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Abstract

Acute stress induces large-scale neural reorganization with relevance to stress-related

psychopathology. Here, we applied a novel supervised machine learning method, com-

bining the strengths of a priori theoretical insights with a data-driven approach, to

identify which connectivity changes are most prominently associated with a state of

acute stress and individual differences therein. Resting-state functional magnetic reso-

nance imaging scans were taken from 334 healthy participants (79 females) before and

after a formal stress induction. For each individual scan, mean time-series were

extracted from 46 functional parcels of three major brain networks previously shown

to be potentially sensitive to stress effects (default mode network (DMN), salience net-

work (SN), and executive control networks). A data-driven approach was then used to

obtain discriminative spatial linear filters that classified the pre- and post-stress scans.

To assess potential relevance for understanding individual differences, probability of

classification using the most discriminative filters was linked to individual cortisol stress

responses. Our model correctly classified pre- versus post-stress states with highly sig-

nificant accuracy (above 75%; leave-one-out validation relative to chance perfor-

mance). Discrimination between pre- and post-stress states was mainly based on

connectivity changes in regions from the SN and DMN, including the dorsal anterior

cingulate cortex, amygdala, posterior cingulate cortex, and precuneus. Interestingly, the

probability of classification using these connectivity changes were associated with indi-

vidual cortisol increases. Our results confirm the involvement of DMN and SN using a

data-driven approach, and specifically single out key regions that might receive addi-

tional attention in future studies for their relevance also for individual differences.
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1 | INTRODUCTION

Acute stress as well as stress-related psychopathologies have been

proposed to involve abnormalities in three major brain networks,

namely the salience network (SN), default mode network (DMN), and

central executive networks (CEN; Hermans et al., 2011; Menon, 2011;

Zhang et al., 2019). However, few studies empirically tested how stress

affects brain architecture at the network level (Hermans et al., 2011;

Maron-Katz, Vaisvaser, Lin, Hendler, & Shamir, 2016; Young et al., 2016;

Zhang et al., 2019). The vast majority of research on functional connec-

tions has focused on a limited number of core regions from those major

networks regarding stress effects and related psychopathologies (Koch

et al., 2016; van Oort et al., 2017). The commonly used seed-based ana-

lyses in these studies are hypothesis driven and thus enable direct testing

with straightforward interpretations (Cole, Smith, & Beckmann, 2010).

However, this approach relies heavily on strong a priori knowledge about

the critical brain regions responsive to stress, and the seed-region selec-

tion could very well be biased. In contrast, current network-level

approaches consider distributed circuits or regions as a unified piece.

This leaves it unacknowledged that human behavior and cognition are

associated with not only integrated but also segregated neural circuits

that vary dynamically under different contextual demands (Cohen &

D'Esposito, 2016; Keerativittayayut, Aoki, Sarabi, Jimura, &

Nakahara, 2018; Shine, van den Brink, Hernaus, Nieuwenhuis, &

Poldrack, 2018). Consequently, the difficulty in defining networks, as well

as lack of specificity of interregional connectivity patterns, has therefore

been key critiques of this type of analyses. An intermediate approach

that takes a data-driven perspective with the guidance from a priori

knowledge about major brain networks may solve the aforementioned

issues and allow for investigations into neural network-level stress

responses with enriched information about regional connectivity patterns.

Here, we applied a novel analysis in a relatively large sample to balance

the strength and drawbacks of analyses described earlier.

Previously, acute stress has been shown to induce connectivity

changes in SN, DMN, and CEN at the network level (Hermans

et al., 2011; Zhang et al., 2019), as well as in specific core regions,

particularly the amygdala, dorsal anterior cingulate cortex (dACC),

medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC),

and precuneus (PCu) (Li, Weerda, Milde, Wolf, & Thiel, 2014;

Maron-Katz et al., 2016; Vaisvaser et al., 2013; see comprehensive

review by van Oort et al., 2017). It is worth noting that aforemen-

tioned core regions had been considered mostly as a unified struc-

ture (i.e., using the entire structure as the seed), whereas

converging evidence indicates distinctive functions of their subre-

gions (Cavanna & Trimble, 2006; Cha, Jo, Gibson, & Lee, 2017;

