
BRAIN
A JOURNAL OF NEUROLOGY

Abnormal structure of frontostriatal brain
systems is associated with aspects of impulsivity
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A growing body of preclinical evidence indicates that addiction to cocaine is associated with neuroadaptive changes in frontos-

triatal brain systems. Human studies in cocaine-dependent individuals have shown alterations in brain structure, but it is less

clear how these changes may be related to the clinical phenotype of cocaine dependence characterized by impulsive behaviours

and compulsive drug-taking. Here we compared self-report, behavioural and structural magnetic resonance imaging data on a

relatively large sample of cocaine-dependent individuals (n = 60) with data on healthy volunteers (n = 60); and we investigated

the relationships between grey matter volume variation, duration of cocaine use, and measures of impulsivity and compulsivity

in the cocaine-dependent group. Cocaine dependence was associated with an extensive system of abnormally decreased grey

matter volume in orbitofrontal, cingulate, insular, temporoparietal and cerebellar cortex, and with a more localized increase in

grey matter volume in the basal ganglia. Greater duration of cocaine dependence was correlated with greater grey matter volume

reduction in orbitofrontal, cingulate and insular cortex. Greater impairment of attentional control was associated with reduced

volume in insular cortex and increased volume of caudate nucleus. Greater compulsivity of drug use was associated with

reduced volume in orbitofrontal cortex. Cocaine-dependent individuals had abnormal structure of corticostriatal systems,

and variability in the extent of anatomical changes in orbitofrontal, insular and striatal structures was related to individual

differences in duration of dependence, inattention and compulsivity of cocaine consumption.
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Introduction
According to the European Monitoring Centre for Drugs and Drug

Addiction (EMCDDA), cocaine is the second most widely used illicit

drug in Europe (after cannabis; EMCDDA, 2010). Approximately 14

million Europeans are believed to have used cocaine at least once in

their lifetime (EMCDDA, 2010), but not everybody who uses co-

caine becomes addicted to it. It has been estimated that �20% of

cocaine users develop dependence (Wagner and Anthony, 2002).

Impulsive individuals, i.e. people who tend to show behaviour that

is premature, poorly planned and often inappropriate for the con-

text (Moeller et al., 2001a), seem to be particularly vulnerable to

making the transition from recreational to compulsive cocaine use

(Verdejo-Garcia et al., 2008; Potenza and Taylor, 2009). Impulsivity,

as assessed by self-report, has been shown to further increase with

chronic cocaine exposure (Ersche et al., 2010). This is of concern

because in drug-dependent individuals, impulsivity also increases the

risk of adverse life events (Hayaki et al., 2005) and the likelihood of

early treatment drop-out (Moeller et al., 2001b). Impulsivity can

also be assessed by behavioural tasks; but, in healthy individuals,

self-report and behavioural measures of impulsivity are only weakly

correlated (Reynolds et al., 2006; Meda et al., 2009).

Here we investigate impulsivity in individuals who have become

dependent on cocaine using both self-report and behavioural

measures. There is convincing preclinical evidence indicating

that addiction is associated with neuroadaptive changes in the

frontostriatal networks, which may influence both impulsivity

and drug-related compulsivity (Jentsch and Taylor 1999;

Porrino et al., 2002, 2007; Everitt and Robbins, 2005;

Schoenbaum and Shaham, 2008). Compulsivity of drug use is

defined as a maladaptive tendency to repeat or perseverate in a

previously rewarded behaviour (e.g. cocaine-seeking or consump-

tion) even in the face of significant aversive or disadvantageous

consequences (e.g. failure of relationships, loss of employment,

imprisonment, etc). Previous studies in humans with cocaine

dependence have found significant changes in grey matter in pre-

frontal and striatal brain regions (Jacobsen et al., 2001; Fein et al.,

2002; Franklin et al., 2002; Matochik et al., 2003; Sim et al.,

2007). More recently, neuroimaging studies have used

computational techniques in order to relate aspects of impulsivity

to the structural MRI scans of psychiatric patients (Matsuo et al.,

2009; Schiffer et al., 2010; Schwartz et al., 2010). The present

study aims to build on this work by investigating the relationship

between individual differences in impulsivity and cocaine-related

compulsivity and grey matter volume variation in large-scale brain

systems, in a sizeable sample of cocaine-dependent individuals and

healthy volunteers. We hypothesized that the increased levels of

impulsivity and compulsivity in cocaine users would be associated

with anatomical changes in frontostriatal brain systems.

Materials and methods

Participants
Sixty individuals with a history of chronic cocaine abuse, satisfying the

DSM-IV-TR (Diagnostic and Statistical Manual of Mental Disorders,

4th Edition Revised, American Psychiatric Association, 2000) criteria

for cocaine dependence, and 60 healthy control volunteers without

a history of drug abuse took part in the study. All participants were

aged 18–50 years and in good physical health. Participants were psy-

chiatrically evaluated using the structured clinical interview for DSM-IV

(First et al., 2002). Exclusion criteria included a major medical or

neurological illness, a lifetime history of a psychotic disorder, a history

of a traumatic head injury or any contra-indications to MRI scanning.

