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Background: Almost every patient with lung cancer has multiple pulmonary nodules; however, the 
significance of nodule multiplicity in locally advanced non-small cell lung cancer (NSCLC) remains unclear.
Methods: We identified patients who had undergone surgical resection for stage I–III NSCLC at the 
Peking University People’s Hospital from 2005 to 2018 for whom preoperative chest computed tomography 
(CT) scans were available. Deep learning-based artificial intelligence (AI) algorithms using convolutional 
neural networks (CNN) were applied to detect and classify pulmonary nodules (PNs). Maximally selected 
log-rank statistics were used to determine the optimal cutoff value of the total nodule number (TNN) for 
predicting survival.
Results: A total of 33,410 PNs were detected by AI among the 2,126 participants. The median TNN 
detected per person was 12 [interquartile range (IQR) 7–20]. It was revealed that AI-detected TNN (analyzed 
as a continuous variable) was an independent prognostic factor for both recurrence-free survival (RFS) [hazard 
ratio (HR) 1.012, 95% confidence interval (CI): 1.002 to 1.022, P=0.021] and overall survival (OS) (HR 1.013, 
95% CI: 1.002 to 1.025, P=0.021) in multivariate analyses of the stage III cohort. In contrast, AI-detected 
TNN was not significantly associated with survival in the stage I and II cohorts. In a survival tree analysis, 
rather than using traditional IIIA and IIIB classifications, the model grouped cases according to AI-detected 
TNN (lower vs. higher: log-rank P<0.001), which led to a more effective determination of survival rates in 
the stage III cohort.
Conclusions: The AI-detected TNN is significantly associated with survival rates in patients with 
surgically resected stage III NSCLC. A lower TNN detected on preoperative CT scans indicates a better 
prognosis for patients who have undergone complete surgical resection.
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Introduction

Lung cancer is a leading cause of cancer-related death 
worldwide (1). As early detection of cancer is important for 
decreasing mortality, multiple randomized trials and guidelines 
recommend lung cancer screening using low-dose computed 
tomography (LDCT) for high-risk individuals (2-7). With the 
adoption of LDCT for lung cancer screening, the number 
of chest CT scans has increased dramatically each year (8). 
To address the repetitive and onerous task of dealing with 
images that are mostly normal, computer-aided detection/
diagnosis (CAD), which could perform the task consistently 
and tirelessly, has become extremely appealing (9).

Since 2002, CAD, supported by machine learning 
techniques, has been utilized to detect pulmonary nodules 
(PNs) (10). Although standardized CAD systems have 
been shown to improve diagnostic accuracy, few have been 
implemented in actual clinical practice due to their high 
dependence on image processing and false positive rates 
(11,12). In recent years, deep learning-based AI algorithms 
using convolutional neural networks (CNNs) have attracted 
considerable attention in the area of machine learning. 
The key advantage that CNNs have over conventional 
CAD techniques is their ability to self-learn previously 
unknown features, maximizing classification accuracy with 
limited direct supervision (13). The use of CNNs has led 
to a significant reduction in false positives in PN detection, 
recognition, segmentation, and classification (14-19), thus 
laying the foundation for the extensive clinical application of 
deep learning-based AI algorithms. The first deep learning-
based AI algorithm for PN detection approved by the 
United States Food and Drug Administration (FDA) was 
used to guarantee PN detection performance in this study. 
Compared with AI algorithms reported in proof-of-concept 
studies, its robustness and generalizability have been widely 
validated in multiple medical centers and proven valuable 
in enhancing imaging report standardization and improving 
clinical workflow (20-22).

The key issue in the management of incidental PNs 
detected on CT images is to differentiate between benign 
and malignant nodules. Radiological features, such as larger 
nodule size, upper lobe location, marginal spiculation, and 
faster growth rate are generally considered risk factors 
for malignancy (23-28). These principles mainly focus on 
the assessment of the largest or most suspicious nodule. 
However, although approximately 50% of the patients 
with detected PNs have multiple nodules (29), nodule 
multiplicity, which is a potential indicator for malignancy, 

is commonly overlooked. Only limited data concerning the 
relationship between TNN and lung cancer probability are 
available. In the Pan-Canadian Early Detection of Lung 
Cancer Study (PanCan) and the British Columbia Cancer 
Agency (BCCA) cancer screening trials, lower TNN 
was associated with an increased risk of lung cancer (23). 
However, another study analyzing patients from the Dutch-
Belgian Lung Cancer Screening trial (NELSON) showed 
that the risk of lung cancer increased as the TNN rose from 
1 to 4 but decreased in patients with 5 or more nodules (29).

The results of the abovementioned screening trials 
indicated that TNN was either negatively or not significantly 
associated with lung cancer probability, which might 
reflect a low incidence of multiple malignancies in the 
screening population (30). However, for patients with a 
high pretest probability of malignancy, it remains unknown 
whether TNN plays a role in (I) determining lung cancer 
probability with multiple pulmonary sites of involvement, (II) 
distinguishing multiple primary lung cancers (MPLC) from 
intrapulmonary metastasis (IPM), and (III) prognosis. This 
study aimed to calculate the TNN detected on preoperative 
CT images using a CNN-based AI algorithm and to deeply 
explore the relationship between AI-detected TNN and 
survival outcomes in patients with resectable stage I–III 
NSCLC. We report the following article in accordance with 
the Transparent Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis (TRIPOD) 
statement checklist (available at https://atm.amegroups.com/
article/view/10.21037/atm-21-3231/rc).