Leech & Sharp, 2014; Margulies et al., 2009). In order to test the

relevance of these regions with a refined resolution in stress reac-

tivity, we set out to investigate whether their functional connec-

tions can substantially drive the classification between pre-stress

and post-stress brain states. In specific, this study tests connectiv-

ity changes in resting-state functional magnetic resonance imaging

(rs-fMRI) scans taken immediately before and after a formal stress

induction that took about 8 min. In contrast to previous studies

investigating stress-induced connectivity changes as a whole in

SN, DMN, and CEN (Hermans et al., 2011; Zhang et al., 2019), here

we aim to elucidate which functional units (i.e., subregions of large

core regions) within these networks will exhibit altered functional

connections after stress induction. Furthermore, to explore the

neural origins of individual differences in acute stress responses,

characteristics of the classifiers (i.e., the discriminant features

between pre- and post-stress states) will be linked to acute stress-

induced cortisol level. As have been shown in our previous study,

this measure increased after acute stress induction that indicated

the perturbance of the system upon challenges (Zhang

et al., 2019).

To better characterize functional architectures of interest, here

we employed a machine-learning algorithm to linearly index poten-

tial classes of interest (i.e., pre- vs. post-stress), using the average

fMRI BOLD signals from the functional connectivity-based brain

parcels (or functional regions of interest, fROI) from the aforemen-

tioned SN, DMN, and CEN. This technique has been recently

applied for the first time to fMRI data to discriminate different

mental states (Llera, Chauvin, Mulders, Naaijen, & Mennes, 2019).

Taking the information from multiple functional parcels with the

restrictions of three major brain networks, our approach bridges

macro network-level analysis that allows for quantifying the neural

substrates of stress reactivity as a system, with more micro parcel

or cluster-level analysis that enables the disclosure of local spatial

characteristics of these networks. This intermediate meso-level

approach therefore offers an opportunity to identify stress

responses at a refined neural level.

2 | METHODS AND MATERIALS

2.1 | Participants

We used data from 372 participants that were acquired in accordance

with the principles of the Declaration of Helsinki and approved by the

Independent Review Board Nijmegen (IRBN), the Netherlands. All par-

ticipants gave their written informed consent before the study, and all

data were collected at the Donders Institute for Brain, Cognition, and

Behavior in Nijmegen, the Netherlands. Exclusion criteria included any

current psychiatric or neurological disorder, a history of, or current

endocrine or neurological treatment, current use of psychotropic

medication, and current drug or alcohol abuse (full details in Koch

et al., 2017). Further exclusion included data with signal artifacts and

excessive head movements, resulting in a final sample of 334 partici-

pants (including 79 females; mean age = 24.01; full exclusion details in

Zhang et al., 2019).

These data were previously used to identify stress-related con-

nectivity changes at the network level, using a priori hypotheses

(Zhang et al., 2019). Here we used the same large data set, with a

novel data-driven approach to pinpoint which specific subdivisions

from the networks of interest are most prominently affected by acute

stress.
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2.2 | Experimental design

Acute stress induction took place in the late afternoon (i.e., between

4 and 7 p.m.) when the diurnal rhythm of cortisol allows for a rela-

tively stable level (Miller et al., 2016). Two sessions of rs-fMRI scan-

ning were carried out, one before stress induction (RS1) and one after

(RS2). All participants were acquainted with the scanning procedure

before the acquisition of RS1 (full details of experiment protocols are

provided in Koch et al., 2017).

Stress responses were induced by sequential administration of a

socially evaluated cold pressor task (SECPT) and a mental arithmetic

(MA) task, a procedure that has been shown to successfully induce

psychophysiological and subjective stress responses (Luo et al., 2018;

Schwabe, Haddad, & Schachinger, 2008). As has been implemented in

previous studies (Luo et al., 2018; Vogel et al., 2015), participants

were instructed to immerse their right foot in icy-cold (0–3�C) water

for 3 min and to count back out loud from 2053 in steps of 17 as

quickly and accurately as possible (MA task) immediately after the

SECPT.

