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We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal
for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that
single-qubit expectation values can be used as the basic variables in quantum computation and information
theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating
observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density
functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating
universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize
two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the
possibility of developing density functionals for use in quantum algorithms.

T
he pioneering work of Hohenberg and Kohn1 in 1964 showed that the properties of a many-body system can
be obtained as functionals of the simple electron density rather than the many-body wavefunction. Twenty
years later, similar theorems were proven for time-dependent systems3. These developments have enabled

complex simulations of physical systems at low computational cost using a very simple quantity. Can these ideas
be extended to the domain of quantum computation, and therefore enable similar progress in that field? In the
present work, we prove analogous theorems to those of time-dependent density functional theory (TDDFT) for
the domain of universal quantum computation. In a similar spirit to TDDFT for electronic Hamiltonians, the
theorems of TDDFT applied to universal Hamiltonians allow us to think of single-qubit expectation values as the
basic variables in quantum computation and information theory, rather than the wavefunction. From a practical
standpoint this opens the possibility of approximating observables of interest in quantum computions directly in
terms of single-qubit quantities (i.e. as density functionals). Additionally, we demonstrate that TDDFT provides
an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians which have
different, and possibly easier-to-realize two-qubit interactions. The theorems of TDDFT for universal
Hamiltonians establish that TDDFT can in principle be used to simplify quantum computations, similar to
how it has been applied in revolutionizing the simulation of atomic, molecular and condensed matter electronic
structure dynamics. As we discuss below, the development of accurate approximate functionals for quantum
simulation will be a necessary second step for the practical application of TDDFT to quantum computation.

We begin by briefly reviewing TDDFT for a system of N-electrons described by the Hamiltonian
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where p̂i and r̂i are respectively the position and momentum operators of the ith electron, w r̂i{r̂j

�� ��� �
is the

electron-electron repulsion and n(r, t) is a time-dependent one-body scalar potential which includes the potential
due to nuclear charges as well as any external fields. n̂ rð Þ~

PN
i d r{r̂ið Þ is the electron density operator, whose

expectation value yields the one-electron probability density. The first basic theorem of TDDFT, known as the
‘‘Runge-Gross (RG) theorem’’3, establishes a one-to-one mapping between the expectation value of n̂ rð Þ and the
scalar potential n(r, t) and therefore through the time-dependent Schrödinger equation, a one-to-one mapping
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between the density and the wavefunction. The RG theorem implies
the remarkable fact that in principle, the one-electron density con-
tains the same information as the many-electron wavefunction. The
second basic TDDFT theorem known as the ‘‘van Leeuwen (VL)
theorem’’4 gives a prescription for constructing an auxiliary system
with a different and possibly simpler electron-electron repulsion
w’ r̂i{r̂j

�� ��� �
, which simulates the density evolution of the original

Hamiltonian in Eq. 1. When w’ r̂i{r̂j

�� ��� �
~0, this auxiliary system is

referred to as the ‘‘Kohn-Sham system’’2 and due to it’s simplicity and
accuracy, is in practice used in most DFT and TDDFT calculations.

It is not obvious that the RG and VL theorems extend to qubits,
which are distinguishable spin 1/2 particles. In the results section, we
prove analogous RG and VL theorems for a system of N qubits
described by the very general universal 2-local Hamiltonian5,6,
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Here, ŝx
i ,ŝ

y
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i are Pauli operators for the ith qubit, hi(t) are local
applied fields arbitrarily chosen along the z-axis and JE

i,iz1 and J\i,iz1

are two-qubit interaction terms respectively parallel and perpendic-
ular to the direction of the fields. The above Hamiltonian describes
an open chain of N qubits arranged in a one-dimensional array, with
each qubit interacting with its nearest neighbors.

