 1C). The limbs were
positioned with the stifles at 135◦ to correspond with standing
angle during mid-stance phase, the metatarsals were fixed with
screws to a wooden base, and the load was applied to the
femoral head along a line connecting the femoral head to the
tarsus. The patella was fixed to the distal femur with multiple
Kirschner wires drilled at an oblique angle and tied to a pair of K-
wires inserted through the mid-shaft of the femur in the frontal
plane by a high-strength braided ultra-high molecular weight
polyethylene suture (PowerFiber; CP Medical Inc., Portland,
OR, USA) to simulate “worst-case scenario” maximal quadriceps
muscle group stiffness. This methodology also minimized inter-
construct variability. All limbs were preconditioned for 10 cycles,
0.25Hz with 5mm of displacement before being ramped to
failure at a rate of 1 mm/s until either implant failure or
stifle collapse.

Statistical analyses were performed at the Clinical Trial Unit
of the University Hospital, Basel, Switzerland. Software used
included R version 3.6.3, xtable_1.8-3, plyr_1.84, reshape_0.85,
and lattice_0.20-38. Because the small sample size (eight limb
pairs) did not permit assessment of distribution (used for a
parametric test) or the symmetry around 1 of the data, a
randomization test was performed. The geometric mean and
a 95% bootstrap normal CI were calculated for the ratios in
the observed data. The CI was estimated using 999 bootstrap
repetitions. Normality of the bootstrap repetitions was assessed
visually using a Normal Q–Q plot.

RESULTS

The mean loads to failure were 716.71± 109.50N (range 455.69–
839.69N) and 629.50± 176.83N (range 272.58–856.18N) in the
TA and SS groups, respectively (Figure 1D). Modes of failure are
recorded in Table 1 and included tibial tuberosity fracture (5),
patellar tendon avulsion (4), lateral construct collapse (2), medial
collateral ligament rupture (2), fibular fracture (1), tibial fracture
(1), and screw pull-out (1). The case with screw pull-out was in
the SS group and had bicortical screws which pulled out of the
proximal segment in addition to a fracture at the tibial tuberosity.
In Table 2, the results of the randomization test and bootstrap
normal CI are presented. The average ratio of the loads to failure
of the paired specimens was 1.18 (p = 0.031). The 95% CI of the
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FIGURE 1 | (A) Orthogonal postoperative radiographs of a stifle in the TA group demonstrating plate placement with monocortical screws in the distal segment in

accordance with manufacturer guidelines. (B) Orthogonal postoperative radiographs of a stifle in the SS group. (C) TPLO constructs positioned in servo-hydraulic

testing machine before testing. (C) Left is an example of a construct in the TA group. (C) Right is an example of a construct in the SS group. (D) Graph depicting the

load at the time of failure after TPLO with an established stainless steel plate (SS group) vs. a novel titanium alloy plate with mono-cortical locking screws (TA group).

ratio between the strength of limbs operated with the two plates
was [0.99; 1.27].

DISCUSSION

Our results rejected the hypothesis that there would be no
difference in load to failure between the two fixation devices.
The ratio of load to failure was significantly greater in the
TA group compared with the SS group (p = 0.031) under the
unique loading-sharing cadaveric conditions of this experiment.
No failure of the TA constructs involved the distal fixation
with monocortical screws. Substantial mechanical equivalence
of the novel TA construct with the predicate SS construct was
confirmed in this single load to failure testing model.

The advent of locking plates has permitted stable fixation with
monocortical screws. Conventional bone plates rely on friction
between the plate and the bone that is generated by compression
of the screw head on the bone plate. Failure of conventional
plates is often attributed to screw loosening and axial pull-out
(35). Failure of locking systems requires concurrent axial pull-
out of all screws or compressive failure of the bone surrounding

the screws (35). The force or load required to cause failure of all
screws greatly exceeds that required to cause failure in sequential
fashion (35). Therefore, a locking construct requires engagement
of fewer cortices than a non-locking to achieve similar load
resistance. In a study of 30 Greyhound femurs, Field et al. (36)
demonstrated that axially loaded locking monocortical plate-
rod constructs conferred no difference biomechanically to those

employing locking bicortical screws. In our study, no construct

failures were attributed to the monocortical screws. However, the

monocortical screws were only placed in the diaphyseal bone of

the tibia distal to the osteotomy per manufacturer guidelines.
Bicortical screws are still recommended in the softer metaphyseal
bone proximal to the osteotomy, although evidence to support
this is currently lacking.

The effect of implant design on SSI after internal fracture
fixation has been investigated. In 1993, the AO Institute
developed a novel bone plate called the point contact fixator
(PC-Fix) (24, 29, 30). The PC-Fix was the first internal fixator
and employed point contact only on the bone surface as well
as angle stability of screws achieved by a conical connection
between screw heads and screw holes (24, 29, 30). The goal of
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TABLE 1 | Load at failure and modes of failure in paired cadaveric TPLO constructs in the titanium alloy (TA) and stainless steel (SS) groups.