Methods

Patients

We retrospectively reviewed the medical records of 
patients pathologically diagnosed with stage I–III 
NSCLC [according to the 8th edition of the American 
Joint Committee on Cancer (AJCC) prognostic group] 
who had undergone surgical resection at the Department 
of Thoracic Surgery at the Peking University People’s 
Hospital  from October 2005 to December 2018. 
Only patients who received a preoperative chest CT 
scan within 90 days prior to surgery at the institution 
were included. Patients were excluded if 1 or more 
of the following conditions were met: (I) had already 
received neoadjuvant therapy, (II) surgical margin 
was positive, (III) perioperative death occurred within  
30 days, or (IV) the follow-up information was inadequate.

https://atm.amegroups.com/article/view/10.21037/atm-21-3231/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/rc
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Routine follow-up after the surgical intervention included 
an outpatient department visit every 3 months for the first  
2 years and at 6-month intervals thereafter. For patients who 
failed to present at the clinic, follow-up information was 
collected via telephone call. We diagnosed recurrence based 
on physical and imaging examinations and confirmed the 
diagnosis histologically when clinically feasible. Secondary 
primary lung cancer was differentiated from intrapulmonary 
metastases using either the Martini-Melamed criteria or a 
comprehensive histological assessment (31).

AI-powered PN detection

InferRead CT Lung (https://global.infervision.com/
product/30.html), a widely used deep learning-based AI 
algorithm developed by InferVision (Beijing, China), 
was applied for PN detection in this study, and only the 
patient’s last chest CT scan before surgery was used. First, 
PNs were detected by the AI algorithm, and the TNN 
was calculated accordingly. Next, PNs were classified 
according to their lobar distribution (left lower lobe, left 
upper lobe, right lower lobe, right middle lobe, and right 
upper lobe), location [same lobe as the primary tumor 
(same-lobe), ipsilateral lobe different from the primary 
tumor (same-side), and contralateral lobe (other-side)], and 
type [solid nodule, mixed ground-glass nodule (m-GGN), 
pure ground-glass nodule (p-GGN), calcific nodule, and 
perifissural nodule]. In addition, solid and subsolid (m-GGN 
and p-GGN) nodules were categorized based on their size.

Statistical analysis

Continuous variables were presented as a median with 
an interquartile range (IQR) and were analyzed using 
Wilcoxon’s rank-sum test and one-way analysis of variance 
(ANOVA). Categorical variables were presented as 
frequencies and percentages. Survival curves were compared 
using the Kaplan-Meier method with a log-rank test, and 
Cox proportional hazards models were constructed to 
determine the independent prognostic factors.

In the stage III cohort, maximally selected log-rank 
statistics were used to determine the optimal nodule number 
cutoff value for predicting OS. Patients were then categorized 
into lower- and higher-nodule number groups according 
to the estimated cutoff value. Furthermore, a least absolute 
shrinkage and selection operator (LASSO)-based Cox 
regression model with cross-validation was used to select the 
most useful prognostic features among all categories of the 

AI-detected nodule numbers. Finally, survival tree analysis 
was conducted to generate a tree-based model for survival 
data using log-rank test statistics for recursive partitioning.

All the statistical analyses were executed using R 
version 4.0.0 for Windows (R Foundation for Statistical 
Computing, Vienna, Austria). All the statistical tests were 
2-sided, and P values of 0.05 or less were considered 
statistically significant.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
involving human participants was reviewed and approved 
by the Institutional Review Board of Peking University 
People’s Hospital (2020PHB385-01). Individual consent for 
this retrospective analysis was waived.

Results

Characteristics of participants and nodules

A total of 2,126 patients who underwent surgical resection 
for stage I–III NSCLC and had accessible preoperative 
chest CT scans were included in this study. The median 
follow-up time was 33 months (IQR, 21 to 48). The 
demographic and clinicopathological characteristics of the 
patients are summarized in Table 1.

The framework of the deep learning-powered PN 
detection algorithm and an example of 3-dimensional (3D) 
reconstruction of the AI-detected nodules are shown in 
Figure 1A,1B. A total of 33,410 PNs were detected in the 
2,126 patients. The features of these AI-detected nodules 
are provided in Table 2. The distributions of AI-detected 
TNN, solid nodule number, and subsolid nodule number 
per person were all positively skewed, and the medians of 
these 3 factors were 12 (IQR, 7 to 20), 6 (IQR, 3 to 10), and 
3 (IQR, 1 to 6), respectively (Figure 2A-2C).

When considering discrepancies in nodule numbers 
among the different stages, we found that there was no 
statistically significant difference between the mean TNNs 
(one-way ANOVA P=0.655). However, the mean solid 
nodule numbers were significantly higher in participants 
with stage II and III, while the mean subsolid nodule 
numbers were higher in those with stage I (both P<0.001, 
Figure 2D-2F). Moreover, patients with late-stage cancer 
tended to have more solid nodules with greater size  
(Figure S1).

https://cdn.amegroups.cn/static/public/ATM-21-3231-Supplementary.pdf
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Table 1 Characteristics of the participant cohort (N=2,126)

Variables Value

Age (years)

Median [IQR] 61 [54–68]

Gender

Male 998 (46.9%)

Female 1,128 (53.1%)

Smoking history

No 1,456 (68.5%)

Yes 670 (31.5%)

Comorbidity

No 850 (40.0%)

Yes 1,276 (60.0%)

Surgical approach

VATS 1,997 (93.9%)

VATS converted to open 61 (2.9%)

Open 68 (3.2%)

Surgical procedure

Sublobar resection 636 (29.9%)

Lobectomy 1,419 (66.8%)

Sleeve lobectomy 39 (1.8%)

Pneumonectomy 32 (1.5%)

Histologic type

Adenocarcinoma 1,780 (83.7%)

Squamous cell carcinoma 280 (13.2%)

Others 66 (3.1%)

Pathologic T stage

T1 1,383 (65.1%)

T2 579 (27.2%)

T3 115 (5.4%)

T4 49 (2.3%)

Pathologic N stage

N0 1,765 (83.0%)

N1 145 (6.8%)

N2 216 (10.2%)

Table 1 (continued)

Table 1 (continued)

Variables Value

AJCC stage (8th edition)

IA1 499 (23.5%)

IA2 515 (24.2%)

IA3 265 (12.5%)

IB 347 (16.3%)

IIA 53 (2.5%)

IIB 184 (8.7%)

IIIA 213 (10.0%)

IIIB 50 (2.3%)

Complications

No 2,038 (95.9%)

Yes 88 (4.1%)

Adjuvant therapy

No 1,294 (60.9%)

Yes 445 (20.9%)

Unknown 387 (18.2%)

IQR, interquartile range; VATS, video-assisted thoracoscopic 
surgery; AJCC, American Joint Committee on Cancer.