2.3 | Data acquisition

2.3.1 | Imaging data acquisition

Each session of rs-fMRI scan lasted for approximately 6 min, during

which participants were instructed to lie still and to look at a small

white cross at the screen center. All images were collected using a 3T

Siemens Magnetom Prismafit MRI scanner (Erlangen, Germany) with a

32-channel head coil. A T2*-weighted multiband echo planar imaging

sequence with acceleration factor 8 (MB8) was used to acquire

BOLD-fMRI whole-brain covered images (TR = 735 ms, TE = 39 ms,

flip angle = 52�, voxel size = 2.4 × 2.4 × 2.4 mm3, slice gap = 0 mm,

and FOV = 210 mm). This state-of-the-art sequencing protocol was

optimized from the recommended imaging protocols for the Human

Connectome Project (http://protocols.humanconnectome.org/HCP/

3T/imaging-protocols.html), with the fast acquisition speed facilitating

the detection and removal of non-neuronal contributions to BOLD

changes (Boubela, Kalcher, Nasel, & Moser, 2014). High-resolution

structural images (1 × 1 × 1 mm3) were also acquired, using a

T1-weighted MP-RAGE sequence (TR = 2,300 ms, TE = 3.03 ms, flip

angle = 8�, and FOV = 256 × 256 × 192 mm3).

2.3.2 | Stress measurement collection

Salivary samples, as well as self-reported ratings of positive and nega-

tive affect schedule (Watson, Clark, & Tellegan, 1988), were collected

in a total of five times around acute stress induction −10, 0, +10, +20,

and + 30 min with respect to the onset time (at 0 min) of stress induc-

tion. In addition to salivary cortisol levels, subjective ratings on nega-

tive affect were calculated using the sum scores of the 10 negative

affect items for each participant.

2.4 | Statistical analysis

2.4.1 | Analyses on stress measures

Increases in salivary cortisol and negative affect ratings were calcu-

lated for each participant as the indication of stress level. Specifically,

cortisol increase was defined as cortisol level at time 20 min after

stress induction onset (i.e., peak level) subtracted from time 0 (baseline

level), whereas negative affect increase was calculated as the differ-

ence in ratings between the baseline and at time 10 min after stress

induction onset (i.e., peak level for negative affect). Main effects of

sampling time and significant increases were observed in cortisol level

(i.e., differences between peak level at +20 min and baseline at 0 min)

and subjective report on negative affect (i.e., differences between

peak level at +10 min and baseline at 0 min), indicating a successful

stress induction (see Figure 1 in Zhang et al., 2019).

2.4.2 | fMRI preprocessing and analysis

Preprocessing

Analysis of fMRI data was performed with FSL5.0.9 (FMRIB, Oxford,

UK). The first five images of each resting-state scan were discarded to

allow for T2* equilibration effects. Further preprocessing included

motion correction, spatial smoothing with a 5 mm full-width-half-

maximum kernel, denoising using ICA-AROMA (Pruim et al., 2015),

and high-pass filtering with a cut-off of 100 seconds. To further mini-

mize motion and psychophysiological confounds after the denoising

procedure, the six realignment parameters, their temporal derivatives,

and the quadratic terms of both the original parameters and deriva-

tives were used as motion parameters in a multiple linear regression

model (Caballero-Gaudes & Reynolds, 2017; Friston, Williams, Howard,

Frackowiak, & Turner, 1996; Zu Eulenburg, Caspers, Roski, &

Eickhoff, 2012). Additionally, each individual T1 image was segmented,

using the FAST function from FSL (Zhang, Brady, & Smith, 2001) for

subject-specific white matter and Cerebrospinal fluid (CSF) masks that

were subsequently thresholded with a 95% probability and registered

with the individual functional image. The mean signal intensities of white

matter and CSF were extracted and included in the regression model

(Caballero-Gaudes & Reynolds, 2017; Satterthwaite et al., 2013). The

resulting residuals of the imaging data were used for further analyses,

with each participant having one pre- and one post-stress rs-fMRI

recording.