The cocaine users were non-treatment seeking and recruited from the

local community by advertisements and word-of-mouth. All cocaine

users were actively using cocaine, as verified by positive urine screens

for cocaine on the day of scanning. On average, cocaine users had

been using cocaine for 10 years � 7.1 standard deviation (SD), start-

ing at the age of 21 years � 5.7 SD. On the Obsessive–Compulsive

Drug Use Scale (OCDUS; Franken et al., 2002; Ersche et al., 2010),

the cocaine users typically reported moderate levels of cocaine-related

compulsivity (OCDUS mean = 21.3 � 8.5 SD; range 5–40). One

cocaine user was prescribed mirtazapine, two were prescribed benzo-

diazepines and one regularly used over-the-counter paracetamol. Fifty

cocaine users also met DSM-IV criteria for nicotine dependence, 16 for

alcohol dependence, 11 for cannabis dependence and four for heroin

dependence. The majority of the cocaine users were smoking cannabis

regularly (68%) and many also consumed other drugs (ecstasy 28%,

amphetamines 18%, hallucinogens 15%, benzodiazepines 11% and

opiates 7%).

The healthy volunteers were partly recruited from the

GlaxoSmithKline healthy volunteer panel, and partly by advertisement

in the local community. They did not satisfy criteria for alcohol abuse

or dependence, and were not taking prescribed or illicit drugs on a

regular basis. Urine samples provided on the testing day were negative

for all illicit substances tested. Seventeen per cent of this sample re-

ported recreational cannabis use in the past, 7% were occasional to-

bacco smokers and 36% had smoked tobacco in the past. All

participants completed the National Adult Reading Test (NART;

Nelson, 1982), as an estimate of verbal IQ and the Beck Depression

Inventory (BDI-II, Beck et al., 1996) to assess depressive mood.

The study protocol received ethical approval from the Cambridge

Research Ethics Committee and written informed consent was ob-

tained from all volunteers prior to study enrolment.

Impulsivity assessment
Impulsivity was assessed using both self-report questionnaire measures

and behavioural tasks. The two self-report measures comprised: (i) the

Barratt Impulsiveness Scale (Patton et al., 1995), a 30-item question-

naire, which assesses impulsive personality traits in three dimensions:

attention (inattention and cognitive instability), motor behaviour

(spontaneous actions) and non-planning (lack of forethought); and

(ii) the Behavioural Inhibition/Activation System scale (Carver and

White, 1994), a 20-item questionnaire that measures both inhibitory

and excitatory tendencies in behaviour. The behavioural inhibition

system subscale assesses the individual’s behaviour in the anticipation

of punishment; the behavioural activation system subscale assesses

behaviour in the anticipation of rewarding outcomes, i.e. the tendency

to respond with heightened energy and positive affect in the context

of rewarding events (reward responsiveness), the pursuit of rewarding

goals (drive) and the impulsive approach towards potential rewards

(fun-seeking).

For the behavioural assessment of impulsivity, we focused on those

aspects of impulsivity that have been classified as impulsive actions

(Schachar et al., 2007), i.e. behaviours involving either the cancellation

of an ongoing response or the inhibition of inappropriate actions.
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Impulsive actions are believed to be particularly relevant for the de-

velopment of compulsive patterns of cocaine abuse (Belin et al., 2008;

Winstanley et al., 2010), and in the present study were measured by

two computerized tests: (i) The Stop-Signal task (Logan et al., 1997),

which measures the time that an individual needs to withhold an on-

going response (stop-signal reaction time). The calculation of

stop-signal reaction time is based on the assumption that go and

stop processes are independent; reaction time on successful go-trials

and on unsuccessful stop-trials was recorded in addition to the out-

come of each stop trial; additionally, we also computed relative slow-

ing on the go trials after a stop trial; and (ii) the Rapid Visual

Information Processing Task (RVIP) (www.camcog.com) is a test of

sustained attention equivalent to the Continuous Performance Test;

it measures a person’s capacity to discriminate between targets and

non-targets (target sensitivity, A0) and evaluates their tendency to re-

spond irrespective of the presence of a target (response bias, B0 0).

Errors are calculated either by the number of targets missed (omission

errors) or by responses to non-targets (commission errors). Impulsivity

is reflected by an increased number of commission errors paired with

short response latencies.

Behavioural data on four individuals were lost due to technical prob-

lems (Stop-Signal task: one control, two cocaine users; and RVIP task:

one control, one cocaine user); and the Behavioural Inhibition/

Activation System scale scores for one cocaine user were incomplete,

and not included in the analysis.

Statistical analysis of demographic and
impulsivity measures
Non-imaging data were analysed using the Statistical Packages for the

Social Sciences version 13 (SPSS Inc.). All tests were two-tailed and an

effect was deemed significant at P5 0.05. Independent-sample t-tests

were used to explore group differences in demographic variables,

including measures of mood. Chi-square or Fisher’s exact tests were

used, as appropriate, for the analyses of categorical data. An explora-

tory factor analysis with principal components extraction was per-

formed to identify a few major components of variation/covariation

underlying all (self-report and behavioural) impulsivity measures in all

participants. As healthy volunteers had no cocaine-taking experiences,

the OCDUS scores were not available in this group, and therefore the

OCDUS score was not included in the principal component analysis.