Dog—leg Breed Group Load at failure (N) Mode of failure

1—right Pitbull TA 756 Patellar tendon avulsion at the patella

1—left Pitbull SS 543 Medial collateral ligament rupture

2—right Pitbull TA 674 Lateral construct collapse

2—left Pitbull SS 649 Lateral construct collapse

3—right Pitbull TA 840 Patellar tendon rupture

3—left Pitbull SS 817 Patellar tendon avulsion at patella

4—right Pitbull SS 497 Tibial tuberosity fracture

4—left Pitbull TA 698 Lateral collateral ligament rupture and tibial tuberosity avulsion

5—right Labrador mix SS 718 Patellar tendon avulsion at patella

5—left Labrador mix TA 779 Patellar tendon avulsion at patella

6—right Pitbull SS 684 Tibial tuberosity avulsion

6—left Pitbull TA 776 Tibial tuberosity avulsion

7—right Pitbull SS 273 Medial collateral ligament rupture

7—left Pitbull TA 456 Lateral collapse

8—right German Shepherd Dog TA 756 Fibular fracture and lateral collapse

8—left German Shepherd Dog SS 856 Tibial tuberosity fracture and 3 proximal screws pulled out with cranial fracture

TABLE 2 | Results of the randomization test and bootstrap normal CI.

Extreme observations 8

Total number of combinations 256

P-value (randomization test) 0.031

Geometric mean of observed ratios 1.18

Bootstrap CI [0.99; 1.27]

this design was to reduce the impact of implant placement on
periosteal blood supply. In addition, the locking design permitted
stability with monocortical screw placement to theoretically
reduce disruption to endosteal blood supply. The result was faster
healing and reduced infection rates when compared with the
dynamic compression plate. In a study of rabbit tibiae inoculated
with Staphylococcus aureus and fixated with either the PC-Fix
plate or a dynamic compression plate (DCP), Arens et al. (27)
demonstrated a lower infection rate (26%) with the PC-Fix when
compared with the DCP (63%).

The Advanced Locking Plate System (ALPS; Kyon Veterinary
Surgical Products, Zurich, Switzerland) is a locking plate system
based on the PC-Fix design developed exclusively for veterinary
use. ALPS plates are made from c.p. titanium which has been
shown to reduce infection rate when compared with stainless
steel in a rabbit study (25). As both the PC-Fix and DCP were
manufactured from c.p. titanium, the reason for a lower infection
rate was attributed to implant design and independent of implant
material. In a prospectivemulti-center study of 1,229 PC-Fixators
placed in human patients, Eijer et al. (28) reported an infection
rate of 1.1%, lower than that reported with DCP. The difference
in implant design is multi-factorial and could include a reduced
disruption of periosteal blood supply secondary to the point
contact design, a reduced disruption endosteal blood supply

secondary to monocortical screw fixation, and/or the use of
locking screws. Which factor has the biggest effect on infection
rate is not clear and requires further investigation. Maintenance
of blood supply theoretically reduces infection by delivering
inflammatory cells and mediators, key to an effective immune
response. Whether endosteal blood supply or periosteal blood
supply is more important in the face of infection is unknown,
nor has the effect of monocortical vs. bicortical screw placement
on blood supply to cortical bone been investigated.

Locking screws have been shown to reduce infection rates in
TPLO constructs (4). In a retrospective study of 208 dogs that
underwent TPLO using a variety of bone plates, non-locking
constructs were associated with a higher incidence of infection (p
= 0.01) (4). The authors hypothesized that the protective effect
of the locking plate is due to lack of disruption of the underlying
cortical bone perfusion in comparison with conventional plates
(which compress the undersurface of the plate to the cortical
bone), the decreased incidence of inflammatory complications
from loosening of the hardware (loose hardware has been
shown to propagate an inflammatory response and promote
infection) (37) and a faster rate of bone healing because of
more stable fixation (with stimulation of primary rather than
secondary bone healing) (10, 12). Seeing that implant design can
influence the incidence of postoperative TPLO SSI, investigation
to identify other implant features that may further reduce SSI
seems warranted.

The novel bone plate investigated in our study is
manufactured from a titanium aluminum vanadium alloy
(TAV). The screws are manufactured from a titanium aluminum
niobium alloy (TAN). Both of these alloys have higher static
and fatigue strengths than commercially pure (c.p.) titanium or
stainless steel (38). Titanium alloys also have a lower modulus
of elasticity compared with stainless steel, and thus much higher
strain tolerance, both under static and cyclic loading (38).
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Biological benefits of titanium alloy include a lower infection
rate when compared with stainless steel (23, 25, 32). A possible
reason for this is the fact that soft tissue adheres firmly to
titanium-implant surfaces (21, 22), while a known reaction to
steel implants is the formation of a fibrous capsule, enclosing a
liquid filled void (21, 22). Bacteria can spread and multiply freely
in this non-vascularized space, which is also less accessible to the
host defense mechanisms. Reports on the use of titanium alloy
implants in dogs are limited. In a study of 282 fixations using
ALPS, Nojiri et al. (33) reported an infection rate of 1.1%. Two
of the three infection complications were from 11 cases known
to have been infected at the time of surgery. Only one additional
infection occurred in the remaining 271 cases. The infection rate
associated with similar surgeries in dogs using other stainless steel
systems is 5.2–21.3% (5–7).

