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Abstract: Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer
patients receiving RT. As the number of cancer survivors increases, the short- and long-term side
effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably
cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors.
An understanding of the biological pathways and mechanisms involved in normal tissue toxicity
from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many
of these mechanistic studies are performed in animal models of radiation exposure. In this area
of research, the use of small animal image-guided RT with treatment planning systems that allow
more accurate dose determination has the potential to revolutionize knowledge of clinically relevant
tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome
to optimize such radiation delivery, including dose verification and calibration, determination of
doses received by adjacent normal tissues that can affect outcomes, and motion management and
identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun
to determine how animal strain and sex affect normal tissue radiation injuries. This review article
discusses the known and potential benefits and caveats of newer technologies and methods used
for small animal radiation delivery, as well as how the choice of animal models, including variables
such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their
clinical relevance.

Keywords: radiation biology; thoracic radiation therapy; normal tissue toxicity; cardiopulmonary
toxicity; small animal irradiators; image-guided radiotherapy; cardiotoxicity; radiation-induced
heart disease

1. Introduction

Over 17 million cases of cancer were diagnosed worldwide in 2018, and roughly 9.5 million cancer
deaths were reported [1]. Since the early 1900s, ionizing radiation has been used to treat cancers [2],
and today radiation remains a major modality in cancer treatment, with over half of all cancer patients
receiving radiation therapy (RT). Because of overall growth and aging of the population, it is estimated
that by 2040 the global incidence of cancer will rise to over 27 million new cases, and more than 16
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million cancer deaths will occur [1]. As a consequence, the global cancer burden will give rise to a
growing population of survivors that may develop short- and long-term side effects of cancer therapy.

Normal tissue toxicities, mainly in the heart and lungs, can occur after RT in patients with
thoracic tumors. The most common toxicities include acute pneumonitis and chronic fibrosis due
to radiation exposure of the lung [3,4], and cardiac dysfunction, including pericarditis, ischemic
heart disease, conduction abnormalities, myocardial fibrosis, and valvular abnormalities collectively
called radiation-induced heart dysfunction (RIHD) (Figure 1) from incidental radiation to the heart
and surrounding vasculature [5–10]. These side effects may present clinically months to years after
RT, affecting patient quality of life and at times even leading to increased mortality [6,9–16]. For
example, patients who received tangential RT for left-sided breast cancer in the 1970s and 1980s had an
increased risk for cardiovascular mortality at 15 years post-treatment [17]. In patients that received
mediastinal radiation for Hodgkin’s disease in the 1960s–1990s, there was a higher prevalence of
cardiac abnormalities when compared to the Framingham population [18]. In addition, non-small cell
lung cancer (NSCLC) patients may experience RIHD within two years of radiation exposure [14,19–22].
Numerous other groups have highlighted similar increases in cardiac toxicity-related morbidity and
mortality among patients that have received thoracic radiation [23–27].
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coronary events for each 1 Gy in mean heart dose received [6,9,10]. A recent national multicenter 
NSCLC trial and other single institution reviews have shown a correlation between early death and 
radiation dose to the heart [12,14,19–22]. However, efforts towards severely limiting incidental heart 
dose could potentially compromise RT’s effectiveness in treating tumors in patients with mediastinal 
lymphomas, thymomas, and breast, lung, or esophageal cancers [7].  

Thus, there is a need for understanding the mechanisms by which radiation causes 
cardiovascular disease, and potentially providing targeted interventions that prevent or reverse 
RIHD while maintaining optimal radiation doses to the target(s) for maximum tumor control. There 
are several preclinical studies that aim to elucidate the molecular and cellular mechanisms of RIHD 
(reviewed in [37,38]). However, translating the biological mechanisms involved in the normal tissue 
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Figure 1. Cardiac radiation exposure causes a number of abnormalities. Exposure of the heart and
surrounding vasculature to radiation may lead to several adverse structural and functional changes in
the heart, in this article collectively referred to as radiation-induced heart dysfunction.

A number of advances in radiation oncology have made radiation delivery more precise and
allow more effectively delivery of doses to the target volume while reducing the radiation doses
to surrounding normal tissues [28–33]. However, numerous studies have shown that modern RT
technology has not fully eliminated the risk of RIHD [34–36]. In breast cancer patients, it has been
estimated that there is an approximately 4–16% relative increase in heart disease and/or major coronary
events for each 1 Gy in mean heart dose received [6,9,10]. A recent national multicenter NSCLC trial
and other single institution reviews have shown a correlation between early death and radiation dose
to the heart [12,14,19–22]. However, efforts towards severely limiting incidental heart dose could
potentially compromise RT’s effectiveness in treating tumors in patients with mediastinal lymphomas,
thymomas, and breast, lung, or esophageal cancers [7].