Survival analyses

We analyzed the survival of participants by stage 
according to the 8th edition of the AJCC prognostic group  
(Figure 3A,3B). The differences in both recurrence-free 
survival (RFS) and overall survival (OS) between any 2 
stages were statistically significant (pairwise comparison 
P<0.001). Cox proportional hazards models were then built 
to determine the prognostic factors of the entire cohort 
(Table S1). The TNN was not an independent prognostic 
factor for either RFS (HR 1.006, 95% CI: 0.999 to 1.012, 
P=0.080) or OS (HR 1.002, 95% CI: 0.995 to 1.009, 
P=0.590) after adjusting for clinicopathological variables.

Subgroup analyses stratified by stage showed that 
the TNN was not significantly associated with survival 
for patients with stage I (RFS: HR 1.010, 95% CI: 
0.998 to 1.022, P=0.102; OS: HR 1.003, 95% CI: 
0.989 to 1.017, P=0.689) and stage II cancer (RFS: HR 
1.000, 95% CI: 0.988 to 1.013, P=0.973; OS: HR 1.000, 
95% CI: 0.989 to 1.012, P=0.965). However, in the stage 
III cohort, lower TNN was independently associated with 
improved survival in multivariate analyses (RFS: HR 1.012, 

https://cdn.amegroups.cn/static/public/ATM-21-3231-Supplementary.pdf
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Figure 1 The framework of the deep learning-powered pulmonary nodule detection algorithm and an example of the three-dimensional (3D) 
reconstruction of AI-detected nodules with corresponding CT images under the lung window setting. (A) Feature maps were extracted using 
CNN. An RPN was used to obtain potential regions from the extracted features. After ROI pooling and fully connected layers, nodules were 
detected with rectangular proposals. (B) Seven nodules were detected using the AI algorithm, including 1 solid nodule (#5), 2 mixed GGNs 
(#4, #7), and 4 pure GGNs (#1, #2, #3, #6). AI, artificial intelligence; RPN, regional proposal network; ROI, region of interest; TNN, total 
nodule number; CNN, convolutional neural network; GGN, ground-glass nodule.

95% CI: 1.002 to 1.022, P=0.021; OS: HR 1.013, 95% CI: 
1.002 to 1.025, P=0.021) (Tables 3,4).

Exploratory analyses in the stage III cohort

To further evaluate the prognostic effect of the AI-detected 
TNN, we used maximally selected log-rank statistics to 
categorize patients into lower- and higher-TNN groups. 
The optimal cutoff value of 8 was selected (Figure S2). 
Participants with a lower TNN (≤8) had significantly 
improved OS (log-rank P<0.001, Figure 4A) compared 
with those with a higher TNN (>8). Lower TNN was also 
an independent favorable predictor for OS in multivariate 

analyses (HR 2.348, 95% CI: 1.351 to 4.082, P=0.002).
To assess which of the components were associated with 

survival, we classified AI-detected nodules into different 
categories. When analyzed as continuous variables, the 
numbers of upper-lobe nodule (HR 1.028, 95% CI: 
1.008 to 1.049, P=0.006), same-side nodule (HR 1.032, 
95% CI: 1.001 to 1.064, P=0.046), other-side nodule (HR 
1.020, 95% CI: 1.001 to 1.039, P=0.040), solid nodule 
(HR 1.020, 95% CI: 1.004 to 1.036, P=0.012), and even 
solid nodule at small size (≤6 mm) (HR 1.027, 95% CI: 
1.007 to 1.047, P=0.008) were independently associated 
with OS in multivariate analyses. However, none of the 
numbers of the middle/lower-lobe nodule (HR 1.016, 95% 
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CI: 0.994 to 1.039, P=0.153), same-lobe nodule (HR 1.021, 
95% CI: 0.986 to 1.056, P=0.246), m-GGN (HR 1.104, 
95% CI: 0.885 to 1.376, P=0.381), p-GGN (HR 1.015, 
95% CI: 0.976 to 1.056, P=0.462), calcific nodule (HR 
1.021, 95% CI: 0.975 to 1.068, P=0.384), or perifissural 
nodule (HR 1.007, 95% CI: 0.792 to 1.279, P=0.957) were 

significantly associated with survival. The 5 independent 
prognostic nodule numbers were then set as binary 
variables according to their optimal cutoff values. Similarly, 
participants with lower nodule numbers had significantly 
improved OS compared with those with higher nodule 
numbers (Figure 4B-4F).

Finally, to evaluate which of the components contributed 
most to prognosis, a LASSO-based Cox regression model 
incorporating both clinicopathological features and all 
categories of AI-detected nodule numbers (as continuous 
variables) was built (Figure S3). The resulting 7 features 
with a nonzero coefficient were as follows: age (0.021), 
smoking history (0.106), surgical approach (0.669), adjuvant 
therapy status (−0.389), IIIA/IIIB classification (0.095), 
upper-lobe nodule number (0.014), and small (≤6 mm) solid 
nodule number (0.008). The number of upper-lobe nodules 
and the number of solid nodules of a small size were the 
individual features that contributed most to the model and 
correlated best with OS among all categories of AI-detected 
nodule numbers.

Survival tree analyses

A tree-based model incorporating AI-detected TNNs and 
the 8th edition of AJCC prognostic groups was constructed 
based on the best determination of OS for the entire cohort 
(Figure 5A). We found that the discrimination of survival 
curves for sub-stages was unsatisfactory with the current 
staging system in our study, especially in the sub-stages of 
IA2 to IB (IA2 vs. IA3: log-rank P=0.177; IA3 vs. IB: log-
rank P=0.778) and IIA to IIB (log-rank P=0.236). Moreover, 
in the stage III cohort, rather than using the traditional IIIA 
and IIIB classifications, the model grouped OS according 
to AI-detected TNNs (lower vs. higher: log-rank P<0.001) 
since it showed a more effective determination of survival 
rates. The Kaplan-Meier curves of OS from the tree-based 
grouping scheme are shown in Figure 5B.