More general geometries are discussed in the supplementary
material. In Refs.5,6, it was shown that by appropriately tuning the
local fields in Eq. 2, one can use the fixed two-qubit interaction alone
to realize a set of universal two-qubit and single-qubit quantum
gates, which in turn can be employed to perform universal quantum
computation. In Eq. 2, the case where J\i,iz1~JE

i,iz1 yields the
Heisenberg Hamiltonian which describes exchange coupled spins
in solid state arrays or quantum dots in heterostructures7. The
situation J\i,iz1=JE

i,iz1 and JE
i,iz1=0 yields the XXZ Hamiltonian,

used to model electronic qubits on liquid Helium8 or solid-state
systems with anisotropy due to spin-orbit coupling9, while the
limit JE

i,iz1~0 yields the XY model describing superconducting
Josephson junction qubits10. In the forthcoming sections, we will
develop the TDDFT theorems for the Hamiltonian in Eq. 2 and
discuss their implications for quantum computation and informa-
tion theory.

Results
The qubit Runge-Gross theorem for quantum computation. We
now state the equivalent RG theorem for quantum computation with
the Hamiltonian in Eq. 2, the qubit Runge-Gross (qRG) theorem:

Theorem - For a given initial state jy(0)æ evolving to jy(t)æ
under the Hamiltonian in Eq. 2 and with JE

i,iz1 and J\i,iz1 fixed,
there exists a one-to-one mapping between the set of expecta-
tion values sz

1,sz
2, . . . sz

N

� �
and the set of local fields {h1,

h2,…hN} up to a constant global field (see supplementary
information), over a given interval [0, t].

Here, we have defined sz
i : y tð Þ ŝz

i
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� �

as the expectation value
of the component of the ith qubit along the field direction (z-axis). A
detailed proof together with a more rigorous discussion of the con-
ditions on the theorem are provided in the supplementary material.
The qRG theorem implies that the set of local fields can be written as
unique functionals of the set of expectation values sz

1,sz
2, . . . sz

N

� �
, as

illustrated in the first part of Figure 1. Since the solution to the time-
dependent Schrödinger equation is unique and and J\i,iz1 and JE

i,iz1
are fixed, the wavefunction is a unique functional of the local fields.
i.e. jy(t)æ ; jy[h1, h2, …hN](t)æ, where the square brackets denote
that y is a functional of the set {h1, h2, …hN} over the interval [0,t].

This fact, combined with the qRG theorem allows us to state a corol-
lary, which is the first central result of this paper:

Corollary - There exists a one-to-one mapping between the set
of expectation values sz

1,sz
2, . . . sz

N

� �
over the entire interval

[0,t] and the N-qubit state jy(t)æ.

The above corollary implies the counterintuitive fact that the full N-
qubit wavefunction, which lives in a 2N dimensional Hilbert space, is
a unique functional of only the N components of each qubit along the
z-axis over the interval [0,t]. i.e.

y tð Þj i: y sz
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2, . . . sz
N
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This naturally implies that no two wavefunctions evolving under the
Hamiltonian in Eq. 2 can give the same set of expectation values

Figure 1 | Qubit Runge-Gross theorem for a 3 qubit example. The set of

expectation values {sz
1,sz

2, . . . sz
N }, defined by the the Bloch vector

components of each qubit along the z-axis in (a), is uniquely mapped onto

the set of local fields {h1, h2, …hN} in (b) through the qRG theorem. Then,

through the Schrödinger equation, the set of fields is uniquely mapped

onto the wavefunction. These two mappings together imply that the N-

qubit wavefunction in (c) is in fact a unique functional of the set of

expectation values {sz
1,sz

2, . . . sz
N }.
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sz
1,sz

2, . . . sz
N

� �
for the entire time-interval [0,t]. Having established

the qRG theorem, we now proceed to discuss its implications for
quantum computation.