Thus, there is a need for understanding the mechanisms by which radiation causes cardiovascular
disease, and potentially providing targeted interventions that prevent or reverse RIHD while
maintaining optimal radiation doses to the target(s) for maximum tumor control. There are several
preclinical studies that aim to elucidate the molecular and cellular mechanisms of RIHD (reviewed
in [37,38]). However, translating the biological mechanisms involved in the normal tissue radiation
response into therapeutic targets in patients remains a critical challenge given the current limitations
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of preclinical models in accurately characterizing all facets of human disease. Developing preclinical
models of RT with improved representation of human physiology, as well as appropriate modeling of
current radiation delivery in the clinic will contribute to overcoming this challenge.

2. Small Animal Radiotherapy Delivery

2.1. Target Volume and Methods of Radiation Delivery in Preclinical Studies of RIHD

Small animal models have been used to study cardiac radiation toxicity for many decades [39–41]
based on the physiological similarities of these models to humans [42]. In these models, many current
treatment paradigms exist to study RIHD, including whole thorax, whole heart, and partial heart
irradiation (Figure 2). Whole thorax irradiation is a method used extensively in the past [43–46], as it
does not require precise image guidance during radiation delivery. Unfortunately, when irradiating the
whole thorax, damage occurs not only to the heart, but also the lungs, a dose limiting organ, thereby
increasing morbidity and mortality and making it difficult to distinguish whether the resulting damage
is from heart or lung irradiation alone, or due to irradiation of both the heart and lungs [45,47] (see
also Section 2.3). Modern thoracic RT techniques aim to shield the heart and other organs at risk.
However, more advanced techniques and modalities such as intensity-modulated radiation therapy
(IMRT) and proton therapy have not been extensively explored in detail in pre-clinical normal tissue
toxicity models, although modern small animal irradiators can allow for arc therapy and this technique
is beginning to be utilized in pre-clinical models [48].
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Figure 2. Small animal irradiation techniques allow a wide variety of cardiac and pulmonary exposures
and a number of delivery methods. Schematic illustrations of radiation field options that are commonly
used to deliver cardiac radiation (top panel), and methods of radiation delivery (bottom panel) in small
animal models of radiation-induced heart dysfunction (RIHD).

Whole heart irradiation has been a relatively new technique to deliver radiation in preclinical
models. This technique requires imaging, such as fluoroscopy, x-ray or cone beam computed
tomography (CBCT), to accurately deliver radiation to the heart using beam sizes that are mainly
focused on the heart, thus limiting lung doses [49–52]. The use of image-guidance aims to irradiate
smaller target volumes with improved accuracy. Currently, two systems to perform CBCT-guided
image-guided local irradiation of small experimental animals are commercially available, which can
provide accuracy that is similar to clinical RT: the Small Animal Radiotherapy Research Platform
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(SARRP, Xstrahl) and the X-Rad SmART research platform (Precision X-ray) [53]. In addition,
several other non-commercial systems have been developed to deliver localized, image-guided
radiotherapy [51,54–59]. These image guided systems are conformal systems (i.e., have multiple beam
angles), which allow the systems to deliver high doses to small, targeted regions [54,60] and aim to
mimic clinical RT devices (Figure 2).

Research groups that do not have access to image-guided radiation delivery platforms rely on
lead shielding to target the heart while aiming to reduce the radiation dose to surrounding normal
tissues (Figure 2) [61,62]. In addition to decreased accuracy of targeting the heart and non-uniform
radiation delivery from inability to account for differences in heart/thorax sizes between animals, this
technique may also be less clinically relevant by delivering the radiation in only one or two fields [54].
Bazolava et al. have shown that the conformal systems, when compared to single-field irradiation
without image-guidance, result in lower mean dose to tissues nearby the target region [54]. In a
simulation of treatment plans for a mouse model bearing a lung tumor, they also showed that the mean
dose to heart and the contralateral lung were lower when using a conformal, imagine-guided system
to deliver radiation to the tumor, compared to single-field, non-image guided irradiation [54,62]. Other
groups have also shown similar benefits of using image-guided, conformal radiation systems to target
small areas like the heart [51,53,60,63].