Treatment failure analyses

To evaluate the potential relationship between AI-detected 
TNNs and tumor recurrence patterns, we further divided 
the stage III cohort into 2 groups depending on their 
first disease progression site. Among all 263 participants 
in the stage III group, 60 had local recurrence, 40 had 
distant metastasis, and 19 had progressive cancer without a 
specified pattern. Participants with localized recurrence had 
a lower AI-detected TNN (median: 14; IQR, 7.75 to 18.25) 

Table 2 Characteristics of AI-detected pulmonary nodules 
(N=33,410)

Features Value

Total nodule number, per person

Median [IQR] 12 [7–20]

Lobar distribution

Left lower lobe nodule 6,630 (19.9%)

Left upper lobe nodule 7,934 (23.7%)

Right lower lobe nodule 6,631 (19.9%)

Right middle lobe nodule 2,680 (8.0%)

Right upper lobe nodule 9,535 (28.5%)

Nodule location

Same-lobe nodule 9,039 (27.0%)

Same-side nodule 9,114 (27.3%)

Other-side nodule 15,257 (45.7%)

Nodule type

Solid nodule 17,790 (53.2%)

Mixed ground glass nodule 1,616 (4.8%)

Pure ground glass nodule 10,276 (30.8%)

Calcific nodule 2,799 (8.4%)

Perifissural nodule 929 (2.8%)

Solid nodule size

≤6 mm 13,745 (77.2%)

>6 mm & ≤8 mm 1,487 (8.4%)

>8 mm 2,558 (14.4%)

Mixed ground glass nodule size

≤6 mm 273 (16.9%)

>6 mm 1,343 (83.1%)

Pure ground glass nodule size

≤6 mm 6,675 (65.0%)

>6 mm 3,601 (35.0%)

AI, artificial intelligence; IQR, interquartile range.

https://cdn.amegroups.cn/static/public/ATM-21-3231-Supplementary.pdf
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Histogram of AI-detected total nodule number 
per person Boxplot of AI-detected total nodule number by stage
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number per person Boxplot of AI-detected subsolid nodule number by stage
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Figure 2 Frequency distribution of the AI-detected nodules. (A) TNN, (B) solid nodule number, (C) subsolid nodule number, (D) 
TNN stratified by pathological stage, (E) solid nodule number stratified by pathological stage, (F) subsolid nodule number stratified by 
pathological stage. AI, artificial intelligence; TNN, total nodule number; IQR, interquartile range; ANOVA, analysis of variance.

compared with the distant metastasis group (median: 17; 
IQR, 10.75 to 23.25). However, the difference between 
these 2 groups was not statistically significant (Wilcoxon 
rank-sum P=0.077, Figure S4).

Discussion

The widespread application of AI algorithms in PN 
detection is reshaping our knowledge on this topic. The 

number of patients with tens or even hundreds of PNs is 
rapidly increasing. However, the interpretation of these 
lesions and their impact on surgical decision-making 
remain complicated and underrepresented. As the number 
of nodules grows, accurate diagnosis for every single 
nodule becomes onerous and statistically challenging. As 
an alternative, we hypothesized that TNN measured by a 
deep-learning algorithm may serve as a surrogate indicator 
of the probability of malignancy and metastasis in locally 

https://cdn.amegroups.cn/static/public/ATM-21-3231-Supplementary.pdf
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Figure 3 Kaplan-Meier curves showing survival by stage in entire cohort. (A) RFS, (B) OS. Comparisons were conducted using a log-rank 
test. RFS, recurrence-free survival; OS, overall survival; CI, confidence interval; HR, hazard ratio.

advanced NSCLC. This hypothesis was preliminarily 
supported by our results, which showed that the TNN is an 
independent prognostic factor in stage III lung cancer.

The accurate measurement of  TNNs is  highly 
challenging. First, the definition of PN varies among 
radiologists and surgeons due to their different purposes: 
some may only report guideline-mandated PNs in order 
not to provoke panic in patients, while others may report 
all detected PNs for more accurate surgical planning. 
Unfortunately, both standards are rather subjective and have 
poor replicability. Second, the accuracy and robustness of a 
single radiologist or surgeon are limited. The sensitivity of 
PN detection by a single radiologist is around 77%, though 
this can be increased to 90% with a concurrent radiologist’s 
help (32). However, such a method is time-consuming and 
remains subject to human error.

The emergence of a deep learning-based AI algorithm 
ensures the objectiveness and robustness of PN detection 
and, consequently, the measurement of TNNs. Mature 
algorithms have reached a diagnostic sensitivity of 
85–100% (33-35). The best-performing deep learning 
algorithm is the LUNA16 challenge, which is based on the 
Lung Image Database Consortium and Image Database 
Resource Initiative (LIDC-IDRI) dataset and has exhibited 
an excellent sensitivity of over 95% with a less than 1.0 
false positive per scan (36). The algorithm (InferRead CT 
Lung, InferVision) in this study was trained using over 
350,000 chest CTs labeled by radiologists (20). In real-
world applications, the performance of this model has 

reached an area under the curve (AUC) of 0.89 in PN 
detection and can significantly improve the performance of 
radiologists (20-22). Our result showed the median TNN 
to be 12 per patient, much higher than the median of 2 per 
patient reported in the malignant cohort of the NELSON 
study (29). Such a difference may, on the one hand, be 
due to differences in CT radiation dosage, or on the other 
hand, may reflect differences in diagnostic preference and 
consistency between AI and human radiologists.

