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DNA methylation patterns in the blood, genetic risk scores (GRSs), and

environmental risk factors can potentially improve breast cancer (BC) risk

prediction. We assessed the individual and joint predictive performance of

methylation, GRS, and environmental risk factors for BC incidence in a

prospective cohort study. In a cohort of 5462 women aged 50–75 from

Germany, 101 BC cases were identified during 14 years of follow-up and

were compared to 263 BC-free controls in a nested case–control design.

Three previously suggested methylation risk scores (MRSs) based on

methylation of 423, 248, and 131 cytosine-phosphate-guanine (CpG) loci,

and a GRS based on the risk alleles from 269 recently identified single

nucleotide polymorphisms were constructed. Additionally, multiple previ-

ously proposed environmental risk scores (ERSs) were built based on envi-

ronmental variables. Areas under the receiver operating characteristic

curves (AUCs) were estimated for evaluating BC risk prediction perfor-

mance. MRS and ERS showed limited accuracy in predicting BC incidence,

with AUCs ranging from 0.52 to 0.56 and from 0.52 to 0.59, respectively.

The GRS predicted BC incidence with a higher accuracy (AUC = 0.61).

Adjusted odds ratios per standard deviation increase (95% confidence

interval) were 1.07 (0.84–1.36) and 1.40 (1.09–1.80) for the best performing

MRS and ERS, respectively, and 1.48 (1.16–1.90) for the GRS. A full risk

model combining the MRS, GRS, and ERS predicted BC incidence with

the highest accuracy (AUC = 0.64) and might be useful for identifying

high-risk populations for BC screening.

1. Introduction

Breast cancer (BC) is the most commonly diagnosed

cancer and the leading cause of cancer death among

women worldwide, accounting for nearly 2.08 million

new cases and 630 000 deaths in 2018 (Bray et al.,

2018). Among women aged 50–69 years, the detection

of early-stage disease through mammography has led
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to a decline in BC mortality (Independent, 2012).

Although mammography is widely used for BC screen-

ing, it has limitations such as high rates of false-posi-

tive results and overdiagnosis (Independent, 2012; Pace

and Keating, 2014). Furthermore, screening offers so

far (except for women who had family history of BC

or mutation in BRCA1 or BRCA2) do not take

interindividual variation of BC risk into account (Win-

ters et al., 2017).

DNA methylation markers detected in whole blood

have emerged as potential candidates for the identifi-

cation of high-risk populations for earlier or further

specific BC screening in recent years (Guan et al.,

2018). While these markers have been identified in

diverse study populations through different

approaches (Joo et al., 2018; van Veldhoven et al.,

2015; Xu et al., 2013; Xu et al., 2019; Yang et al.,

2019), their predictive value in prospectively collected

samples needs to be further validated. Additionally,

genome-wide association studies (GWASs) have iden-

tified an increasing number of single nucleotide poly-

morphisms (SNPs) that are independently associated

with BC risk (Mavaddat et al., 2015; Michailidou

et al., 2015; Michailidou et al., 2017). Although these

SNPs confer small risk individually, their combined

effect can substantially influence BC risk. Genetic risk

scores (GRSs) based on multiple SNPs can be used

to stratify women according to their risk of develop-

ing BC which may lead to more refined, personalized

prevention strategies (Burton et al., 2013; Mavaddat

et al., 2015). Recently, Mavaddat et al. (2019) con-

structed a GRS based on 313 SNPs which discrimi-

nated BC cases from controls with an area under the

receiver operating characteristic curve (AUC) of 0.63

in prospective studies conducted among white Euro-

pean populations. Besides epigenetic and genetic fac-

tors, reproductive (e.g., menarche, pregnancy, and

menopause), lifestyle (e.g., alcohol consumption), and

anthropometric (e.g., body mass index) factors, as

well as the use of hormone medications (Madigan

et al., 1995; Peto, 2011), have long been identified to

be related to BC risk. Risk prediction models com-

bining these known risk factors in ‘environmental risk

scores’ (ERSs) have been developed (Dierssen-Sotos

et al., 2018; Gail et al., 1989; Maas et al., 2016;

Novotny et al., 2006; Park et al., 2013; Rudolph

et al., 2018; Wang et al., 2016), but their predictive

accuracy was found to be modest (Anothaisintawee

et al., 2012).

In this study, we aimed to simultaneously assess the

individual and joint performance of whole-blood DNA

methylation markers, GRS, and ERS for BC incidence

in a prospective cohort study.