2.4.3 | Identifying spatial characteristics of pre-
and post-stress states from rs-fMRI data

In a previous study by Llera et al. (2019), the algorithm of Spatial Pat-

terns for Discriminative Estimation (SPADE) was introduced and vali-

dated to achieve optimal discriminative linear filtering between two

fMRI conditions (i.e., task vs. resting state). Briefly, the idea behind

the SPADE is to provide a different representation of the time-series
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data (X) by learning a new reference basis system (W). The learned

basis vectors (i.e., columns of W) can also be understood as a set of

linear spatial filters and are optimized to provide strong discrimination

in terms of variance of the data that are projected into the new basis

(i.e., var(WTX). Learning of these filters is achieved by solving a con-

strained generalized eigenvalue decomposition between two spatial

covariance matrices that are obtained from the fMRI time-series. In

case of the current study, these covariance matrices are obtained

from the pre- and post-stress data sets, respectively. The full descrip-

tion of the methodology can be found in Llera, Chauvin, et al. (2019).

Importantly, in contrast to common discriminative models that

work in high-dimensional full covariance/correlation space (i.e.,

46 × 45/2 = 1,035 dimensions in the current study), the strength of

the SPADE is to extract linear spatial filters that allow a low-

dimensional and simpler interpretation of the connectivity changes

between (pre- and post-stress) conditions. This advantage of the

SPADE has been extensively illustrated in Llera, Chauvin, et al. (2019),

where the authors show that the SPADE discriminative accuracy is

comparable to that of an SVM but with enhanced interpretability.

In the current study, we used SPADE for the first time to identify

resting-state connectivity patterns that best discriminate between

stressed and non-stressed states. On the one hand, enhanced spatial

resolution was considered to investigate the connectivity profile of

subregions from large brain structures (i.e., PCC). On the other hand,

given the number of data points from the rs-fMRI data (see Sec-

tion 2.3.1), a reduction in fMRI spatial dimensionality is required to

compute full-ranked spatial covariance matrices. Accordingly, a total

of 40 functional parcels from the Stanford FIND atlas (Shirer, Ryali,

Rykhlevskaia, Menon, & Greicius, 2012) that are all considered part of

the intrinsic networks of interest (i.e., DMN, SN, and CEN) were

selected as fROIs. Since the amygdala is not included in the FIND atlas

while mounting evidence suggests its engagement in stress-related

processing (Janak & Tye, 2015; Ressler, 2010; Zhang et al., 2018; also

see review by McEwen & Gianaros, 2010), we further augmented the

set of functional units with three amygdala subnuclei of each hemi-

sphere from the Jülich cytoarchitectonic probability map. A minimum

probability of 25% was set to ensure the full coverage of the amyg-

dala structure (Zilles & Amunts, 2010). The resulting 46 fROIs

(Figure 1) were initially in the MNI space and were registered with the

individual functional images for each participant (i.e., converted into

individual native space). Thereafter, mean time-series values were

extracted from each subject-specific fROI (see full list of fROI in

Table 1). Such an approach allows for increased functional specificity

of the fMRI signal because it reduces inaccurate registration across

participants and avoids interpolation (Bijsterbosch, Smith, &

Beckmann, 2017), or any potential structural bias induced in the fMRI

data analysis pipeline due to the use of structural images (Llera,

Wolfers, Mulders, & Beckmann, 2019).

Next, we constructed cross-subject covariance matrices

between all parcel-specific time-courses for pre- and post-stress

data sets separately. We then used the SPADE analysis that projec-

ted the pre- and post-stress data onto a common space to learn the

spatial filters that represent most discriminative features between

pre- and post-stress scans. Importantly, the learned spatial filters

from each covariance matrix maximized the explained variances

either in the pre- or post-stress data sets (Figure 2). A leave-one-out

cross-validation approach was used to validate the robustness of the

learned filters by using the data from N−1 participants at each fold

for generating covariance matrices, learning spatial filters, extracting

features, and training a linear discriminant analyses classifier

F IGURE 1 The selected 46 functional parcels from the salience network, the default mode network, and the central executive network. Forty
parcels were from the Stanford FIND atlas (i.e., including the medial prefrontal cortex, dorsal anterior cingulate cortex, anterior and posterior