From a clinical standpoint, our results suggested that 
the TNN may be a simplified representation of the tumor 
burden in stage III NSCLC. In contrast to the results of the 
NELSON study, which showed that a higher nodule count 
favored a benign diagnosis (29), our study focused on more 
advanced NSCLC patients instead of a high-risk screening 
population. Past evidence vaguely showed that with 
confirmed histology, extensive nodal or systemic metastases 
are substantial evidence that multiple PNs indicate  
IPM (37), suggesting that a high TNN may relate to a 
higher pretest probability of IPM. Our results further 
supported this speculation by revealing the improved 
survival rates of the lower TNN group compared to the 
higher TNN group, which existed when analyzing the 
TNN as either a continuous or a binary variable, and thus 
strengthened our hypothesis.

It is worth noting that the factor that most impacted 
survival was the number of solid nodules, not the number 
of GGNs. For the GGN components, the International 
Association for the Study of Lung Cancer (IASLC) 
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Table 3 Univariate and multivariate analyses of RFS stratified by stage

Variables
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Stage I (n=1,626, event =83)

TNN (per 1 nodule increased) 1.010 0.998–1.022 0.102 1.007 0.994–1.020 0.292 

Age (per 1 year increased) 1.034 1.012–1.057 0.002* 1.016 0.994–1.039 0.156 

Female gender 0.650 0.422–0.999 0.050* 1.088 0.613–1.933 0.773 

Positive smoking history 2.038 1.319–3.149 0.001* 1.155 0.632–2.111 0.639 

Comorbid conditions 1.302 0.829–2.046 0.252 

Non-VATS approach 3.280 1.483–7.256 0.003* 1.814 0.805–4.087 0.151 

Non-sublobar resection 1.861 1.087–3.186 0.024* 1.027 0.585–1.803 0.926 

Non-adenocarcinoma 3.459 2.155–5.553 <0.001* 2.217 1.271–3.866 0.005* 

Postoperative complications 0.901 0.284–2.862 0.860 

Adjuvant therapy 2.309 1.325–4.025 0.003* 1.409 0.780–2.545 0.256 

AJCC stage IA2 (8th edition) 5.868 1.743–19.750 0.004* 4.497 1.306–15.486 0.017* 

AJCC stage IA3 (8th edition) 11.566 3.448–38.790 <0.001* 7.719 2.202–27.065 0.001 

AJCC stage IB (8th edition) 13.864 4.272–44.990 <0.001* 8.504 2.466–29.325 <0.001*

Stage II (n=237, event =70)

TNN (per 1 nodule increased) 1.000 0.988–1.013 0.973 1.001 0.987–1.015 0.880 

Age (per 1 year increased) 1.031 1.004–1.058 0.022* 1.030 1.002–1.059 0.034* 

Female sex 1.504 0.924–2.449 0.100* 1.588 0.966–2.611 0.068 

Positive smoking history 0.866 0.541–1.387 0.549 

Comorbid conditions 1.545 0.941–2.536 0.085* 1.274 0.758–2.139 0.361 

Non-VATS approach 1.393 0.820–2.367 0.220 

Non-sublobar resection 0.871 0.273–2.776 0.816 

Non-adenocarcinoma 0.785 0.487–1.267 0.322 

Postoperative complications 0.420 0.058–3.023 0.389 

Adjuvant therapy 1.038 0.637–1.693 0.881 

AJCC stage IIB (8th edition) 0.837 0.484–1.445 0.523 

Stage III (n=263, event =119)

TNN (per 1 nodule increased) 1.015 1.005–1.024 0.003* 1.012 1.002–1.022 0.021* 

Age (per 1 year increased) 1.022 1.004–1.041 0.019* 1.019 1.000–1.039 0.051 

Female sex 1.062 0.734–1.535 0.751 

Positive smoking history 1.013 0.707–1.452 0.942 

Comorbid conditions 0.862 0.600–1.238 0.421 

Non-VATS approach 1.574 1.029–2.407 0.036* 1.700 1.105–2.614 0.016* 

Non-sublobar resection 0.835 0.367–1.902 0.668 

Non-adenocarcinoma 0.958 0.646–1.422 0.832 

Postoperative complications 1.425 0.718–2.828 0.311 

Adjuvant therapy 0.694 0.467–1.031 0.070* 0.812 0.539–1.224 0.319 

AJCC stage IIIB (8th edition) 1.421 0.912–2.215 0.121 

*, statistical significance. RFS, recurrence-free survival; HR, hazard ratio; CI, confidence interval; TNN, total nodule number; VATS, video-
assisted thoracoscopic surgery; AJCC, American Joint Committee on Cancer.
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Table 4 Univariate and multivariate analyses of OS stratified by stage

Variables
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Stage I (n=1,626, event =80)

TNN (per 1 nodule increased) 1.003 0.989–1.017 0.689 0.995 0.978–1.012 0.572 

Age (per 1 year increased) 1.080 1.054–1.106 <0.001* 1.062 1.035–1.090 <0.001*

Female gender 0.381 0.241–0.603 <0.001* 0.722 0.403–1.295 0.274 

Positive smoking history 2.634 1.697–4.090 <0.001* 1.259 0.705–2.250 0.436 

Comorbid conditions 1.883 1.152–3.077 0.012* 1.182 0.713–1.962 0.517 

Non-VATS approach 3.415 1.656–7.043 <0.001* 2.163 1.028–4.553 0.042* 

Non-sublobar resection 1.232 0.737–2.059 0.427 

Non-adenocarcinoma 3.921 2.472–6.220 <0.001* 1.990 1.173–3.375 0.011* 

Postoperative complications 1.155 0.418–3.191 0.782 

Adjuvant therapy 1.044 0.531–2.052 0.900 

AJCC stage IA2 (8th edition) 9.332 2.199–39.600 0.002* 5.510 1.285–23.633 0.022* 

AJCC stage IA3 (8th edition) 14.513 3.389–62.150 <0.001* 6.554 1.494–28.743 0.013* 

AJCC stage IB (8th edition) 14.918 3.575–62.240 <0.001* 6.839 1.606–29.127 0.009* 