2. Materials and methods

2.1. Study population and data collection

We performed a case–control study nested within the

ESTHER (Epidemiologische Studie zu Chancen der

Verh€utung, Fr€uherkennung und optimierten Therapie

chronischer Erkrankungen in der €alteren Bev€olkerung)

cohort, a population-based study, conducted in Saar-

land, Germany. Details of the ESTHER cohort have

been previously described (Schottker et al., 2013). As

shown in Fig. 1, 9949 older adults aged 50–75 years of

whom 5462 were women were recruited by their gen-

eral practitioners during routine health checkups

between July 2000 and December 2002, and followed

up thereafter. The participants completed a standard-

ized self-administered questionnaire (collecting infor-

mation on sociodemographic, reproductive, and

lifestyle factors) and donated blood samples at base-

line. Prevalent and incident cancer was determined by

self-report and record linkage with the Saarland Can-

cer Registry. DNA methylation measurements and

genotyping were performed in the baseline blood sam-

ples of the ESTHER participants. Overall, we identi-

fied 101 women with incident BC and 263 women

without BC at baseline or during the follow-ups for

whom both DNA methylation and genetic data were

available. The study was approved by the ethics com-

mittees of the University of Heidelberg and of the

state medical board of Saarland, Germany. Written

informed consent was provided by all participants.

2.2. Methylation assessments

Blood samples collected at baseline (available for

98.8% of participants) were stored at – 80 °C until

further processing. DNA was extracted from whole-

blood samples using a salting out procedure (Miller

et al., 1988). DNA methylation levels of 866836 cyto-

sine-phosphate-guanine (CpG) loci were quantified by

the Infinium Methylation EPIC (850K) BeadChip

Assay (Illumina Inc., San Diego, CA, USA) (Zaimi

et al., 2018). Briefly, 1 µg DNA was bisulfite con-

verted, and 250 ng bisulfite-treated DNA was applied

to the EPIC BeadChips following the manufacturer’s

instruction. GenomeStudio� (version 2011.1; Illumina

Inc.) was used to extract DNA methylation signals

from the scanned arrays (module version 1.9.0; Illu-

mina Inc.). Due to its straightforward biological inter-

pretation, the methylation level of a specific CpG site

was quantified as a b-value ranging from 0 (no methy-

lation) to 1 (full methylation) (Du et al., 2010; Xie
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et al. 2019). Illumina normalization and preprocessing

methods implanted in Illumina’s GenomeStudio� were

utilized. Data were normalized to internal controls

provided by the manufacturer. All controls were

checked for inconsistencies in each measured plate.

Probes with a detection P-value > 0.01 or with missing

value > 10% of our samples were excluded from anal-

ysis (Zhang et al., 2017). Leukocyte composition was

estimated using the algorithms of Houseman et al.

(Houseman et al., 2012).

2.3. Genotyping

Extracted DNA from whole blood was genotyped

using the Illumina Infinium OncoArray BeadChip

(Illumina). General genotyping quality control assess-

ment was done as previously described (Anderson

et al., 2010). Genotypes for common variants across

the genome were imputed using data from UK10K-

1000 Genomes Project (phase 3, October 2014) with

IMPUTE v2.3.2 (https://mathgen.stats.ox.ac.uk/impute/

impute_v2.html#download) after prephasing with SHA-

PEIT software v2.12 (https://mathgen.stats.ox.ac.

uk/genetics_software/shapeit/shapeit.html#download).

Thresholds were set for imputation quality to retain both

common and rare variants for validation. Poorly

imputed SNPs were defined by an information metric

I < 0.70 and excluded for the subsequent analysis. All

genomic locations are given in NCBI Build 37/UCSC

hg19 coordinates. All SNPs with a minor allele frequency

(MAF) < 1% were excluded. After imputation, the SNP

set consisted of 9 198 808 genotyped and imputed SNPs.

PLINK v1.90b5.4 was then used to extract SNPs for the

required regions of interest (Chang et al., 2015).

2.4. Statistical analysis

2.4.1. Methylation risk scores (MRSs)

We constructed MRSs based on three sets of CpGs.