Implications of the qubit Runge-Gross theorem for quantum
computation. Although the qRG theorem does not tell us an explicit
functional form for y, it has profound conceptual implications from a
quantum information perspective. At first glance, it might appear that
the set sz

1,sz
2, . . . sz

N

� �
contains much less information than the full

wavefunction, since projective measurements needed to obtain
sz

1,sz
2, . . . sz

N

� �
would seem to imply that information about non-

commuting observables, or observables depending on multi-qubit
correlations is lost. However, since the wavefunction completely
specifies all properties of the system, Eq. 3 implies that even
properties depending on non-commuting observables or multi-qubit
correlations, such as entanglement and phase information are in fact
uniquely determined by the set of expectation values sz

1,sz
2, . . . sz

N

� �
.

From a practical standpoint, the qRG theorem implies that all obser-
vables can directly be constructed as functionals of single-qubit expecta-
tion values, without regard for the wavefunction. Although the qRG
theorem proves that the set of expectation values sz

1,sz
2, . . . sz

N

� �
in

principle contains all of the quantum information in y, extracting this
information in the form of a functional of sz

1,sz
2, . . . sz

N

� �
is not always

straightforward. In order to do this, one must either guess the exact
functional form of the observable, or try to approximate it. Borrowing
an analogy from electronic TDDFT, the time-dependent dipole

moment m tð Þ~ y tð Þ
P

ir̂i

�� ��y tð Þ
� �

~

ð
d3rn r,tð Þr is a very simple den-

sity functional, while the average momentum of the system
p tð Þ~ y tð Þ

P
ip̂i

�� ��y tð Þ
� �

is not simple to construct as an explicit den-
sity functional, since it depends on the density very nonlocally in both
space and time11. A density functional for the average momentum must
therefore be approximated in practical applications.

In quantum computation and information theory, a similar situation
arises. Often, the observable of interest is simply a subset of

sz
1,sz

2, . . . sz
N

� �
on designated readout qubits which encode the answer

to the computation and this subset is trivially a functional of the entire
set. For instance, a simple example is the Deutsch-Jozsa algorithm,
where one measures a subset of sz

1,sz
2, . . . sz

N

� �
in a query register

to determine if a function f(x) is constant or balanced12. If one finds
the spin density of this subset to be zero everywhere, f(x) is constant,
while if it is non-zero, f(x) is balanced. A more challenging observable
functional to construct is two-qubit entanglement. We find that an exact
pure state entanglement functional can in fact be constructed for a
computation in which the state space is restricted to states whereP

is
z
i tð Þ~+ N{1ð Þ. The pure state entanglement (as measured by

concurrence13) between any two qubits labeled k and l can be written as
a functional of the set sz

1,sz
2, . . . sz

N

� �
for this particular case as (the

derivation is provided in the supplementary material)
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Interestingly, this particular entanglement functional is time-local,
since it depends only on the set sz

1,sz
2, . . . sz

N

� �
at a given instant

in time and so Ekl sz
1,sz

2, . . . sz
N

	 

tð Þ~Ekl sz

1 tð Þ,sz
2 tð Þ, . . . sz

N tð Þ
	 


. In
the more general case, observables may be non-local in time and
depend on the set sz

1,sz
2, . . . sz

N

� �
over an entire interval [0,t].

Although the functional in Eq. 4 is time-local, it is ‘‘spatially’’ non-
local, since the entanglement between qubits k and l depends on the
components of all of the other N – 2 qubits. If one considers two
flipped qubits instead of one, the entanglement functional becomes
complicated and non-local in both space and time due to dependence
on phases in the wavefunction (see supplemental material).
Understanding the spatial and temporal non-locality of density func-
tionals in electronic structure theory is a very active research topic14,15,

and interestingly a similar situation arises here in TDDFT for
quantum computation as well.

Thus far we have proven the qRG theorem, which establishes that
all observables of an N-qubit system can be obtained directly from
the set of single-qubit expectation values sz

1,sz
2, . . . sz

N

� �
, without

needing explicit access to the wavefunction. However, in order to
make this fact useful from a practical standpoint, one would like to be
able to obtain the set sz

1,sz
2, . . . sz

N

� �
by solving an auxiliary problem

that is simpler than obtaining jy(t)æ itself. In the next section, we
prove that there are in fact infinitely many universal Hamiltonians
which can be used to simulate the same set sz

1,sz
2, . . . sz

N

� �
and by

choosing a Hamiltonian with a simpler evolution, one can in fact
make TDDFT a practical tool for quantum computation.