Stage II (n=237, event =61)

TNN (per 1 nodule increased) 1.000 0.989–1.012 0.965 1.001 0.988–1.013 0.934 

Age (per 1 year increased) 1.044 1.015–1.074 0.003* 1.044 1.015–1.074 0.003* 

Female sex 1.275 0.737–2.209 0.385 

Positive smoking history 1.138 0.678–1.909 0.625 

Comorbid conditions 1.394 0.831–2.339 0.208 

Non-VATS approach 1.327 0.763–2.309 0.317 

Non-sublobar resection 0.601 0.187–1.929 0.392 

Non-adenocarcinoma 1.105 0.668–1.827 0.699 

Postoperative complications 0.496 0.069–3.587 0.488 

Adjuvant therapy 0.723 0.436–1.201 0.210 

AJCC stage IIB (8th edition) 0.700 0.395–1.240 0.222 

Stage III (n=263, event =108)

TNN (per 1 nodule increased) 1.018 1.008–1.029 <0.001* 1.013 1.002–1.025 0.021* 

Age (per 1 year increased) 1.035 1.015–1.056 <0.001* 1.036 1.014–1.058 <0.001*

Female sex 0.645 0.428–0.972 0.036* 1.054 0.568–1.955 0.868 

Positive smoking history 1.716 1.168–2.521 0.006* 1.443 0.792–2.631 0.231 

Comorbid conditions 0.826 0.565–1.209 0.325 

Non-VATS approach 2.340 1.556–3.517 <0.001* 2.480 1.541–3.990 <0.001*

Non-sublobar resection 0.724 0.293–1.789 0.483 

Non-adenocarcinoma 1.614 1.093–2.384 0.016* 0.933 0.567–1.535 0.784 

Postoperative complications 1.380 0.690–2.761 0.362 

Adjuvant therapy 0.458 0.309–0.679 <0.001* 0.560 0.394–0.913 0.017* 

AJCC stage IIIB (8th edition) 1.841 1.176–2.882 0.008* 1.338 0.823–2.175 0.241 

*, statistical significance. OS, overall survival; HR, hazard ratio; CI, confidence interval; TNN, total nodule number; VATS, video-assisted 
thoracoscopic surgery; AJCC, American Joint Committee on Cancer.
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Figure 4 Kaplan-Meier curves showing OS by AI-detected nodule number in the stage III cohort. (A) TNN, (B) upper-lobe nodule 
number, (C) same-side nodule number, (D) other-side nodule number, (E) solid nodule number, (F) small (≤6 mm) solid nodule number. 
Comparisons were conducted using a log-rank test. AI, artificial intelligence; TNN, total nodule number; OS, overall survival; HR, hazard 
ratio; CI, confidence interval.
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Figure 5 Survival tree analysis. (A) Recursive partitioning-generated survival tree based on the best determination of OS using AI-detected 
TNNs and the 8th edition of AJCC stage. Both the TNN and stage were modeled as categorical variables. (B) Kaplan-Meier curves showing 
OS by tree-based scheme in the entire cohort. Comparisons were conducted using a log-rank test. OS, overall survival; AI, artificial 
intelligence; AJCC, American Joint Committee on Cancer; TNN, total nodule number.

guidelines suggest that the prognosis with multifocal 
GGNs be similar to that of a single minimally invasive 
adenocarcinoma (MIA) or adenocarcinoma in situ (AIS) (38), 
while others have indicated that there are metastatic GGNs 
on a molecular level (39). In our study, concurrent multiple 
GGNs in all 3 stages did not increase HR, indicating that 
concurrent multiple GGNs in invasive lung cancer possess 
the same biological behavior as in multifocal GGN cases. 
For solid components, most of the nodules were ≤6 mm and 
radiologically benign, with a round shape, no spiculation, 
and no lobulation. However, the growth of a few unresected 
nodules suggested their malignancy (Figure S5). These 
results showed that diagnosis using traditional radiological 
characteristics for multiple PNs in stage III NSCLC 
patients is not that reliable. Treatment failure pattern 
analysis showed that a higher TNN was related to distant 
metastasis (without statistical significance due to small 
sample size), indicating that TNN was not only an indicator 
of IPM, but also a visual representation of the systematic 
tumor burden.

From a surgeon’s perspective, the impact of PNs on 
surgical planning is substantial. Convincing a patient to 
accept unresected GGNs after surgery is difficult even with 
the guidelines’ support. A sublobar resection of a GGN 
may turn into a lobectomy due to multiple GGNs being 
detected by AI, while a lobectomy may also be changed to a 

sublobar resection due to bilateral nodules being clinically 
diagnosed as a separate primary lung cancer. However, no 
prior research has shown the validity of such an approach. 
Our study provided the first proof of concept that the 
TNN, determined by deep learning algorithms, should be 
considered a mandatory test before surgical planning. It 
would be reasonable for surgeons to be more aggressive in 
the resection of solid nodules instead of GGNs. Moreover, 
neoadjuvant therapy should be considered for stage III 
patients with a higher TNN for better PN evaluation since 
empirical diagnosis may not be reliable.

Some may argue that positron emission tomography-
computed tomography (PET-CT) is a valid method for 
differentiating MPLC and IPM before surgery. However, 
the partial-volume effect of PET-CT prevents it from 
achieving optimum diagnostic performance for solid 
nodules of less than 8 mm, which represented 85.6% of the 
solid nodules in our study (26,40,41). Moreover, PET-CT is 
relatively expensive for most underdeveloped countries and 
not affordable for every patient.