Clinically, patients receiving thoracic RT often receive radiation to only part of the heart, instead
of a fairly uniform radiation dose to the whole heart. While preclinical studies using whole heart
irradiation have advanced our knowledge of RIHD and contributed to the mechanistic understanding
of normal tissue radiation injury, whole heart radiation might not completely represent the clinical
pathophysiology spectrum of RIHD [64–67]. Lee et al. showed that partial heart irradiation of 1/3 of
the mouse left ventricle causes left ventricular dilation and increased fibrosis in the myocardium and
pericardium, whereas the same phenotype is not observed with whole heart irradiation [66]. Lee et al.
showed that partial heart irradiation of 1/3 of the mouse left ventricle causes left ventricular dilation
and increased fibrosis in the myocardium and pericardium [67], whereas the same phenotype is not
observed with whole heart irradiation [68]. The minimal fibrosis observed with the whole heart RT may
be attributed to the rapid progression of myocardial necrosis and heart failure post-RT. The histological
features of myocardial fibrosis and pericarditis seen in the partial-heart irradiation model seemed to
mimic the changes observed in humans [67,69]. Moreover, numerous studies have shown relationships
between the severity or specific pathophysiology of RIHD and the substructures of the heart receiving
high doses of radiation [17,25,64,70–72]. While in previous clinical studies, mean heart dose was
related to the likelihood of RIHD [12], and the risk of major coronary events in breast cancer patients
increased linearly by approximately 4–16% for each 1 Gy in mean heart dose received [6,9,10], other
studies have shown that dose to the coronary arteries may also be an indicator of risk of developing
coronary artery stenosis, an important aspect of RIHD [73]. Thus, there is a need for irradiation of
small segments of the heart in pre-clinical models, which may include key sections of coronary arteries,
to accurately predict risk factors and successfully develop interventions in RIHD [64,74–78]. Partial
heart irradiation in small animals may also be used to elucidate ways in which high-dose radiation
treatment of segments of the heart can decrease ventricular tachycardia events in patients [79].

Partial heart irradiation in small animal models presents a myriad of potential technical obstacles
that must be considered. For example, even with the advanced and widely available imaging
modalities in clinics, researchers have found it difficult to delineate subregions of the heart based
upon CT, especially non-contrast CT, which is the most widely used imaging modality for treatment
planning [64]. The small size of experimental animal hearts makes precise identification of cardiac
substructures in CT scans even more difficult than in the clinic. Moreover, the heart’s motion during
respiratory and cardiac cycles as well as the complex anatomy and variability of the coronary vessels,
adds to the challenges of standardizing subregion borders [11,64]. Newer imaging techniques like
magnetic resonance imaging (MRI) might help overcome some of these challenges [80], but its use in
RT treatment planning is limited clinically, and nearly absent in preclinical studies [64]. Furthermore,
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deep breath holding techniques or respiratory gating have been used clinically to decrease radiation
dose to the heart [29,81], and similar techniques could potentially be useful for motion management in
animals during precise heart and lung irradiation. However, since small animals will not hold their
breath voluntarily and free-breathing gated treatment requires complex oversight during treatment
administration, there are numerous technical challenges in using breath hold and other gating technique
in preclinical studies. Overall, the cost, availability of advanced imaging modalities and software, and
technical challenges in animal positioning, are some major limitations in 3D dose-volume mapping in
small animals. After RT delivery, there are many methods available to obtain anatomic and physiologic
information regarding cardiac function in preclinical studies. These include non-invasive methods
such as echocardiogram, MRI, micro-CT, single-photon emission computerized tomography (SPECT),
and positron emission tomography (PET) [67]. While imaging post-RT provides meaningful data in
understanding how RT affects heart function, improved techniques to image while administering RT
are greatly needed to improve the field of precise cardiac RT delivery.