A theorem analogous to the Van Leeuwen theorem for quantum
computation. We now turn to the second fundamental theorem of
TDDFT for universal computation, a VL-like theorem for qubits, the
qubit Van Leeuwen theorem (qVL):

Figure 2 | Qubit Van Leeuwen theorem for a 3 qubit example. The set

{sz
1,sz

2, . . . sz
N } (a) obtained from evolution under Eq. 2, is uniquely

mapped to a new set of fields {h’1,h’2, . . . h’N } (b) for a Hamiltonian with

different two-qubit interactions. Evolution under this new Hamiltonian

returns the same expectation values {sz
1,sz

2, . . . sz
N }, although the

wavefunction is different and hence projections of the Bloch vectors along

other axes are in general different (c).
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Theorem - Consider a given set of spin components
sz

1,sz
2, . . . sz

N

� �
obtained from the wavefunction jy(t)æ evolved

under the Hamiltonian in Eq. 2. One can always construct (see
supplementary material for certain conditions) a Hamiltonian
with different two-qubit interactions denoted J ’\i,iz1 and J ’Ei,iz1
and different local fields h’1,h’2, . . . h’Nf g, which evolves a pos-
sibly different initial state jy9(0)æ to a different final state jy9(t)æ
such that the condition s’z1,s’z2, . . . s’zN

� �
~ sz

1,sz
2, . . . sz

N

� �
is

satisfied on the interval [0,t].

Here, we have defined s’zi : y’ tð Þ ŝz
i

�� ��y’ tð Þ
� �

. The qVL theorem
allows us to obtain the set sz

1,sz
2, . . . sz

N

� �
by simulating the evolu-

tion with an auxiliary Hamiltonian having different two-qubit inter-
actions and hence a different (and possibly simpler) wave-function
evolution as illustrated in Figure 2. Furthermore, the qVL theorem
guarantees that the auxiliary fields h’1,h’2, . . . h’Nf g, are unique func-
tionals of the set sz

1,sz
2, . . . sz

N

� �
. As we discuss in the next section,

this fact opens the possibility of simplifying computations by con-
structing simple approximations to the auxiliary fields as functionals
of single-qubit expectation values. This is a similar concept to how
the exchange-correlation potential of electronic TDDFT is approxi-
mated as a functional of the one-body density in the Kohn-Sham
scheme.

A numerical demonstration of the qubit Van Leeuwen theorem.
Before discussing general approximate functionals for the auxiliary
local fields h’1,h’2, . . . h’Nf g, in this section we will demonstrate
the qVL theorem by constructing the exact functional for a simple

example where an exact numerical solution is possible. The proof
of the qVL theorem gives a mathematical procedure (see
supplementary material) for engineering the exact auxiliary fields
{h’1,h’2, . . . h’N } which reproduce a given set {sz

1,sz
2, . . . sz

N } under
a different two-qubit interaction. As a simple demonstration, we use
this procedure to numerically simulate a 3-qubit Heisenberg
Hamiltonian using an XY Hamiltonian as the auxiliary system
(Figure 3). For the simulation, the system is prepared in the initial
state y 0ð Þj i~ 1ffiffi

3
p 011j iz 101j iz 110j ið Þ, where j1æ and j0æ are

eigenstates of ŝz with eigenvalues 21 and 1 respectively. In
the Heisenberg Hamiltonian, J\i,iz1~JE

i,iz1:Ji,iz1 and we choose
J12 5 J23 5 0.5, which represents a chain with isotropic and
uniform antiferromagnetic couplings. We apply a pulse of the

form h1 tð Þ~0:6
X4

n~1
{1ð Þnz1 sin 2n{1ð Þt½ � (odd harmonics)

to the first qubit and h3 tð Þ~0:6
X4

n~1
{1ð Þ2n sin 2nt½ � (even

harmonics) to the third qubit. The time-dependent Schrödinger
equation is solved numerically and the set {sz

1,sz
2,sz

3} is read out
during the evolution. Details of the simulation are provided in the
supplementary material.