The participants’ scores on each impulsivity component were then

subject to group comparisons using analysis of covariance with years

of education and depressive mood (Beck Depression Inventory,

Version 2; BDI-II) scores included as covariates. Pearson correlations

were estimated between each of the impulsivity component scores and

the duration of cocaine abuse.

Magnetic resonance imaging data
acquisition and preprocessing
The MRI data were acquired at the Wolfson Brain Imaging Centre,

University of Cambridge, UK, using a Siemens Magentom Trio Tim

scanner operating at 3 Tesla (www.medical.siemens.com). For the

T1-weighted MRI scans, a magnetically prepared rapid acquisition

gradient echo sequence (MPRAGE) was used (176 slices of 1 mm

thickness, repetition time = 2300 ms, echo time = 2.98 ms, inversion

time = 900 ms, flip angle = 9�, field of view = 240 � 256). All magnetic

resonance images were screened for normal radiological appearance

by a specialist in neuroradiology.

The grey matter volume maps were constructed from each partici-

pant’s image using FSLVBM 1.1 (http://www.fmrib.ox.ac.uk/fsl/

fslvbm/index.html). First, structural images were skull-stripped using

the brain extraction tool (Smith, 2002) and tissue-type segmentation

was conducted using FAST (Zhang et al., 2001). The resulting grey

matter partial volume images were aligned to MNI standard space

using the affine registration tool FLIRT (Jenkinson and Smith 2001;

Jenkinson et al., 2002), followed by a non-linear registration using

FNIRT (Andersson et al., 2007a, b) implementing a b-spline represen-

tation of the registration warp field (Rueckert et al., 1999). The images

were averaged to create a study-specific template, to which the native

grey matter images were then non-linearly re-registered. The regis-

tered partial volume images were modulated (to correct for local ex-

pansion or contraction) by dividing by the Jacobian of the warp field,

and smoothed with an isotropic Gaussian kernel with full-width

half-maximum = 2.3 mm to minimize slight misregistration errors.

Magnetic resonance imaging
statistical analysis
The smoothed grey matter maps were statistically analysed using

CamBA software, version 2.3.0 (http://www-bmu.psychiatry.cam.ac.

uk/software/). For statistical inference, we used permutation methods

and spatially extended statistics with nominal type I error control and

greater sensitivity than voxel-based metrics (Suckling and Bullmore

2004). First, we performed a whole-brain analysis of group differences

in grey matter volume using the general linear model with a

single-factor two independent groups ANOVA design. This resulted

in a map of brain areas that demonstrated significant differences in

grey matter volume in cocaine users compared with healthy volun-

teers. Secondly, we explored variations in abnormal brain anatomy

that were associated with individual differences in impulsivity, compul-

sivity and duration of cocaine use. For these analyses, we focused on

the data from cocaine users only and tested associations with behav-

ioural, clinical and cognitive variables in those brain regions that were

significantly abnormal in the cocaine user group compared with

healthy volunteers. In other words, the map of between-group differ-

ences in brain anatomy obtained by the first analysis was used as an

inclusive mask to define a restricted search volume for the secondary

analyses, which entailed regressing grey matter volume at each voxel

within the mask on the following variables: principal component scores

for inattention and impulsive reward-seeking dimensions of impulsivity;

duration of cocaine use; and compulsivity of cocaine use (OCDUS

scores). Regional mean grey matter volumes for those regions that

showed significant association with any of the behavioural or clinical

variables were graphically examined to evaluate the possible effects of

outlier observations.

For both whole-brain analysis of between-group differences, and

the masked analysis of associations between grey matter and clinical

or behavioural variables, statistical inference was by permutation test-

ing at the level of spatially contiguous voxel clusters (Suckling and

Bullmore, 2004). The P-value for significance was adjusted to control

for multiple comparisons so that the expected number of false positive

clusters in each analysis was less than one. Thus the cluster-wise prob-

ability threshold for significance in the whole-brain analysis was

P = 0.001 and the corresponding threshold for each of the masked

analyses was P�0.002. The slightly more lenient threshold for signifi-

cance in the masked analysis reflects the smaller search volume

(number of voxel clusters) tested.
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Results

Demographics and group differences
in impulsivity
The two groups were reasonably well matched in terms of age,

gender and verbal intelligence (Table 1). Eighty-three per cent of

the cocaine users had a high school education; although this level

is comparable with other studies in cocaine dependence (e.g.

Buchanan et al., 2006), it is falling behind education levels in

the control group, in which 98% of volunteers had a high

school degree (Fisher’s exact P = 0.008). The cocaine users also

reported more dysphoric mood compared with the healthy volun-

teers, which is not unusual for substance-dependent individuals

(Buckley et al., 2001). In keeping with previous research, the co-

caine users reported increased trait-impulsivity and appetitive

motivation (Moeller et al., 2004; 2005; Franken and Muris

2006; Ersche et al., 2010). However, these high levels of

self-reported impulsivity were not reflected in their behavioural

performance. On the Stop-Signal task, cocaine users showed an

overall slowing of responses that was not limited to the stop-signal

reaction time; latencies on both stop- and go-trials were pro-

longed. Their poor target detection accuracy on a test of sustained

attention was due to the fact that cocaine users missed significant-

ly more targets than controls. We found evidence for generally

impaired attentional control rather than the more specific pattern

of an increased rate of false alarms and speeded-up responding,

which has traditionally been considered to be a marker of impul-

sive behaviour. Statistical details of all self-report and behavioural

measures are shown in Table 1.