2.2. Inconsistencies in Radiation Dose Delivery

Small animal radiation delivery to the whole heart or regions of the heart and/or lung, requires
careful planning of dose distribution [82,83]. However, no standards have been followed for the
performance and reporting of radiation dosimetry in small animal studies, which has made it
difficult to reproduce previously published results [84]. In 2011, members of the Centers for Medical
Countermeasures against Radiation (CMCR) outlined specific issues related to small animal irradiator
calibration and dosimetry, in order to highlight the importance of “accurate and reproducible dosimetry”
in preclinical radiobiology studies [85]. Gafchromic film dosimetry can be a valuable tool for
characterization of small kV radiation beams [86]. However, even if the incident radiation field on a
given animal is accurately assessed and uniform, the true delivered dose to the target volume will vary
based on the incident radiation energy, the atomic number of the radiation source, and density of the
tissue (e.g., lung, bone, soft-tissue) [85]. This effect can be difficult to measure and could potentially be
overlooked depending on the geometry of the radiation field and the study goals. However, given the
close interaction between the heart and lungs in the pathophysiology of radiation-induced toxicities
(see also Section 2.3), and major differences in their tissue densities, these factors might be worth
accounting for in preclinical studies that are aimed at isolating the effects within individual organs.
For experiments where the exact absorbed dose is important to assess, researchers have developed
microdosimetry techniques that allow calculation of non-homogeneous dose-distribution [87–89].
Additionally, in an effort to account for tissue-density based factors, groups have used Monte Carlo
and image-based models to calculate absorbed dose [90–92].

Respiratory motion also adds complexity to the accurate delivery of thoracic RT. Studies have
reported in mice a degree of motion in the order of 5 mm, and likely to be greater in rats [45,93]. The
Verhaegen group performed a quantitative analysis of the impact of respiratory motion on a mouse
lung tumor irradiation using a four-dimensional digital mouse whole body phantom. They reported
respiratory motion resulted in an overestimation of a mean tumor dose of up to 11%, depending upon
the placement of the tumor [94]. Similar errors in dose delivery may be expected in studies aiming to
irradiate precise areas of normal tissues. Considering the heart in the context of respiration motion,
radiation dose to the portions of the heart could either be overestimated or underestimated, as the
heart moves in and out of the radiation field (see also Section 2.1). Therefore, respiratory motion is an
important factor in considering treatment plans and improving clinical models. Efforts are underway
to implement motion management or respiration gating in small animal RT [95,96], and temporary
abdominal or chest compression may help to limit breathing motion in some small animals [97].

2.3. Cardiopulmonary Tissue Toxicity from RT

In addition to the heart, the lungs are also at risk of developing short- and long-term injuries after
exposure to ionizing radiation [98–100]. In the pathogenesis of radiation-induced lung injury, several



Cancers 2020, 12, 415 6 of 22

phases are recognized [100]. An early inflammatory phase is followed by the gradual development of
radiation fibrosis and loss of lung function. Interestingly, studies in small animal models to determine
mechanisms of radiation-induced lung injury face challenges similar to the ones described here for the
heart [45]. The group of Coppes et al. have studied the interaction between lung and heart radiation
injury by using proton beams to precisely irradiate the rat heart, alone or in combination with various
volumes of the lung. The tolerance dose for loss of lung function was dependent upon the concomitant
irradiation of the heart [101–103]. Conversely, manifestations of RIHD were more severe when both
heart and lungs were exposed [66], and echocardiography after whole thorax or leg-out partial body
irradiation revealed changes, including evidence of right-sided heart dysfunction, during periods
when radiation pneumonitis was occurring [104,105]. Human studies have also suggested that both
heart and lung doses can influence the development of cardiac and/or lung toxicities [14,106–108].
Thus, given the growing evidence that suggests that RIHD is linked to radiation-induced lung disease
and/or lung doses received, it is important for researchers interested in understanding radiation injury
in either organ alone to be aware of and control the dose volume to both the heart and lungs [65].

3. Models to Study Cardiac Radiation Toxicities: Animal Species, Strain, and Genotype

3.1. Animal Species Used in Preclinical Studies of RIHD

Historically, a number of pre-characterized mouse and rat models of cardiovascular disease have
become available and used on a wide scale. The low maintenance and housing costs, gestational
time and lifespan, and suitability for genetic selection and transgenic strain production, make rodents
excellent models for proof-of-concept studies (Table 1). While rodent models are practical and
provide us with critical insight into mechanisms by which radiation may injure the cardiovascular
system, they do have some disadvantages. They are phylogenetically distant from humans, may
have different physiologies and pathophysiologies, and can respond differently to pharmaceutical
therapies [109–112]. However, many features of RIHD can be modeled in rodents, and much has been
learned regarding the proteins and pathways involved in radiation-induced cardiotoxicity from these
models [5,38]. Some of the limitations in rodents can be overcome by using rabbit models. Rabbits are
more physiologically similar to humans from a cardiovascular standpoint (e.g., ion channel and Ca2+