For the auxiliary XY Hamiltonian, J ’Ei,iz1~0 and we choose dif-
ferent and non-uniform couplings in which J ’\12~1:2 and J ’\23~{1.
Thus, we have chosen the auxiliary system to be anisotropic, with
non-uniform and alternating ferromagnetic and antiferromagnetic
couplings. Using the qVL theorem, we engineer the auxiliary local
fields {h’1,h’2,h’3} which using a this XY interaction, reproduce the
set {sz

1,sz
2,sz

3} obtained from the original evolution under the uni-

Figure 3 | Simulating the Heisenberg Hamiltonain with the XY Hamiltonian. Pulses of the form h1 tð Þ~0:6
P4

n~1 {1ð Þnz1 sin 2n{1ð Þt½ � and

h3 tð Þ~0:6
P4

n~1 {1ð Þ2n sin 2nt½ � are respectively applied to the first and third qubits of a uniform Heisenberg Hamiltonian (a). The time-dependent

Schrödinger equation is then solved exactly numerically and the evolution of the set {sz
1,sz

2,sz
3} is read out in (b). The qVL theorem gives us a prescription

for constructing different auxiliary fields (c), which simulate the evolution of the set {sz
1,sz

2,sz
3} correctly as seen in (d), but using a non-uniform XY

interaction instead. (Time is measured in units of B
2J).
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form Hesienberg Hamiltonian. As seen in Figure 3, the auxiliary local
fields are quite different from the original local fields applied to the
Heisenberg model, but simulate the set of components {sz

1,sz
2,sz

3}
correctly. i.e. {s’z1,s’z2,s’z3} 5 {sz

1,sz
2,sz

3}. In the language of electronic
TDDFT, the XY model in our simulation is analogous to the ‘‘Kohn-
Sham system’’ and the set {h’1,h’2,h’3} play the role of the exact Kohn-
Sham potential as a density functional.

In the above example, we have constructed the exact auxiliary
fields a posteriori, after having already solved the wavefunction
evolution of the original system. Although such exact solutions are
valuable in guiding functional development, one would ultimately
like to develop accurate approximate and generic functionals for the
auxiliary fields which can be used to circumvent solving the original
problem. Furthermore, one would like to choose the auxiliary system
so that its evolution is simpler than that of the original system. Such
an approach has proven invaluable in the Kohn-Sham scheme of
electronic TDDFT and we now discuss its applicability to TDDFT
for quantum computation.

Discussion
The qRG and qVL theorems place TDDFT for universal quantum
computation on a firm theoretical footing and open several exciting
research avenues. The development of approximate density func-
tionals has been essential for the success of electronic TDDFT and
will be in quantum computation and information theory as well. In
the Kohn-Sham scheme of electronic TDDFT, one simulates the
correlated many-body system evolving under the Hamiltonian of
Eq. 1, with an uncorrelated non-interacting system in which w9(jri

– rjj) 5 0. The effective ‘‘Kohn-Sham’’ potential v9(r,t) of this non-
interacting system must be approximated as a functional of the den-
sity. The local density approximation (LDA)2, was the first density
functional to be applied to solid-state systems in the 1960s, but it was
not sufficiently accurate for quantum chemistry. More than 20 years
elapsed between the fundamental DFT theorem of Hohenberg and
Kohn1 and the development of density functionals capable of achiev-
ing chemical accuracy in the 1980’s; the so called generalized gradient
approximations (GGA’s)16.