Small sample size of our pilot study is a limitation which
reduces statistical inference. While statistical significance was
demonstrated, a small sample size increases the probability
of a type 1 error and results should therefore be interpreted
cautiously. TPLO was performed by a different board-certified
surgeon in each group. This is limitation inasmuch as surgeon
influence on results cannot be excluded.

There are a number of limitations related to the ex vivo
nature of our study that should be considered when extrapolating
our results to clinical applications. The constructs were not
tested in a non-load-sharing model; therefore, the mechanical
performance of the implants cannot be isolated from the
mechanical contributions from the reconstructed bone. Kloc
et al. (39) tested novel TPLO plates using an axially loaded
gap model. A 3.2-mm osteotomy gap was maintained in all
constructs in that study and load, axial displacement, and failure
mode were recorded. This model permitted comparison of the
isolated implants. While our model compares the strengths
of TPLO constructs as they are often performed clinically, it
permitted load sharing between the implants and the bone
as a confounding factor. Variables in construct strength could
result from surgical technique, surgeon, the level of compression
achieved, and variation in bone strength. Conversely, a gap
model fails to reflect a clinical construct. TPLO is typically
performed with either a compressed osteotomy, or as in cases
of alignment correction, some degree of load-sharing via some
cortical contact at the osteotomy. The goal of our model
was to more closely mimic a clinical situation by applying
implants using a technique resembling clinical application.
Efforts were made to minimize variables by applying all plates
in compression mode and by matching surgical planning
between contralateral limbs. Comparison of constructs using
paired limbs reduced variables in bone strength. Our model
permitted demonstration of mechanical adequacy in a clinically
relevant construct.

There were no muscles on the tested constructs and the
complex forces associated with walking were not replicated. Our
method of modeling the quadriceps–patella–patellar ligament
mechanism’s ability to maintain stifle standing angle under
load does not perfectly replicate the mechanism’s dynamic

response to progressive load application under physiologic
conditions. There have been other intact stifle cadaveric models
used in previous studies in canines (40, 41) and felines (42–
45) that made efforts to account for the common calcanean
tendon and quadriceps mechanism, as well as various standing
angles (39). Evidence to our imperfect modeling is that the
construct’s mode of failure was generally different than what
has been reported clinically (8–12). While it can be argued
that cyclic loading applied to a more dynamically modeled
quadriceps–patella–patellar ligament mechanism would have
been more clinically relevant, perfect ex vivo modeling of
the complex forces associated with muscle tension, weight
bearing, and standing angle with various activities is not
possible. We feel that the mechanical testing performed
yielded relevant results; for if the novel plate/screw system
had underperformed relative to the predicate in this format,
implant design modifications may have been warranted before
progressing to more costly and time-consuming cyclical
testing protocols.

Only one observed failure could be attributed to the implant
construct. This case involved screw pull-out and fracture
associated with the proximal tibia in a dog in the SS group
with bicortical locking screws in the proximal segment. Other
modes of failure associated with the bone or soft tissues of the
intact stifle could be independent of the construct group which
is a limitation of our study. While observed modes of failure
may reduce inference regarding isolated implant strength, the
paired nature of the study design still permits comparison of
overall construct integrity. The fact that there was no evidence of
failure associated with the monocortical screws in the TA group
was interesting.

There are limitations inherent with the cadaveric nature of
our study. The lower temperature and lack of blood supply in
cadaveric bone may affect fracture behavior and therefore not
reflect in vivo bone. The limbs in our study were frozen and
thawed before testing. It is possible that this could also have
affected the mechanical properties of the bone. Mulargia et al.
(46) investigated fracture and fatigue in osteocytes after cyclical
loading of bovine bone specimens and showed freezing bone
samples did not affect the fatigue behavior or incidence and types
of cracks in bone. Lee et al. demonstrated a loss of compressive
strength of porcine trabecular bone from freezing. However,
while there was a significant difference in compressive strength
after 5 years of freezing, there was no significant difference if
the bone was only frozen for 1 year (47). All bones in our study
were frozen for <1 year and our paired design allowed a relative
comparison, regardless of any confounding factors.

We conclude that since the ratio of load to failure of novel
TPLO constructs paired with predicate device constructs was
significantly greater under the unique loading conditions of this
experiment, mechanical adequacy is demonstrated and further
evaluation is warranted. Future studies could include mechanical
testing under cyclic loading conditions as well as study of the
biological effects (healing time, SSI rates, etc.) of the novel
titanium alloy TPLO plate/monocortical screw construct.
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