transporter function), and are medium-sized animals, serving as a practical alternative to larger-sized
animals [113]. Additionally, there are a myriad of transgenic rabbit models of cardiovascular disease,
as well as several commercially available rabbit-specific antibodies, thereby making rabbit studies
relatively feasible [113]. New Zealand White rabbits were first used by Fajardo and Stewart in 1968 to
study RIHD [40]. The researchers concluded that the cardiac lesions developed in rabbit hearts after
single dose x-ray exposure resembled the lesions seen in humans [40]. Rabbits have since only been
used by a few researchers to study RIHD [41,114–118], although this species is commonly used to
study cardiovascular disease from other causes [119–125]. There might be unique benefits to studying
electrophysiological changes caused by radiation in rabbit models over rat models, as the rabbits’ Ca2+

transport, action potential duration, and main ionic currents underlying repolarization are similar to
humans [113,126,127].
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Table 1. Comparison of the main characteristics, advantages, and disadvantages of different animal species used in the study of RIHD. Items are ranked from highly
optimal (++++) to less optimal (+).

Animal
Model

Cost (Maintenance
and Housing)

Gestational
Time

Ease of Genetic
Manipulation

Similarity of
Cardiovascular

System to Humans
Major Advantages Major Disadvantages

Rodents ++++ ++++ ++++ +

Widely used, many genetically engineered
and validated strains, can be humanized
(immune system), useful for elucidating

specific mechanisms of action.

Phylogenetically distant from humans, may
respond differently to pharmaceutical

therapies, have some differences
physiology/pathophysiology from humans

(e.g., rapid heart rate).

Rabbits +++ +++ +++ ++

Cardiac Ca2+ transporter function and ion
channels are similar to humans, larger heart
size makes more amenable to surgical- and
catheter- based interventions, used in prior
RIHD studies and commonly used in other

cardiovascular studies.

Different physical dimensions of the heart,
heart rates, and body weights when

compared to humans (similar to rodents).

Canines ++ ++ ++ +++

More similar molecular mechanisms to
humans, more suited for drug screening and
toxicities, coronary circulation is similar to

older human hearts with ischemic heart
disease (high collateral circulation).

Unfavorable public opinion, complex
approval process, high regulation in

some countries.

Pigs ++ ++ ++ +++

More similar molecular mechanisms to
humans, more suited for drug screening and
toxicities, coronary circulation is similar to

younger human hearts, used heavily in
cardiovascular research.

Low throughput, long-duration of
studies, cost.

Non-Human
Primates + + + ++++

Most similar to humans phylogenetically,
anatomically, and physiologically.

Low throughput, long-duration of studies,
ethical considerations, cost, more difficult

and dangerous to work with.
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Despite the similarities in cardiovascular physiology between the rabbit and human, a major
disadvantage in using both rabbit and rodent models include difference in the physical dimensions
of the hearts, heart rates, and body weights when compared to humans. This might affect studies
looking at arrhythmias [113], an effect of cardiac radiation exposure that has received renewed interest
due to the use of radiation to treat ventricular tachycardia [79]. Additionally, certain molecular
mechanisms of drug responses in large animals such as dogs and non-human primates are more
similar to humans when compared to rodents, and thus may be better-suited for drug screening and
toxicities [128,129]. Even among the larger animals, different species offer differing benefits. For
example, models need to be selected carefully to address radiation-induced coronary alterations,
an important component of human RIHD that needs additional study [6,122–127]. The coronary
circulation of pigs is similar to young human hearts (e.g., no anastomoses between branches of the
vasculature), while the coronary circulation in dogs is more similar to older human hearts with
ischemic heart disease (highly collateralized circulation) [129–131]. These differences between species
are important to keep in mind [6,132–137]. Few groups have used canine models for understanding
the physiology of RIHD and for non-invasive imaging following local heart irradiation [138–142].
However, due to cultural values, unfavorable public opinion, more complex approval processes, and
tight regulations in some countries, the use of canine models have decreased over time [143–145].
Other large animals such as non-human primates and pigs have been used by a few groups to study
RIHD [146–148], but these are uncommon given the high cost and low throughput nature of large
animal models.