As a retrospective study, our results need validation 
before clinical application. However, no public databases 
currently provide sufficient data. Therefore, prospective 
validation is necessary yet time-consuming. The AI 
algorithm requires optimization to further reduce the 
false positive rate, and perivascular nodule detection still 
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needs improvement. Technological developments for the 
alignment of pre- and postoperative PNs on chest CT 
are urgently needed. The goals of future research are to 
analyze the growth speed and pathology findings of the 
unresected PNs and investigate the biological nature of the 
TNN, especially in the stage III NSCLC cohort. To our 
knowledge, this study was the first to identify that TNN 
measured by a deep learning algorithm is an independent 
prognostic factor in stage III lung cancer. Our results 
suggested a potentially critical clinical application of AI as a 
mandatory examination for surgical decision-making. The 
current cutoff point of the TNN is still preliminary but 
shows great potential and provides motivation for future 
validation.

Acknowledgments

We would like to thank Yuqing Huang, Xianjun Min, and 
Guotian Pei from the Beijing Haidian Hospital for sharing 
their thoughts on this work. We would like to thank Yutong 
Wang from the University of Michigan for his help in 
polishing our paper.
Funding: This work was supported by the National Natural 
Science Foundation of China (82002983, XC).

Footnote

Reporting Checklist: Available at https://atm.amegroups.com/
article/view/10.21037/atm-21-3231/rc

Data Sharing Statement: Available at https://atm.amegroups.
com/article/view/10.21037/atm-21-3231/dss

Peer Review File: Available at https://atm.amegroups.com/
article/view/10.21037/atm-21-3231/prf

Conflicts of Interest: All authors have completed the 
ICMJE uniform disclosure form (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-3231/coif). 
XC reports funding from the National Natural Science 
Foundation of China (82002983). DW, JS, and WT were 
employed by the company Beijing Infervision Technology 
Co., Ltd. The other authors have no conflicts of interest to 
declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work 

are appropriately investigated and resolved. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study involving human 
participants was reviewed and approved by the Institutional 
Review Board of Peking University People’s Hospital 
(2020PHB385-01). Individual consent for this de-identified 
retrospective analysis was waived. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer 
statistics 2018: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin 2018;68:394-424.

2. National Lung Screening Trial Research Team; Aberle 
DR, Adams AM, et al. Reduced lung-cancer mortality with 
low-dose computed tomographic screening. N Engl J Med 
2011;365:395-409.

3. Detterbeck FC, Mazzone PJ, Naidich DP, et al. Screening 
for lung cancer: Diagnosis and management of lung cancer, 
3rd ed: American College of Chest Physicians evidence-
based clinical practice guidelines. Chest 2013;143:e78S-92S.

4. Ruparel M, Quaife SL, Navani N, et al. Pulmonary 
nodules and CT screening: the past, present and future. 
Thorax 2016;71:367-75.

5. Smith RA, Andrews KS, Brooks D, et al. Cancer screening 
in the United States, 2017: A review of current American 
Cancer Society guidelines and current issues in cancer 
screening. CA Cancer J Clin 2017;67:100-21.

6. Wood DE, Kazerooni EA, Baum SL, et al. Lung Cancer 
Screening, Version 3.2018, NCCN Clinical Practice 
Guidelines in Oncology. J Natl Compr Canc Netw 
2018;16:412-41.

7. de Koning HJ, van der Aalst CM, de Jong PA, et al. 
Reduced Lung-Cancer Mortality with Volume CT 
Screening in a Randomized Trial. N Engl J Med 
2020;382:503-13.

8. Gould MK, Tang T, Liu IL, et al. Recent Trends in the 

https://atm.amegroups.com/article/view/10.21037/atm-21-3231/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/dss
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/dss
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/prf
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/prf
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/coif
https://atm.amegroups.com/article/view/10.21037/atm-21-3231/coif
https://creativecommons.org/licenses/by-nc-nd/4.0/


Chen et al. AI-detected nodule number correlation with NSCLC survival

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):33 | https://dx.doi.org/10.21037/atm-21-3231

Page 14 of 15

Identification of Incidental Pulmonary Nodules. Am J 
Respir Crit Care Med 2015;192:1208-14.

9. Erickson BJ, Korfiatis P, Akkus Z, et al. Machine Learning 
for Medical Imaging. Radiographics 2017;37:505-15.

10. Armato SG 3rd, Altman MB, La Rivière PJ. Automated 
detection of lung nodules in CT scans: effect of image 
reconstruction algorithm. Med Phys 2003;30:461-72.

11. Hwang EJ, Park CM. Clinical Implementation of Deep 
Learning in Thoracic Radiology: Potential Applications 
and Challenges. Korean J Radiol 2020;21:511-25.

12. Ather S, Kadir T, Gleeson F. Artificial intelligence and 
radiomics in pulmonary nodule management: current 
status and future applications. Clin Radiol 2020;75:13-9.

13. Murphy A, Skalski M, Gaillard F. The utilisation of 
convolutional neural networks in detecting pulmonary 
nodules: a review. Br J Radiol 2018;91:20180028.

14. Hua KL, Hsu CH, Hidayati SC, et al. Computer-aided 
classification of lung nodules on computed tomography 
images via deep learning technique. Onco Targets Ther 
2015;8:2015-22.

15. Cheng JZ, Ni D, Chou YH, et al. Computer-Aided 
Diagnosis with Deep Learning Architecture: Applications 
to Breast Lesions in US Images and Pulmonary Nodules 
in CT Scans. Sci Rep 2016;6:24454.

16. Li W, Cao P, Zhao D, et al. Pulmonary Nodule 
Classification with Deep Convolutional Neural Networks 
on Computed Tomography Images. Comput Math 
Methods Med 2016;2016:6215085.

17. Liu S, Xie Y, Jirapatnakul A, et al. Pulmonary nodule 
classification in lung cancer screening with three-
dimensional convolutional neural networks. J Med 
Imaging (Bellingham) 2017;4:041308.

18. da Silva GLF, Valente TLA, Silva AC, et al. Convolutional 
neural network-based PSO for lung nodule false positive 
reduction on CT images. Comput Methods Programs 
Biomed 2018;162:109-18.

19. Xie Y, Xia Y, Zhang J, et al. Knowledge-based 
Collaborative Deep Learning for Benign-Malignant Lung 
Nodule Classification on Chest CT. IEEE Trans Med 
Imaging 2019;38:991-1004.