We used principal component analysis to examine how the dif-

ferent task measures were related to each other in all participants.

A five-component solution, comprising all components with

Table 1 Demographic and impulsivity measures for healthy volunteers and cocaine-dependent individuals

Group characteristics Healthy volunteers Cocaine dependent t-value or �2 P-value

Demographics n = 60 n = 60

Age (years) 32.3 � 8.3 32.5 � 8.5 �0.12 0.905

Gender (M : F) 46 : 14 53 : 7 2.83 0.148

IQ (NART) 110.0 � 7.0 109.5 � 6.9 0.36 0.716

Depressive mood (BDI-II total score) 2.1 � 3.2 13.2 � 11.6 �7.20 50.001

Education (years of formal education) 12.3 � 1.6 11.5 � 1.7 2.78 0.006

Trait-impulsivity (BIS-11 scale, total score) 60.8 � 7.5 76.4 � 9.6 �9.89 50.001

BIS-11 attention 14.3 � 2.8 18.6 � 3.9 �6.91 50.001

BIS-11 motor 22.8 � 3.3 27.5 � 5.4 �5.77 50.001

BIS-11 non-planning 23.8 � 4.0 31.3 � 4.3 �8.63 50.001

Anxiety-avoidance (BIS/BAS scale)

BIS score 18.6 � 3.4 19.4 � 3.7 �1.14 0.258

Reward-approach (BIS/BAS scale)

BAS drive 11.0 � 1.9 12.1 � 2.6 �2.50 0.014

BAS fun-seeking 12.0 � 1.8 13.6 � 1.8 �4.91 50.001

BAS reward responsiveness 16.4 � 1.9 16.9 � 2.2 �1.16 0.248

Sustained attention (CANTAB-RVIP)

Signal detection (A’) 0.92 � 0.05 0.89 � 0.04 3.22 0.002

Response bias (B0 0) 0.9 � 0.3 1.0 � 0.0 �1.71 0.093

Commission errors (number) 1.5 � 2.1 1.0 � 1.2 1.42 0.158

Omission errors (number) 8.5 � 4.8 11.5 � 4.7 �3.43 0.001

Correct responses/hits (number) 18.5 � 4.8 15.5 � 4.7 3.42 0.001

Mean reaction time (ms) 407.8 � 96.3 439.4 � 85.2 �1.89 0.061

Response inhibition (stop-signal task)

Percentage of successful stops 54.4 � 3.1 53.4 � 4.8 1.32 0.189

Mean reaction time on successful Go-trials (ms) 481.3 � 61.6 532.9 � 87.7 �3.68 50.001

Mean reaction time on unsuccessful Stop-trials (ms) 447.1 � 51.2 476.7 � 56.0 �2.97 0.003

Stop-signal reaction time (ms) 234.9 � 46.2 263.2 � 55.2 �3.01 0.003

Post-stop slowing (ms) 485.7 � 99.2 560.1 � 253.1 �2.10 0.038

Principal components F(1,111) P-value

Inattention � 0.51 � 0.81 0.54 � 0.90 19.43 50.001

Impulsive reward-seeking � 0.40 � 0.89 0.42 � 0.94 17.16 50.001

Response slowing 0.00 � 0.92 0.00 � 1.09 0.32 0.572

Impulsive responding 0.27 � 1.00 �0.28 � 0.92 3.30 0.072

Anxious responding �0.03 � 1.09 0.03 � 0.91 0.60 0.439

BDI-II = Beck Depression Inventory, Version 2; BIS-11 = Barratt Impulsiveness Scale; BIS/BAS = Behavioural Inhibition/Activation System scale; CANTAB = Cambridge
Neuropsychological Test Automated Battery; NART = National Adult Reading Test.
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standardized eigenvalues 41, accounted for 71% of the total

variance/covariance. As shown in Table 2, the first component,

labelled tentatively ‘inattention’, loaded on the behavioural meas-

ures of target detection during sustained attention (RVIP) and re-

sponse latencies during the response inhibition task. The second

component, ‘impulsive reward-seeking’, loaded strongly on

self-report measures reflecting reward-driven behaviours (behav-

ioural activation system items) as well as motor and cognitive im-

pulsivity [Barratt Impulsiveness Scale-11 (BIS-11)]. The third

component, ‘response slowing’, loaded strongly on prolonged re-

sponse times on the stop-signal task. The fourth component, ‘im-

pulsive responding’, summarized self-reported behaviours in

anticipation of reward [Behavioural Activation System (BAS)] and

lack of forward thinking (BIS-11). The fifth component, ‘anxious

responding’, loaded highly on self-reported avoidance behaviour

(Behavioural Inhibition/Activation System scale) and also on im-

pulsive errors on the RVIP.

Group comparisons on the five components were controlled

for the between-group differences in years of education and dys-

phoric mood ratings. The analyses revealed significant group

differences on the components reflecting inattention

[F(1,111) = 20.46, P50.001] and self-reported impulsive

reward-seeking [F(1,111) = 16.48, P50.001]; statistical details

of the group comparisons are shown in Table 1.