3.2. Influence of Strain on Manifestations of RIHD

In an effort to understand heritable genetic traits that could modify cardiac radiation sensitivity,
our group utilized Salt-Sensitive (SS) and Brown Norway (BN) strain consomic rats. The inbred SS rat
strain is more sensitive to RIHD than the inbred BN rat strain [49], as well as consomic SS.BN3 rats
(genetically identical to SS rats except for chromosome 3, which is substituted from the BN rats) [49].
These results demonstrated that the BN rat chromosome 3 contains one or more genetic variations that
play a protective role in the development of RIHD. These studies not only highlight the importance of
heritable factors in determining the sensitivity radiation-induced cardiotoxicity, but also highlight the
importance of selecting the proper rat strain for a particular research question [49]. Since studies in
this field of research have made use of different mouse and rat strains to study the biological effects of
cardiac irradiation [39,149,150], care must be taken when comparing outcomes from individual studies
using difference strains.

3.3. Use of Genetically Modified Animals to Study Biological Mechanisms of RIHD

Genetically engineered mouse models allow researchers to mechanistically examine the effects of
genetic changes on radiation damage in malignant and healthy tissue [151]. For example, researchers
have used ApoE-deficient mice that are prone to atherosclerosis to study changes in inflammation
and thrombosis following radiation delivery to the heart, aortic arch, and carotid arteries [152–155].
Lee et al. used mice with an endothelial cell-specific knock-out of p53 and p21 to understand the role
of endothelial cells and the p53 pathway in radiation-induced heart damage [68]. The researchers
used Cre-loxP technology to not only develop the p53-deficient mouse model, but also other mouse
models that are more prone to radiation-induced normal tissue injury (i.e., faster onset, more prominent
phenotype, etc.) [43,151] and models that are useful for studying cardiac damage following partial
heart irradiation [67]. These genetically engineered mouse models are crucial for elucidating the role
of specific signaling pathways and changes in the tissue microenvironment on RIHD, and the use of
such models is expected to increase dramatically over time [151].
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4. Preclinical Models to Study Cardiac Radiation Toxicities: Animal Age, Size,
Dose/Fractionation, and Sex

As discussed above, attention must be paid to the choice of animal species, strain, and genotype
when studying radiation-induced cardiotoxicity. However, studies show that additional variations
in parameters such as animal age, size, and sex may influence outcome. These variables need to be
accurately reported and considered in statistical analyses of results, as they may cause inconsistencies
in findings between experimental groups within a research project and between separate studies.
Radiation exposure at a young age has long been known to lead to more severe long-term normal
tissue radiation injury compared to radiation exposure in adults [156]. Mulrooney et al. reported
health outcomes in a cohort of just over 14,000 survivors of childhood and adolescent cancer and
found that this population was at substantial risk for cardiovascular disease, with a two- to six-fold
increased relative risk for coronary events in patients who had received >15 Gy to the heart compared
to non-irradiated survivors [157]. Moreover, the relative risk of cardiovascular events was reported up
to 60-fold higher in childhood cancer survivors that received a higher cardiac mean dose of >30 Gy
compared to patients who received either no RT or a dose to the heart of 0.1 Gy or less [158]. While
some studies report exposure at an older age may also be a risk factor for more severe normal tissue
toxicity [159,160], a rodent study reported increased mortality rates and incidence of RT pneumonitis
compared to geriatric rats after 13 Gy partial body irradiation [161]. Therefore, in preclinical research
it is important to treat animals at an age that is most appropriate for the clinical scenario that is
under investigation, which may also be dependent upon the sex and strain of the animal. However,
many preclinical studies use young or young adult animals, due in large part to reduce the costs of
the research.

A small number of clinical studies has addressed potential differences in the sensitivity to develop
normal tissue radiation injury between male and female patients, including in the cardiopulmonary
system [162–165]. Interestingly, as also described for preclinical animal models, an increased pulmonary
radiation toxicity in women compared to men may be at least in part related to a smaller total lung
volume in women and therefore a relatively larger percent volume of the female lung exposed to
radiation [166,167]. The vast majority of preclinical studies of RIHD have used either male or female
animals, and only few studies have included both sexes (examples include [49,168]). Because of the
observations of an influence of sex on normal tissue radiation injury in human subjects, and with the
increased call for studying both sexes in preclinical animal models, future studies should make direct
comparisons between male and female animals in radiation-induced cardiopulmonary injury.

A number of different dose and fractionation regimens have been utilized in preclinical studies
of RIHD. These range from single, large fractions of cardiac, to more clinically relevant fractionated
regimens. However, due to the time and cost required for image-guided radiation therapy and potential
anesthesia requirements of daily fractionated treatments, it may be difficult to model multi-week
treatments using small fractions similar to commonly used clinical regimens (i.e., 1.8–2.7 Gy daily).
Thus, a number of studies utilize larger daily fractions for more limited time periods, such as cardiac
exposures to 9 Gy for five daily treatments [49,169].