20. Wang Y, Yan F, Lu X, et al. IILS: Intelligent imaging 
layout system for automatic imaging report standardization 
and intra-interdisciplinary clinical workflow optimization. 
EBioMedicine 2019;44:162-81.

21. Liu K,  Li Q, Ma J, et al. Evaluating a Fully Automated 
Pulmonary Nodule Detection Approach and Its Impact on 
Radiologist Performance. Radiology: Artificial Intelligence 
2019;1.

22. Yang F, Fan J, Tian Z, et al. Population-based research of 
pulmonary subsolid nodule CT screening and artificial 
intelligence application. Chin J Thorac Cardiovasc Surg 
2020;36:145-50.

23. McWilliams A, Tammemagi MC, Mayo JR, et al. 
Probability of cancer in pulmonary nodules detected on 
first screening CT. N Engl J Med 2013;369:910-9.

24. Horeweg N, van Rosmalen J, Heuvelmans MA, et al. 
Lung cancer probability in patients with CT-detected 
pulmonary nodules: a prespecified analysis of data from the 
NELSON trial of low-dose CT screening. Lancet Oncol 
2014;15:1332-41.

25. Walter JE, Heuvelmans MA, de Jong PA, et al. Occurrence 
and lung cancer probability of new solid nodules at 
incidence screening with low-dose CT: analysis of data 
from the randomised, controlled NELSON trial. Lancet 
Oncol 2016;17:907-16.

26. Gould MK, Donington J, Lynch WR, et al. Evaluation 
of individuals with pulmonary nodules: when is it lung 
cancer? Diagnosis and management of lung cancer, 3rd 
ed: American College of Chest Physicians evidence-based 
clinical practice guidelines. Chest 2013;143:e93S-e120S.

27. Callister ME, Baldwin DR, Akram AR, et al. British Thoracic 
Society guidelines for the investigation and management of 
pulmonary nodules. Thorax 2015;70 Suppl 2:ii1-ii54.

28. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for 
Management of Incidental Pulmonary Nodules Detected 
on CT Images: From the Fleischner Society 2017. 
Radiology 2017;284:228-43.

29. Heuvelmans MA, Walter JE, Peters RB, et al. Relationship 
between nodule count and lung cancer probability in 
baseline CT lung cancer screening: The NELSON study. 
Lung Cancer 2017;113:45-50.

30. Walter JE, Heuvelmans MA, de Bock GH, et al. 
Relationship between the number of new nodules and lung 
cancer probability in incidence screening rounds of CT 
lung cancer screening: The NELSON study. Lung Cancer 
2018;125:103-8.

31. Girard N, Deshpande C, Lau C, et al. Comprehensive 
histologic assessment helps to differentiate multiple lung 
primary nonsmall cell carcinomas from metastases. Am J 
Surg Pathol 2009;33:1752-64.

32. Nair A, Screaton NJ, Holemans JA, et al. The impact 
of trained radiographers as concurrent readers on 
performance and reading time of experienced radiologists 
in the UK Lung Cancer Screening (UKLS) trial. Eur 
Radiol 2018;28:226-34.

33. Setio AA, Ciompi F, Litjens G, et al. Pulmonary Nodule 



Annals of Translational Medicine, Vol 10, No 2 January 2022 Page 15 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(2):33 | https://dx.doi.org/10.21037/atm-21-3231

Detection in CT Images: False Positive Reduction Using 
Multi-View Convolutional Networks. IEEE Trans Med 
Imaging 2016;35:1160-9.

34. Dou Q, Chen H, Yu L, et al. Multilevel Contextual 3-D 
CNNs for False Positive Reduction in Pulmonary Nodule 
Detection. IEEE Trans Biomed Eng 2017;64:1558-67.

35. Tajbakhsh N, Suzuki K. Comparing two classes of end-to-
end machine-learning models in lung nodule detection and 
classification: MTANNs vs. CNNs. Pattern Recognition 
2017;63:476-486.

36. Setio AAA, Traverso A, de Bel T, et al. Validation, 
comparison, and combination of algorithms for automatic 
detection of pulmonary nodules in computed tomography 
images: The LUNA16 challenge. Med Image Anal 
2017;42:1-13.

37. Detterbeck FC, Nicholson AG, Franklin WA, et al. 
The IASLC Lung Cancer Staging Project: Summary 
of Proposals for Revisions of the Classification of Lung 
Cancers with Multiple Pulmonary Sites of Involvement 

in the Forthcoming Eighth Edition of the TNM 
Classification. J Thorac Oncol 2016;11:639-50.

38. Detterbeck FC, Marom EM, Arenberg DA, et al. The 
IASLC Lung Cancer Staging Project: Background Data 
and Proposals for the Application of TNM Staging Rules 
to Lung Cancer Presenting as Multiple Nodules with 
Ground Glass or Lepidic Features or a Pneumonic Type 
of Involvement in the Forthcoming Eighth Edition of the 
TNM Classification. J Thorac Oncol 2016;11:666-80.

39. Li R, Li X, Xue R, et al. Early metastasis detected in 
patients with multifocal pulmonary ground-glass opacities 
(GGOs). Thorax 2018;73:290-2.

40. Soret M, Bacharach SL, Buvat I. Partial-volume effect in 
PET tumor imaging. J Nucl Med 2007;48:932-45.

41. Groheux D, Quere G, Blanc E, et al. FDG PET-CT for 
solitary pulmonary nodule and lung cancer: Literature 
review. Diagn Interv Imaging 2016;97:1003-17.

(English Language Editors: L. Roberts and J. Jones)

Cite this article as: Chen X, Qi Q, Sun Z, Wang D, Sun J, 
Tan W, Liu X, Liu T, Hong N, Yang F. Total nodule number as 
an independent prognostic factor in resected stage III non-small 
cell lung cancer: a deep learning-powered study. Ann Transl 
Med 2022;10(2):33. doi: 10.21037/atm-21-3231