Group differences in grey matter volume
There were significant differences in grey matter volume between

the two groups (Fig. 1). There was widespread significant loss of

grey matter in orbitofrontal cortex bilaterally in the cocaine user

group. Grey matter volume was also abnormally reduced in the

insula, the medial frontal and anterior cingulate cortex, temporo-

parietal cortex and the cerebellum. In contrast to this extensive

system of decreased cortical grey matter volume, cocaine users

also showed a significant increase of grey matter volume mainly

localized to basal ganglia structures (including putamen, caudate

nucleus and pallidum), and cerebellum.

Individual differences in impulsivity,
compulsivity and grey matter volume
To investigate how the significant components of impulsivity were

associated with the abnormal grey matter systems in the

cocaine-dependent group, we separately regressed cocaine users’

individual scores on each of the two abnormal components (in-

attention and impulsive reward-seeking) on grey matter volume in

each voxel of the corticostriatal system that was abnormal in the

cocaine-dependent individuals group compared with healthy par-

ticipants. This procedure identified a set of voxels where grey

matter volume was significantly positively correlated with the

first impulsivity component (inattention) in the cocaine users

(coloured in red in Fig. 2) in the left caudate nucleus [Montreal

Neurological Institute coordinates (x, y, z; mm): �18, 18, 8], and

negatively correlated with grey matter volume in the insula

bilaterally [coloured in blue (38, �8, 18) and (�36, 0, 8)], and

in the right middle temporal gyrus (56, 0, �18). The second com-

ponent (impulsive reward-seeking) was not significantly correlated

with grey matter volume variation in the cocaine-dependent

group.

We also regressed the OCDUS score of cocaine-related compul-

sivity on those grey matter systems in the cocaine group that

differed from control volunteers. As shown in Fig. 2, drug-related

Table 2 The eigenvector matrices of the principal component analysis including 16 impulsivity variables in all participants

Component

Inattention Impulsive
reward-seeking

Response
slowing

Impulsive
responding

Anxious
responding

Per cent variance (cumulative variance), % 27 (27) 14 (41) 12 (52) 10 (62) 8 (71)

BIS-11 attention 0.41 0.54 0.05 �0.47 0.21

BIS-11 motor 0.43 0.57 0.02 �0.39 0.03

BIS-11 non-planning 0.49 0.29 �0.19 �0.56 0.24

BIS score (BIS/BAS) 0.20 0.13 0.05 0.03 0.65

BAS drive 0.16 0.63 0.03 0.48 �0.29

BAS fun-seeking 0.19 0.80 �0.10 0.11 �0.16

BAS reward responsiveness 0.09 0.63 0.02 0.58 �0.03

RVIP A0 (response accuracy) �0.82 0.23 0.49 �0.14 �0.01

RVIP B0 0 (response bias) 0.32 �0.14 �0.01 �0.33 �0.42

RVIP mean RT correct responses 0.45 �0.10 �0.13 0.26 �0.18

RVIP commission errors �0.02 �0.07 �0.11 0.45 0.69

RVIP omission errors 0.82 �0.22 �0.48 0.10 �0.05

RVIP correct responses �0.82 0.22 0.48 �0.11 0.05

Stop-Signal mean successful go-RT 0.65 �0.19 0.62 0.00 �0.01

Stop-Signal mean unsuccessful stop-RT 0.67 �0.19 0.60 0.07 0.04

Stop-Signal reaction time 0.63 �0.06 0.45 0.13 0.17

Stop-Signal post-stop-RT 0.47 �0.06 0.49 0.12 �0.20

Component loadings of 50.5 were considered significant and are given in bold.
BIS-11 = Barratt Impulsiveness Scale; BIS/BAS = Behavioural Inhibition/Activation System scale; RT = reaction time.
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compulsivity was significantly associated with grey matter loss in

the orbitofrontal cortex (�2, 32, �18). The OCDUS score was

correlated with the inattention score (r = 0.31, P50.05) (Table 3),

and the OCDUS-related decline in grey matter in the orbitofrontal

cortex was correlated with the inattention-related decline in grey

matter in the insula and middle temporal gyrus (r = 0.36,

P5 0.01).

Relationship between duration of
cocaine dependence and grey matter
volume
To investigate whether or not altered grey matter volume was

related to the duration of cocaine abuse, we regressed the

number of years of cocaine abuse of each cocaine user on the

map of grey matter volume differences. We found that the indi-

viduals who had been using cocaine for longer periods of time,

had greater extent of grey matter volume reduction in the anterior

and middle cingulate gyrus, middle frontal cortex (orbital part),

rectus gyrus, supplementary motor area, superior temporal

gyrus, insula, cerebellum and in the left caudate (r = �0.75,

P4 0.001; Fig. 2).

Discussion
By comparing grey matter volume between chronic cocaine users

and healthy volunteers, we confirmed findings from previous stu-

dies of significant grey matter loss in large parts of frontal and

parietal cortices and the enlargement of striatal structures in co-

caine dependence (Jacobsen et al., 2001; Fein et al., 2002;

Franklin et al., 2002; Matochik et al., 2003; Sim et al., 2007).