5. Studying Cardiac Toxicity from Combined Cancer Therapies

Many cancer patients who receive RT as part of their treatment plan often also undergo surgery,
chemotherapy, hormonal therapy, and/or immunotherapy. Numerous chemotherapy agents commonly
used to treat thoracic cancers (e.g., doxorubicin) have been shown to cause cardiac toxicities on their
own [170]. Whole heart x-ray exposure and Adriamycin (doxorubicin) have synergistic effects on heart
toxicity in a New Zealand White rabbit model [171]. Therefore, additional cardioprotective measures
might need to be taken prior to treatment or after therapy with radiation and anthracyclines. The
cardiac effects of the combination of radiation with other anti-cancer agents are less commonly studied.
For instance, while whole heart x-rays in combination with a tyrosine kinase inhibitor in rats may have
more severe effects on cardiac mitochondrial structure than each of the treatments alone, long-term
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effects on cardiac function with these therapies are not yet known [169]. As more and more patients
receive multiple and more diverse personalized therapies, further studies need to be conducted to
study how multiple therapies interact to cause short- and long-term cardiovascular effects. In studying
such combined therapies in animal models, one has to be careful in determining clinically relevant
treatment doses and optimizing the order of the treatments and the time between the therapies.

5.1. Influence of Anesthesia on the Study of Combined Cancer Therapies

Experimental animals are often anesthetized prior to targeted radiation of the heart. However,
the myocardial depressant effects of many anesthetics could potentially increase the severity of
cardiotoxicity from chemotherapy, and possibly even radiation [172]. Additionally, anesthesia has been
shown to reduce proliferation rates of natural killer cells and T-cells in rats and humans, which could
potentially alter the effects of combining radiation and immunotherapy [173,174]. Thus, appropriate
controls are necessary for understanding the effects of experimental conditions such as anesthesia.

5.2. Radiation Therapy and the Immune Response

The immune system has crucial housekeeping functions in the heart [175]. In some circumstances,
such as after an infection or myocardial infarction, the immune system mediates healing and removal
of dead tissue [175]. However, immune responses can also cause adverse tissue remodeling and
irreversible damage [175,176]. For example, inflammation leads to induction of programmed death
ligand 1 (PD-L1) in cardiac endothelial cells, which seems to protect the myocardium from cytotoxic
T-lymphocyte-mediated cardiac injury [177]. Programmed death protein 1 (PD-1)-deficient mice
develop autoimmune-mediated cardiomyopathy, but the development of cardiac disease is dependent
upon the genetic background of the mouse model [177,178]. Thus, careful selection of animal
strain and genetic background is crucial for accurate modeling of immune responses. These known
roles of the PD-L1 pathway in adverse cardiac remodeling are also of significance in immune
checkpoint inhibitor therapy. Ionizing radiation activates the anticancer immune response by exposing
tumor-specific antigens and increasing tumor immunogenicity [179]. Moreover, it leads to the release of
damage-associated molecular signals (including ATP, reactive oxygen species, heat shock proteins, and
short DNA/RNA) following radiation-induced cell damage. These triggers mediate inflammation and
innate immune responses [177,180]. Therefore, the combination of radiation with immune checkpoint
inhibitors has increased anti-cancer response rates in preclinical and clinical studies. However, this
combined treatment could also potentially have an adverse impact on normal tissues [181–185].

Du et al. studied RIHD in conjunction with inhibition of PD-1. C57BL/6 mice were given
image-guided whole heart irradiation concurrently with PD-1 blockade. Increased mortality and
cardiac dysfunction (illustrated by reduced ejection fraction) were observed in mice receiving cardiac
RT with PD-1 blockade versus mice that only received RT [185]. Myers and Lu treated C57BL/6 mice
with whole thorax irradiation in combination with an anti-PD-1 antibody and also observed reduced
survival and increased numbers of T-cells in lung and heart compared to radiation alone [186]. These
studies have shown that radiation-induced cardiac toxicity can be altered by PD-1 through cytotoxic
T lymphocytes and suggest that PD-1 blockade should be administered with purposeful cardiac RT
planning to ensure both positive treatment outcome and patient safety.