The first set included 450 CpGs associated with BC

n = 9949
(Baseline participants of the ESTHER study)

n = 5462
(Female participants at baseline)

n = 5322
(BC-free participants at baseline)  

n = 141
(Incident BC participants)  

n = 5074
(BC-free participants until the end of 2017)  

Cases: n = 101
(Participants with methylation and genetic 

data available)  

Controls: n = 263
(Participants with methylation and genetic 

data available)  

n = 5215
(Participants with whole-blood available at baseline)  

Fig. 1. Flow diagram of inclusion of study participants.
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risk that were identified using genetic variants as

instrument (Yang et al., 2019). The second set included

280 BC-related CpGs identified in previous prospective

epigenome-wide association studies (Joo et al., 2018;

van Veldhoven et al., 2015; Xu et al., 2013). The third

set included 144 CpGs which was identified and vali-

dated in independent prospective studies (Xu et al.,

2019). CpGs with missing value > 10% in our sample

were excluded from subsequent analyses. Furthermore,

CpGs only included in the Infinium Methylation 27K

BeadChip Array or the Infinium Methylation 450K

BeadChip Array but not the Infinium EPIC Array

were excluded, which left 423 CpGs from the first set

(423-CpGs), 248 CpGs from the second set (248-

CpGs), and 131 CpGs from the third set (131-CpGs).

The individual CpGs and their associations with BC

risk (none of which was statistically significant after

adjustment for multiple testing by the Benjamini–
Hochberg method) are provided in Table S1. These

CpGs were classified into hyper- and hypomethylated

CpGs according to the previously reported relationship

with BC (Joo et al., 2018; van Veldhoven et al., 2015;

Xu et al., 2013; Xu et al., 2019; Yang et al., 2019).

MRSs were calculated as the sum of hypermethylated

CpGs with methylation levels in the upper quartile of

the distribution among controls, and of hypomethy-

lated CpGs with methylation levels in the lower quar-

tile of the distribution among controls.

2.4.2. Genetic risk score (GRS)

A newly established set of 313 SNPs which discrimi-

nated BC cases from controls with a modest

AUC = 0.63 (95% CI: 0.63–0.65) in recent GWAS

was used to build GRS (Mavaddat et al., 2019). SNPs

were excluded from further analyses if they were miss-

ing in > 10% of our sample after imputation, if they

were in high linkage disequilibrium (D’ ≥ 0.95 and

r2 > 0.8) with each other, or if the MAF was low

(< 1%). Specifically, we searched the website (proxy

SNP website: https://ldlink.nci.nih.gov/) to find surro-

gates for the missing SNPs. By setting the criteria of

D’ ≥ 0.95, r2 > 0.8, MAF ≥ 1%, distance < 250K bp,

and missing value < 10% of our sample, only six SNPs

(rs6656241, rs3791976, rs3008281, rs28489579,

rs521667, and rs965352) could be used as surrogates

for the six missing SNPs (rs56168262, rs3791977,

rs66823261, rs4774565, rs527616, and rs6030585) in

the ESTHER study. This resulted in inclusion of 269

SNPs in the GRS. GRSs for all eligible participants

were calculated using the formula: GRS =
b1X1 + b2X2+ . . . bkXk . . . + bnXn, where bk is the per-

allele log odds ratio (OR) for BC associated with the

risk allele for SNP k reported in the previous indepen-

dent GWAS (Mavaddat et al., 2019), Xk is the number

of risk alleles for the same SNP (0, 1, or 2), and n is

the total number of SNPs. SNPs and corresponding

effect sizes for risk alleles reported in the derivation of

the GRS (Mavaddat et al., 2019) are summarized in

Table S2.

2.4.3. Environmental risk scores (ERSs)

For building ERSs, we conducted a literature search

to identify previously published ERSs used for BC risk

prediction. We identified and included seven risk

scores (Dierssen-Sotos et al., 2018; Gail et al., 1989;

Maas et al., 2016; Novotny et al., 2006; Park et al.,

2013; Rudolph et al., 2018; Wang et al., 2016), includ-

ing two scores from two multicenter studies (study

populations were mainly from Europe, the United

States, and Australia) and one each from the United

States, Czech, South Korea, China, and Spain. Four

of the seven risk scores were built according to the

previously reported score prediction algorithms (Gail

et al., 1989; Novotny et al., 2006; Park et al., 2013;

Wang et al., 2016). The remaining three scores (Diers-

sen-Sotos et al., 2018; Maas et al., 2016; Rudolph

et al., 2018) were derived from beta coefficients of the

corresponding risk factors which were reported from

multivariable logistic regression used in each study.

The proportion of missing values for all variables

including in the ERSs was below 5%, and the missing

baseline values were imputed by mean value of each

incomplete variable [age at menarche, age at first live

birth, parity, menopausal status, age at menopause,

current use of menopause hormone therapy (MHT)]

within groups of cases and controls, respectively. In

case the variables were not available in our data sets

and could not be replaced, we built the risk scores

without them. Algorithms applied to obtain the risk

scores are summarized in Table S3.

2.4.4. Descriptive analyses

Main characteristics of cases and controls were

described using frequencies for categorical variables,

and means and standard deviations (SDs) for continu-

ous variables. The correlations between the risk scores

were estimated by Pearson’s correlation coefficients.