We further found that the caudate enlargement in cocaine users

was associated with significant attentional impairments, whereas

the reduction in grey matter in the orbitofrontal cortex was asso-

ciated with cocaine-related compulsivity. The abnormal changes in

grey matter in the striatum and in the orbitofrontal cortex were

both related to the duration of cocaine abuse, i.e. the longer co-

caine users have been using cocaine, the greater the loss of grey

matter. Our observations are in keeping with the findings from

preclinical studies indicating that neuroadaptive changes in fron-

tostriatal networks are associated with cocaine dependence

(Jentsch and Taylor 1999; Everitt and Robbins, 2005; Koob and

Le Moal, 2005). More specifically they show that individual dif-

ferences in the duration of cocaine dependence, attentional im-

pairment and compulsivity of drug use are correlated with each

-40 -34 -28 -22 -16

-10 -4 2 8 14

20 26 32 38 44 LR

Figure 1 Whole-brain maps of significant differences in grey matter volume between healthy volunteers and cocaine users. Voxels

coloured blue indicate brain areas in which cocaine users have reduced grey matter volume compared with healthy volunteers, and voxels

coloured red indicate brain areas in which cocaine users have abnormally increased grey matter volume. These results were generated by

permutation testing of voxel cluster statistics with cluster-wise P5 0.001, at which level we expect less than one false positive cluster per

map. The statistical results are overlaid on the FSL MNI152 standard T1 image and the numbers beneath each section of the image refer to

its position (mm) relative to the intercommissural plane in standard stereotactic space. L = left; R = right.
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other and with the extent of grey matter volume abnormality in

orbitofrontal cortex, insula and the caudate nucleus.

Relationships between behaviour and
related brain structure
As hypothesized, and consistent with previous studies, the cocaine

users perceived themselves as highly impulsive, scoring significant-

ly higher on the impulsivity questionnaires compared with healthy

volunteers (Moeller et al., 2004; 2005; Franken and Muris, 2006;

Ersche et al., 2010). However, their behavioural performance was

not impulsive in the sense of being premature, which might reflect

a ceiling effect of task performance, but did confirm the significant

attentional problems that have been previously reported in chronic

cocaine users (Horner, 1999; Aharonovich et al., 2003, 2006;

Jovanovski et al., 2005; Goldstein et al., 2007; Tomasi et al.,

2007; Gooding et al., 2008). The fact that the cocaine users

had prolonged (not speeded) response latencies in both tasks

may reflect a failure in attentional processing (Sarter et al.,

2001). Successful performance on both tasks requires sustained

attention and performance monitoring, which involves both

prefrontal and subcortical structures including the insula and the

caudate nucleus (Coull et al., 1996; Lawrence et al., 2003; Ray Li

et al., 2008). Specifically, increased functional activation of the

caudate has been associated with improved performance on the

RVIP task (Lawrence et al., 2002) and the Stop-Signal task (i.e.

shortened stop-signal reaction times) (Ray Li et al., 2008). Indeed,

the inattentive performance profile in our cocaine users was sig-

nificantly correlated with grey matter volume changes in the insula

and the caudate. Both brain areas have been associated with the

acute effects of cocaine in humans (Breiter et al., 1997) and

chronic cocaine use in experimental monkeys (Porrino et al.,

2007). It is thus conceivable that cocaine-induced structural

changes in cortical organization cause abnormalities of sustained

attention and attentional control in cocaine-dependent individuals.

A similar inattentive performance profile was observed on an

analogous test of sustained attention and response inhibition in

rats with lesions to the dorsomedial striatum (which corresponds

to the caudate nucleus in humans) (Rogers et al., 2001; Eagle and

Robbins 2003), and following direct local infusion of dopamine D2

receptor antagonists into this structure (Eagle et al., 2011), sup-

porting the notion of caudate neuropathology as well as reduced

dopamine D2 receptor functioning in our cocaine-dependent

group.

Cocaine-related
compulsivity

Duration of 
cocaine abuse

Inattention component 
of impulsivity

r=0.37, P<0.005 r=-0.64, P<0.001r=-0.47, P<0.001

R/L

r=-0.75, P<0.001

Figure 2 Maps of brain regions demonstrating significant association between grey matter volume and measures of duration of cocaine

use, compulsivity and impulsivity in the group of cocaine users. Regions where grey matter volume correlated significantly with the

duration of cocaine use in drug users are indicated in orange. Regions that correlated significantly with compulsive cocaine-taking (as

assessed by the OCDUS) are coloured in green. Regions where grey matter volume correlated significantly with the inattention component

of impulsivity in cocaine users are indicated in red (if the correlation was positive) and blue (if the correlation was negative). The scatter

plots beneath each section of the brain image show the correlation between these measures and the total grey matter volume for each

drug user in those regions found to be significantly correlated by permutation testing of cluster-level statistics in the restricted search

volume or mask defined by the areas of significant between-group difference in grey matter anatomy (Fig. 1). The probability threshold for

significance was P� 0.002 for each analysis, at which level we expect less than one false positive cluster per map. The statistical results are

overlaid on the FSL MNI152 standard T1 image and the numbers above each section of the image refer to its plane position (mm) relative

to the origin in MNI stereotactic space. L = left; R = right.
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Relationships between brain structure
and duration of cocaine use
We found that overall, compared with healthy volunteers, cocaine

users had significantly increased grey matter volume in subcortical

structures including the caudate nucleus. However, we also found

a strong, negative correlation between duration of cocaine use

and grey matter volume in frontal and cingulate cortex, insula

and caudate. In other words, greater duration of cocaine use

was associated with relatively reduced grey matter volume in

these structures.