Although inbred mouse strains such as C57BL/6 mice have been widely used in anti-tumor and
immunology studies, they have highly variable immune responses, and do not accurately mimic
the human immune system [187]. Sanmamed et al. reviewed the benefits and shortcomings of
various murine models for studying immune checkpoint inhibitors. The murine models that currently
are closest to mimicking the human immune system are humanized mouse models, which have
the most promise in testing the antitumor effects in immunotherapy strategies [188]. Humanized
mouse models are developed using genetic, tissue, or environmental engineering methods, and have
many immunologic factors that resemble humans [189]. However, the utility of a given model for
studying RIHD is dependent on the method and type of immune engraftment. For example, CB-17-scid,
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NOD-scid, and NOG mice are highly suitable for oncological studies but have a low tolerance to
radiation [190]. In studying normal tissue radiation toxicities in these mouse models, radiation doses
may have to be reduced to obtain the same normal tissue pathologies as in common wild-type mice.
Additionally, human microbiota have been shown to play a crucial role in the efficacy of cancer
therapies and development of the host immune system [191–194]. While designing preclinical studies
for combination therapies, particularly ones that require human immune responses, consideration
of the immune population within humanized mice, differences in responses between inbred mice
and humans, microbiota differences in animal models, and normal tissue radiation sensitivity should
be considered.

5.3. Influence of Environmental Factors on Radiation Therapy

In addition to chemotherapy influencing RT responses and possible potentiation of side effects, a
number lifestyle factors and environmental exposures may also alter RT side effects, yet preclinical
studies to investigate these effects are thus far limited. For example, the effects of cigarette smoking
during chemotherapy and/or RT revealed increased symptom burden compared to nonsmokers,
including weight loss, skin problems, and nausea, in patients being treated for a number of different
types of cancer [195]. In addition, studies have suggested that head and neck cancer patients who smoke
during RT have lower rates of response and survival compared to patients that do not smoke [196].
The effects of smoking on cardiac RT sensitivity has not been well-studied, with little to no pre-clinical
data reported.

Another environmental factor that may impact RT sensitivity is exercise, and exercise-oncology
is an emerging area of interest as cancer therapy becomes more personalized. Again, clinical and
preclinical studies to study this interaction are severely limited. Clinically, cardiorespiratory fitness was
assessed following thoracic RT in breast or lung cancer patients that received significant heart exposure
(>10% heart volume receiving 5 Gy). Patients displayed a dose-dependent relation between cardiac
dose received and impairment in peak oxygen consumption, a marker of impaired cardiovascular
reserve [197]. Exercise has also been reported to change redox signaling in cancer, as well as drive
changes in immune system response, metabolism, and inflammation [198]. Because of the high level of
redox signaling in the mitochondria and heart, a direct study to determine whether exercise influences
cardiac sensitivity to RT would be valuable in the field regarding during cancer treatment as well as
patient quality of life post-RT. Finally, diet has been implicated in affecting many diseases including
heart disease and cancer. A preclinical study revealed fasting reduced intestinal radiotoxicity using
C57BL/6J mice, assessed by fasting improved intestinal stem cell regeneration and improved survival
to lethal doses of abdominal RT [199]. Musa and Shabeeb reported natural products may have a
potential for protection against RIHD, reviewing products such as hesperidin, curcumin, melatonin,
zingerone, and Shen-Mai San (SMS), where SMS is examined in a clinical trial for cancer patients
receiving chemotherapy or RT (NCT01580358) [200]. Overall, there are currently limited published
preclinical as well as clinical studies that investigate whether lifestyle factors affect incidence of RIHD.

6. Conclusions

Advances in the delivery of thoracic radiation therapy in preclinical models have translated
into improved outcomes for cancer patients receiving RT. In return, advances in the clinic including
image-guided irradiation have been implemented in research laboratories to further drive discoveries in
the fields of cancer radiation therapy and normal tissue radiation toxicity. With current advancements
in imaging, radiation delivery, and radiation dosimetry in preclinical research, we now have an
opportunity to build our understanding of the normal tissue radiation response by improving the
setup and dose distribution to better mimic clinical therapy. However, in each pre-clinical study this
needs to be done with careful radiation dosimetry and reporting of the experimental setup to promote
reproducibility. Lastly, understanding the differences and limitations of thoracic RT in preclinical
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models across research labs will aid in the proper interpretation of results and elucidation of pathways
and mechanisms of radiation-induced cardiopulmonary damage.
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