insula, posterior cingulate cortex, precuneus), and the remaining six (i.e., bilateral amygdala subnuclei) were from Jülich Cytoarchitectonic
probability atlas. The full list of included parcels can be found in Table 1
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(Bishop, 2007). We log transformed variances of the data projected

onto the spatial filters to obtain the features and assessed the qual-

ity of the classifier using the averaged ratio of correctly classified

samples (i.e., classification accuracy) across folds. Critically, we

trained the model at different dimensionalities (i.e., using different

number of filters) and selected the smallest number of filters whose

predictive accuracy is statistically comparable with the possible max-

imum performance. Importantly, this accuracy was obtained as the

mean of the classification performance across N−1 folds, using

leave-one-out cross validation. The selected filters therefore

reflected generalization ability to the unseen (i.e., left out) data.

Wilcoxon signed-rank tests were then conducted to test the classifi-

cation accuracy of our model against a random chance of 50% and

to test accuracy improvements with increasing dimensionality. In

order to locate crucial functional parcels (i.e., fROIs) from the SN,

DMN, and CEN that are responsive to acute stress induction, the

TABLE 1 Forty-six functional parcels from the SN, DMN, and CEN

Network Subsystem region (parcel counts)

Hemisphere

Left Right
Bilateral

SN Amygdala (6) Centromedial nucleus Centromedial nucleus

Laterobasal nucleus Laterobasal nucleus

Superfical nucleus Superfical nucleus

Anterior SN (3) Anterior insula Anterior insula

Dorsal anterior cingulate gyrus

Posterior SN (10) Middle frontal gyrus

Angular gyrus

Precuneus

Posterior cingulate cortex

Precuneus

Angular gyrus

Thalamus Thalamus

Posterior insula Posterior insula

DMN Ventral DMN (9) Posterior cingulate cortex

Angular gyrus

Parahippocampal gyrus

Inferior parietal lobule

PCC/precuneus

PCC/precuneus

Middle frontal gyrus

Parahippocampal gyrus

Inferior parietal lobule

Dorsal DMN (7) Medial prefrontal cortex

PCC/precuneus

Posterior cingulate gyrus

Angular gyrus

Thalamus

Hippocampal gyrus Hippocampal gyrus

Precuneus (4) Posterior cingulate cortex

Precuneus

Angular gyrus Angular gyrus

CEN Left CEN (3) Middle frontal lobe

Angular gyrus

Inferior temporal gyrus

Right CEN (4) Middle frontal lobe

Angular gyrus

Superior frontal gyrus

Caudate

Abbreviations: CEN, central executive network; DMN, default mode network; PCC, posterior cingulate cortex; SN, salience network.
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most discriminative spatial filters were transformed into anatomical

spatial maps in the brain (Haufe et al., 2014). A cut-off of Z > 1.96

was used for these interpretable spatial maps.

2.4.4 | Linking SPADE features to individual stress
responses

To further explore whether the most discriminative spatial filters we

observed were predictive of the intensity of individual stress

responses, we correlated the acute stress-induced cortisol increases

(i.e., difference between the peak and baseline levels) with the odds

ratio of correctly classifying a given rs-fMRI scan as being from the

post-stress in contrast to pre-stress data set. For this correlation

analysis, we partialled out the potential influence of cortisol baseline

level (assessed just before the pre-stress scan acquisition) to pre-

cisely investigate the association between brain activity and cortisol

reactivity (i.e., using semi-partial Spearman correlation analyses). In

our previous study, we observed influences of acute stress induction

on salivary cortisol (F[41,182.08] = 145.76, p < .0001) over time

(also see Figure 1 in Zhang et al., 2019). In case the spatial filter

showed a significant correlation with cortisol increases (i.e., p < .05),

a follow-up test was carried out to visualize the involved functional

parcels that together substantiated the discriminant effect of

selected spatial filters. To do so, we first calculated the differential

covariance matrix (i.e., normalized differences between post-stress

and pre-stress covariance matrices) for the selected filters. Thereaf-

ter, covariance values were converted into Z-statistics and a 95%

pre-stre
ss

post-stress

(a) (b)

B.