Like most drugs of abuse, cocaine exerts its pharmacological

effects in the ventral striatum (Di Chiara and Imperato, 1988).

Enlarged striatal structures have been reported previously in

chronic cocaine users (Jacobsen et al., 2001) and methampheta-

mine users (Chang et al., 2005; Jernigan et al., 2005), but also in

individuals with autism and fragile X syndrome (Voelbel et al.,

2006; Langen et al., 2007; Hallahan et al., 2011). However, the

neuropathology underlying this enlargement is not fully under-

stood. Blockade of dopamine D2 receptors by antipsychotic

drugs has been shown to increase the volume of basal ganglia

structures in both animals and humans (Benes et al., 1985;

Keshavan et al., 1994; Chakos et al., 1998; Corson et al., 1999;

Scherk and Falkai 2006), possibly indicating that striatal enlarge-

ment is associated with an under-active dopamine system. It has

recently been shown in humans that variation in grey matter

volume correlates both positively and negatively with individual

differences in the expression of D2-like receptors in various brain

regions, including the caudate (Woodward et al., 2009). Cocaine

dependence has also been associated with significant reduction in

striatal dopamine D2 receptor density (Volkow et al., 1997;

Martinez et al., 2004), along with significant reduction in dopa-

mine transmission [i.e. reduced endogenous dopamine release and

presynaptic re-uptake (Wu et al., 1997; Martinez et al., 2009)].

Thus there is reasonable prior evidence, consistent with the

between-group difference observed in these data, to suggest

that striatal enlargement is an imaging marker of cocaine depend-

ence, which may reflect reduced dopamine neurotransmission and

could indeed be a predisposing factor rather than a consequence

of cocaine use. In this context, the relatively reduced striatal and

cortical volumes associated with greater duration of cocaine use

could conceivably represent a ‘normalization’ of striatal volume

due to repeated exposure to the dopamine-enhancing effects of

cocaine. In support of this hypothesis, we note a similar inverse

association between striatal volume and cumulative methampheta-

mine use has previously been reported by Chang et al. (2005). It

is also notable that caudate volume is smaller in children with

attention deficit hyperactivity disorder who have been treated

with methylphenidate compared with unmedicated children with

attention deficit hyperactivity disorder (Bussing et al., 2002). As

methylphenidate is pharmacologically very similar to cocaine

(Volkow et al., 1995), it has been speculated that the reduced

caudate volume might be related to a methylphenidate-induced

increase in dopamine neurotransmission, reflecting an opposite

effect to the volume change observed in patients with schizophre-

nia following treatment with dopamine antagonists (Bussing et al.,

2002). However, the literature regarding caudate volume in child-

hood attention deficit hyperactivity disorder is inconsistent

(Castellanos et al., 2002) and the exact mechanisms underlying

the striatal volume changes over time in both treated attention

Table 3 Correlation matrix of impulsivity, compulsivity and duration of cocaine use in cocaine-dependent individuals

Inattention Impulsive
reward-seeking

Response
slowing

Impulsive
responding

Anxious
responding

OCDUS Duration
of abuse

Inattention

Pearson Correlation 1.00 �0.15 0.12 0.25 0.01 0.31 0.04

P-value (two-tailed) 0.269 0.363 0.066 0.941 0.020 0.756

Impulsive reward-seeking

Pearson Correlation �0.15 1.00 0.01 0.20 �0.10 0.16 �0.24

P-value (two-tailed) 0.269 0.947 0.139 0.461 0.238 0.077

Response slowing

Pearson Correlation 0.12 0.01 1.00 0.16 �0.21 �0.10 0.04

P-value (two-tailed) 0.363 0.947 0.247 0.118 0.457 0.751

Impulsive responding

Pearson Correlation 0.25 0.20 0.16 1.00 �0.52 �0.25 �0.02

P-value (two-tailed) 0.066 0.139 0.247 0.000 0.067 0.866

Anxious responding

Pearson Correlation 0.01 �0.10 �0.21 �0.52 1.00 0.24 0.13

P-value (two-tailed) 0.941 0.461 0.118 0.000 0.076 0.357

OCDUS

Pearson Correlation 0.31 0.16 �0.10 �0.25 0.24 1.00 0.12

P-value (two-tailed) 0.020 0.238 0.457 0.067 0.076 0.375

Duration of cocaine abuse

Pearson Correlation 0.04 �0.24 0.04 �0.02 0.13 0.12 1.00

P-value (two-tailed) 0.756 0.077 0.751 0.866 0.357 0.375
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deficit hyperactivity disorder and cocaine dependence require fur-

ther investigation to test causal explanatory models.