In a similar vein, although we have established the fundamental
theorems of TDDFT for quantum computation, the development of
accurate approximate functionals will be a future challenge.
Additionally, in TDDFT for quantum computation, we expect the
path of functional development to be somewhat different. In the
electronic Hamiltonian (Eq. 1), the kinetic and electron-electron
repulsion are always the same operators and similarly the Kohn-
Sham system is always non-interacting. Therefore, the Kohn-Sham
potential is always the same functional for any electronic system. In
contrast, in quantum computation one uses different two-qubit
interaction terms depending on which universal Hamiltonian imple-
ments a given quantum circuit and therefore the functional will be
different for each situation. For instance, if one wants to simulate
an antiferromagnetic Heisenberg model using a ferromagnetic
Heisenberg model, the functional will be different than a simulation
of the same system using an XY model. Therefore, functional
development will need to focus on specific implementations of
quantum algorithms, rather than a single universal functional for
all quantum computations. Typically, one would want to choose
the auxiliary system’s wavefunction to be less entangled than that
of the original system, thereby making it easier to simulate using
TDDFT on a classical computer. This is a similar concept to how
TDDFT has been applied to electronic systems, where TDDFT pro-
vides a tool to approximately simulate quantum many-body systems
efficiently on classical computers.

Naturally, there are systems that will be very hard to simulate using
approximate functionals, such as those that are in the complexity
class QMA and may require exponentially scaling resources on a
quantum computer30. The collapse of the computational complexity

class hierarchy is of course not expected, and therefore finding func-
tionals that carry out complex quantum computational tasks is extre-
mely unlikely. Nevertheless, understanding how TDDFT functionals
can approximately simulate efficient quantum algorithms on a
classical computer is an open direction. Density functionals for
strongly correlated lattice and spin systems have been recently pro-
posed17–20 and could be applied to several problems of relevance in
quantum computing. In Refs. 17–20 local density (LDA) and general-
ized gradient approximations (GGA) for one dimensional Hubbard
chains and spin chains were derived from exact Bethe ansatz solu-
tions and could readily be applied to solid-state quantum computing
or perfect state transfer protocols in spin networks21. Functionals can
also be parametrized from numerical simulations of one-dimen-
sional qubit systems using time-dependent density matrix renorma-
lization group methods (TDMRG)22, in an analogous fashion as
quantum Monte Carlo simulations of the uniform electron gas have
proven invaluable in electronic DFT23. In Figure 4, we summarize the
analogies between electronic TDDFT and TDDFT for quantum
computation, which will necessarily giude development of approx-
imate functionals.

It should be noted that at present, the existing density functionals
used in electronic structure calculations are far too simple to capture
the entanglement and subtle correlations that play a major role in
most quantum computing schemes. For instance, the adiabatic LDA
and GGA functionals mentioned above are local in time and local or
semi-local in space. As a result, they are poorly suited to systems that
are strongly correlated and highly entangled as is typically the case in
quantum computations. Whether or not it is possible to develop
sufficiently non-local functionals for quantum computations
remains an open question and is an essential prerequisite for making
the theorems we have proven practically useful.

In a different direction, one could also imagine using the qVL
theorem as an experimental tool to engineer different physical sys-
tems which perform the same computations. For instance, one could
simulate an algorithm on an ion trap using a system of supercon-
ducting flux qubits, by using the qVL theorem to engineer the flux
qubit Hamiltonian from knowledge of how the algorithm is per-
formed on the ion trap. Another important research direction will
be the generalization of DFT and TDDFT to other universal
Hamiltonians and models of quantum computation. For instance,
Ref. 24 discussed the use of TDDFT for obtaining gaps in adiabatic

Figure 4 | Analogies between electronic TDDFT and TDDFT for
quantum computation. Relevant quantities in electronic TDDFT (left

column) and the corresponding quantities in TDDFT for quantum

computation (right column). The current and kinetic energy of qubit

TDDFT are defined in the supplementary material.
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quantum computation. In29, groundstate DFT was used to study
relationships between entanglement and quantum phase transitions,
while Ref. 30 explored DFT from a complexity theory perspective.

In the supplementary material we explore connections
between TDDFT for quantum computation and lattice theories of
TDDFT25–28.
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