(c)

# of ROI

# 
o

f 
R

O
I

time

# 
o

f 
R

O
I

SPADE
(Spatial Patterns
for Discriminative

Estimation)

pre-stress

post-stress

F IGURE 2 Illustration of analysis steps. Mean time-courses were extracted from all N participants for pre- and post-stress scans,
respectively (a). Thereafter, covariance matrices were constructed for pre- and post-stress data separately across N−1 (i.e., leave-one-
out) participants (b), which were further fed into SPADE for obtaining discriminative spatial filters. These spatial filters can discriminate
the pre- from the post-stress data at individual subject level as summarized by the log-transformed variances of the fMRI data projected
to the spatial filters (i.e., dots in the figure) with the x-axis indicating the first and the y-axis the last spatial filters (c). The observed
spatial filters that reached the maximal classification accuracy were further located in the brain as interpretable spatial maps (see
Figure 4)
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percentile was used to select the most relevant parcels for

illustration.

3 | RESULTS

The maximal discrimination accuracy of our model was 77.99%,

highly significant above a chance-level random performance

(Z = 13.53, p < .00001). This maximum was achieved using four pairs

of filters. However, this accuracy was statistically comparable to the

accuracy achieved by using either two (75.9% accuracy; Z = 0.39,

p = .70) or three pairs of filters (77.84% accuracy; Z = 1.31, p = .19).

As the accuracy of using two pairs was still significantly higher than

using only one (Z = 1.96, one-sided p = .0248) and random chance-

level performance (Z = 12.79, p < .00001) but comparable to using

three pairs (p = .16), further analyses only focused on the first two

pairs of filters (i.e., two spatial filters from each of the top and the

bottom of the eigenspectrum; Figure 3). Thereafter, we checked

whether the discriminative strength of these filters was specific for

distinguishing pre- versus post-stress states. To this end, a control

analysis was conducted to test if the observed discrimination was

due to scanning order effects instead of stress-induced brain struc-

ture reorganization. The results show that our model could not dis-

tinguish the sequential rs-fMRI scans in an independent sample

(N = 26) that underwent a nonstressful control procedure in between

two rs-fMRI scans (i.e., with a maximal accuracy of 61.5% not differ-

ent from a random performance, p > .05), thereby suggesting that

the selected features (i.e., spatial filters) in the experimental sample

are stress specific.

Hereafter, we mapped the fROIs in the brain that have predomi-

nantly substantiated the discrimination of the first two pairs of filters.

The anatomical mapping revealed that connectivity patterns involving

the core regions from the SN (i.e., amygdala, dACC, thalamus [THA])

and DMN (i.e., PCu, PCC, inferior parietal lobule [IPL]) provided the

most crucial information for accurate classification of pre- versus

post-stress states.

To relate the observed fROIs to stress processing, we linked the

individual cortisol stress responses (i.e., absolute cortisol increase

corrected for baseline level) to the odds ratio of classification, which

represented the most discriminant features. Again, we focused on the

first two pairs of spatial filters (as shown in Figure 4) that had

achieved the maximal classification accuracy in the current sample.

The results showed a significant correlation between the odds ratio

calculated for basolateral amygdala-angular gyrus (BLA-AG) with corti-

sol increases (Rs = −0.10, p = .046; Figure S1). No such effect was

observed for any other spatial filters (all values of p > .05).

4 | DISCUSSION

In the current study, we used a novel approach to investigate the

most critical subregions from major resting-state networks (SN, DMN,

and CEN) that are affected by acute stress induction. Based on the

correlations among these functional parcels, our model could suc-

cessfully classify the pre- and the post-stress states with a maximal

classification accuracy above 75%. Our analysis further showed that

discriminant features of the observed spatial filters could explain

variances in cortisol stress reactivity, a biologically meaningful stress

marker. These findings demonstrate that the data-driven approach

we used here is able to identify a small number of key structures

among a large and unbiased initial set of ROIs within large-scale net-

works that have been previously demonstrated to be associated with

stress effects (see review by van Oort et al., 2017).