Brain structure—behaviour
relationships
Impulsivity is thought to be a vulnerability factor for substance

abuse and dependence (Dalley et al., 2007; de Wit, 2009). Yet,

the high levels of self-reported impulsivity were only weakly

related to the behavioural measures of impulsivity in the present

study and also in previous studies (Reynolds et al., 2006; Meda

et al., 2009). However, one has to bear in mind that impulsivity is

a multifaceted construct (Evenden, 1999). As can be seen in

Table 2, the self-report and the behavioural measures loaded on

different components, suggesting that they are not measuring the

same aspects of impulsivity. While performance in the two behav-

ioural tasks was associated with altered grey matter volume, the

questionnaire measures were unrelated to brain structure. Several

lines of research have shown significant associations between

Barratt Impulsiveness Scale-11 impulsivity and responses to dopa-

minergic drugs (Cools et al., 2007; Clatworthy et al., 2009; Lee

et al., 2009; Buckholtz et al., 2010). It is thus conceivable that

self-reported impulsivity, as measured by the Barratt Impulsiveness

Scale, indexes the functional integrity of the brain dopamine

system rather than the structure of the corticostriatal networks it

modulates.

Relationships between brain structure
and compulsivity
Frontostriatal dysfunction in cocaine dependence is thought to

underlie the compulsive pattern of drug consumption and behav-

ioural rigidity in the face of negative consequences (Jentsch and

Taylor, 1999; Robbins and Everitt, 1999; Volkow and Fowler,

2000; Schoenbaum and Shaham, 2008). In the present study,

cocaine-related compulsivity was associated with a significant

loss of grey matter in the orbitofrontal cortex, which may reflect

the shift in the control of behaviour from the prefrontal cortex to

the striatum that has been demonstrated by preclinical research

(Everitt and Robbins 2005; Porrino et al., 2007). Neuroimaging

studies using PET have also shown that hypometabolic activity in

the orbitofrontal cortex of cocaine users is associated with reduced

dopamine receptor density in the striatum (Volkow et al., 1993).

Presumably, reduction in grey matter in the orbitofrontal cortex

may reflect the lack of top-down control that reduces drug users’

ability to optimally guide their behaviour. This lack of orbitofrontal

control may result in drug-craving and disinhibition when faced

with drug-related cues (Volkow and Fowler, 2000). The OCDUS

scale measures the subjective interference and distress caused by

drug-related thoughts and compulsive behaviour patterns. Indeed,

those cocaine users reporting high levels of cocaine-related com-

pulsivity, as indexed by high scores on the OCDUS scale, showed

the greatest reduction in grey matter volume in the orbitofrontal

cortex.

Methodological limitations and
summary
The study sample was sizeable in comparison with previous neuro-

imaging studies of cocaine dependence. However, the cocaine

users were somewhat heterogeneous in terms of their exposure

to alcohol, nicotine and other illicit drugs; and the study was not

designed powerfully to investigate possible differences in brain

anatomy between subgroups of the cocaine user group defined

by their concurrent use of alcohol and other drugs. Larger studies

will be required in future to address this issue although it will likely

always prove challenging to identify cocaine-dependent individuals

who are not also dependent on one or more other substances. To

conduct statistical testing we used permutation-based methods

that have been previously described and validated in terms of

nominal type 1 error control (Bullmore et al., 1999; Suckling

and Bullmore, 2004). This non-parametric approach to voxel

cluster-level analysis offers considerable advantages in terms of

sensitivity compared with mass univariate analysis of individual

voxels, or parametric testing of voxel clusters (Bullmore et al.,

1999). However, it does entail some assumptions, including the

assumption that the spatial covariance or smoothness of the voxel

statistic maps is homogeneous. This assumption is unlikely to be

entirely justified in analysis of ‘raw’ MRI data, which typically

demonstrate local inhomogeneities of spatial covariance, e.g. in

subcortical structures and at the boundaries between grey and

white matter (Flitney and Jenkinson, 2000). To address this pos-

sible concern, we applied a Gaussian filter to the statistic maps

before significance testing (which will have rendered the spatial

covariance more homogeneous than in the raw data). We have

also corroborated the results of cluster-level mapping by graphical

and statistical examination of grey matter volume at a regional

level for key structures such as the striatum.

We acknowledge that impulsivity is not a unitary construct

(Evenden, 1999), and we have not investigated all aspects of

this construct. In particular, we did not examine impulsive

choice, which may possibly involve more cognitive aspects of im-

pulsivity than the ‘impulsive actions’ investigated in this study

(Winstanley et al., 2010). Not only impulsivity but also compulsiv-

ity may be a multifaceted construct. We only used the OCDUS

scale as a measure of cocaine-related compulsivity but novel ex-

perimental tasks are now needed to quantify compulsive behav-

iour. Further studies will be required to investigate the neural

substrates of compulsivity in addiction. It will also be necessary

to expand the investigation to other drugs of abuse, as well as

to analysing the effects of stimulants, such as those of cocaine we

have reported here.

In summary, we identified extensive significantly decreased grey

matter volume in orbitofrontal and other cortical regions, and a

significant increase in grey matter volume of the basal ganglia, in

cocaine-dependent individuals. We also showed that the changes

in grey matter volume within this frontostriatal circuitry were

associated with cocaine-related compulsivity and attentional im-

pairments, suggesting that they may reflect the shift in the control

of behaviour from the frontal cortex to the striatum that has pre-

viously been predicted by preclinical research. Finally, behavioural
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and brain imaging markers were significantly correlated with the

duration of cocaine abuse, suggesting (but not proving) that

changes in brain systems controlling attention and compulsive

behaviour may be a consequence of prolonged cocaine

consumption.
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