Specifically, we explored the impact of acute stress induction on

a functional connectome generated from BOLD fMRI data acquired

under rest within 46 parcels, all from the SN, DMN, and CEN. Our

approach thus managed to mitigate the potential biases introduced by

focusing only on a small number of the ROIs. In line with previous

findings that have shown the involvement of the SN and DMN hub

regions in stress-related processing (for review see van Oort

et al., 2017), here we observed significant changes in connectivity pat-

terns of bilateral dACC and bilateral BLA from the SN, and bilateral

PCC/PCu from the DMN after stress induction (Figure 4). Importantly,

we also observed such changes in bilateral THA, right middle frontal

gyrus (mFG), left IPL, and right angular gyrus (AG) that notably con-

tributed to the accurate discrimination between the pre- and post-

stress states. As these latter structures are not typically considered as

the core or hub regions of the DMN, they have been largely

*

***

chance level classification

Discrimination of pre- vs. post-stress scans
C

la
ss

if
ic

at
io

n
 A

cc
u

ra
cy

pairs of filters

1 2 3 4 5

50%

60%

70%

80%

F IGURE 3 Classification accuracy for pre- vs. post-stress states
with 1–5 pairs of spatial filters. Classification accuracy was
significantly higher than chance level (i.e., 50% indicated by the red
dashed line) when using only one pair of spatial filters, and further
significantly increased when using two pairs of spatial filters with
asterisk indicating statistical significance (i.e., *** p < .0001; * p < .05).
Gray shading indicating the 95% confidence interval
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overlooked in previous stress studies using a seed-based approach.

Nevertheless, there is evidence suggesting the involvement of these

structures in stress and more generally emotion-related processing,

such as emotion regulation (i.e., the mFG; Fonzo, Huemer, &

Etkin, 2016; Grecucci, Giorgetta, Bonini, & Sanfey, 2013), perception

with emotional valence (i.e., the IPL; Engelen, de Graaf, Sack, & de

Gelder, 2015; Sarkheil, Goebe, Schneider, & Mathiak, 2013), and

information-encoding under stress (i.e., the AG; Vogel, Kluen,

Fernández, & Schwabe, 2018). These findings indicate potential rele-

vance of these additionally identified brain regions for future investi-

gations into stress-related processes and related disorders.

In line with existing findings that link key structures of the SN

and DMN to stress-related processes (Admon, Milad, &

Hendler, 2013; Koch et al., 2016; van Oort et al., 2017), we observed

connectivity patterns that substantiated accurate discrimination in

core regions from the SN (i.e., dACC and amygdala) and DMN

(i.e., PCC and PCu). However, in contrast to previous studies that

considered these key structures as being functionally homogeneous,

here we investigated their interregional covariances with enhanced

specificity of subdivisions. For example, the amygdala or amygdaloid

complex is known as a group of multiple subnuclei with distinguish-

able cytoarchitectonic and connectional features (Sah, Faber, Lopez

De Armentia, & Power, 2003). However, most human studies have

investigated acute stress effects on the amygdala as a whole (see

review by van Oort et al., 2017). Here, we divided the bilateral amyg-

dala into six subnuclei (i.e., basolateral, centromedial, and superficial

nuclei from each hemisphere), and only left and right BLA nuclei

showed noteworthy changes in their connectivity profile for discrim-

inating pre- versus post-stress states. Similarly, although PCC and

PCu have often been used as seed regions to investigate stress

effects on DMN connectivity, very rarely these hub regions were

tested with specified subdivisions that are known to function dis-

tinctively (Bzdok et al., 2015; Leech & Sharp, 2014; Zhang &

Li, 2012). Here again, we show that acute stress only affected limited

parts (i.e., a few subdivisions) of the entire structure, thereby

suggesting a potential relevance to shift the focus on more local-

level functional characteristics for these hub regions in respect to

stress effects.

Furthermore, our follow-up tests revealed a correlation

between individual cortisol reactivity to acute stress induction and

the odds ratio of correctly classifying the acutely stressed brain

state from the rs-fMRI scans for BLA-AG filter (Figure S1). Although

the effect size was small (R = −0.10), it provides support for the

interpretation that the observed connectivity changes are stress

related and relevant for individual differences in the HPA-axis

response to stress.

It is important to consider the limitations of the current study

when interpreting the results. Firstly, the current study only focused

on the spatial organization represented by the first two pairs of spatial

filters since they demonstrated statistically comparable predictive

accuracy as the maximal performance, using leave-one-out cross vali-

dation. In the future, it would be interesting to investigate the robust

number of discriminative spatial filters for interpretations, using an

independent sample. Secondly, the machine learning algorithm used

here does not allow for simple detection of the exact directionality of

the connectivity changes (i.e., increases or decreases) following acute

stress induction. Instead, it focused on the detection of changes per

se that could yield maximal discriminative strength to tell the stressed

from the non-stressed neutral states. Importantly, this approach does

allow for inferring relative changing directions (i.e., the color coding in

Figure 4 quantifies the correlation within each spatial filter but not

indicates the overall correlations). Based on these findings, it would

F IGURE 4 Functional parcels associated with statistically maximal classification accuracy for pre- and post-stress scans in the brain. The
filters were selected from the top (i.e., 1a, 2a) and the bottom (i.e., 1b, 2b) of the eigenspectrum. Together in pairs (i.e., first pair and second pairs)
they represent the most discriminative features of post- and pre-stress states. Within each individual spatial filter, color coding (reddish or
blueish) indicates the relative directionality of correlation, with the same color (i.e., all blueish) indicating positive correlations between parcels and
different colors (i.e., blueish vs. reddish) representing anticorrelation of the demonstrated parcels. For example, PCu and PCC exhibited a positive
correlation, whereas PCu and l-AG an anticorrelation in spatial filter 1a. Abbreviations: dACC, dorsal anterior cingulate cortex; PCC, posterior
cingulate cortex; PCu, precuneus; THA, thalamus; l-AG, left angular gyrus; r-AG, right angular gyrus; l-BLA, left basolateral amygdala; r-BLA, right
basolateral amygdala; r-mFG, right middle frontal gyrus
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be interesting for future investigations to identify the directionality of

stress-induced connectivity changes in specific brain structures of

interest (i.e., positive or negative correlation between parcels as in

Figure S2). Therefore, the approach used here can serve as a crucial

step to unbiasedly curtail a large number of brain structures, enabling

subsequent investigation of the most relevant ones for connectivity

directionality. Thirdly, although we observed an association between

the cortisol increases and the discriminative feature (i.e., odds ratio),

this pattern was only present for one individual filter. This is likely due

to the fact that the trained spatial filters here might have reflected the

aggregated information from multiple neural and hormonal systems in

a time frame arguably capturing a mixture of stress reactivity and

stress recovery processes. On the other hand, the cortisol levels we

measured here (i.e., increases from baseline to the peak level) predom-

inantly indicated the HPA-axis reactivity to stressors. For future stud-

ies, acquiring additional imaging scans after acute stress subsides

(i.e., stress recovery) may help elucidate the implications of the brain

spatial patterns observed here. Nevertheless, it is important to note

that our model was trained on the functional imaging data and was

not designed to predict cortisol stress responses. The fact that it could

still explain variances in cortisol data suggests that the observed con-

nectivity patterns discriminative of pre- and post-stress scans are

driven, to a certain degree, by the neurobiological processes also giv-

ing rise to cortisol responses. Finally, potential concern may arise for

the reduced signal-to-noise ratio (SNR) due to the relatively short

acquisition time (i.e., 6.5 min). However, the fast speed acquisition

protocol (multiband 8) allowed us to obtain 500 data points from each

participant, and both the individual and group-level temporal SNR

images exhibited similar amplitudes and patterns as have been

shown in previous studies (Smith et al., 2013). Most importantly, the

reported results here largely replicated findings in previous research

(e.g., connectivity change in dACC, PCC upon stress induction), fur-

ther ensuring the data quality.

In conclusion, the current study used an unbiased data-driven

approach to detect the most relevant brain structures from the SN,

DMN, and CEN in response to acute stress. By combining our a priori

knowledge—of stress-sensitive neural networks—with data-driven

modeling, our results show that acute stress substantially affects the

intermediate meso-scale connectivity patterns of the hub regions

from the SN and DMN, as well as a number of regions not typically

predefined as stress sensitive.
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