2.4.5. Associations of MRS, GRS, and ERS with

breast cancer risk

Crude associations of MRS, GRS, and ERS with BC

risk were assessed by unconditional logistic regression
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with adjustment for leukocyte composition in case of

MRS in Model I. In Model II, associations were

adjusted for the complementary risk scores. Risk esti-

mates for each risk score were included in the models

either as quartiles (lowest quartile defined as the ref-

erence category) or as continuous variables (calculat-

ing ORs for an increase in risk scores by 1 SD). The

individual association of previously identified CpGs

with BC incidence was also estimated by uncondi-

tional logistic regression with adjustment for age,

batch effects, and leukocyte composition. Areas

under the receiver operating characteristic curves

(AUCs) were estimated for evaluating the perfor-

mance of the three types of risk scores in BC risk

prediction. In addition to exploring the predictive

value of risk scores over the entire period of follow-

up, analyses were repeated with follow-up time

restricted to the initial 7 years after recruitment or to

subsequent years, respectively. Tenfold cross-valida-

tion was employed to correct for potential overopti-

mism in prediction models. In 10-fold cross-

validation, the original sample was randomly parti-

tioned into 10 subsamples, the nine subsamples were

then used as training data for the derivation of the

prediction model and the remaining single subsample

was used as the validation data for testing the model

(Lanfear et al., 2017). This process was repeated

1000 times. Additionally, the goodness of fit of the

combined model was tested using the Hosmer–Leme-

show test to evaluate the calibration of multiple risk

scores and using the tailed-based test by Song et al

(Song et al., 2015). All statistical analyses were car-

ried out in SAS 9.4 (SAS Institute, Cary, NC, USA),

and 2-sided P-values < 0.05 were considered statisti-

cally significant.

3. Results

Table 1 presents the baseline characteristics of the

study population. Of 5462 women aged 50–75 years

recruited between July 2000 and December 2002, a

total of 101 BC cases and 263 controls were included

for whom both methylation and genomic data were

available for the current analysis (Fig. 1). The median

time to diagnosis for cases, defined as the time between

recruitment/sample collection and BC diagnosis ranged

from 0.24 months to 13.6 years [median (interquartile

range): 6.8 (3.7–8.9) years]. Mean age was about

61 years for both cases and controls. The distributions

of participant characteristics were similar between

cases and controls except for age at menopause and

parity. Controls were more likely to have had an early

menopause and to have a higher parity.

Table 1. Main characteristics of the study population at the time of

cohort recruitment. Numbers shown were drawn from the not

imputed data set. Missing values in cases/controls: age at

menarche 3/3, age at first live birth 4/4, parity 5/5, menopausal

status 3/3, age at menopause 4/3, and current use of MHT 2/3.

No., number.

Characteristics

Cases (n = 101)

No. (%)

Controls (n = 263)

No. (%) P-value

Age (years)

Mean � SD 60.6 � 6.5 60.8 � 6.0 0.80

50–59 45 (44.6) 105 (39.9) 0.54

60–69 47 (46.5) 139 (52.9)

≥ 70 9 (8.9) 19 (7.2)

Age at menarchea

≤ 12 22 (22.4) 50 (19.2) 0.45

12–14 53 (54.1) 150 (57.7)

≥ 15 23 (23.5) 60 (23.1)

Age at first live birtha

≤ 20 18 (18.6) 68 (26.3) 0.26

21–29 64 (66.0) 164 (63.3)

≥ 30 15 (15.4) 27 (10.4)

Paritya

0 9 (9.4) 14 (5.4) 0.03*

1 28 (29.2) 61 (23.6)

2 38 (39.6) 98 (38.0)

≥ 3 21 (21.8) 85 (33.0)

Ever breastfed

No 46 (45.5) 112 (42.6) 0.69

Yes 55 (54.5) 151 (57.4)

Menopausal statusa

Premenopausal 11 (11.1) 39 (15) 0.33

Postmenopausal 88 (88.9) 221 (85.0)

Age at menopausea

< 50 49 (50.5) 159 (61.2) 0.04*

≥ 50 48 (49.5) 101 (38.8)

Ever use of oral contraceptive

No 31 (31.0) 101 (39.2) 0.27

Yes 69 (69.0) 157 (60.8)

Current use of MHTa

No 35 (35.0) 113 (43.5) 0.13

Yes 65 (65.0) 147 (56.5)

BMI (kg�m�2)

≤ 25 30 (29.7) 86 (32.7) 0.86

25–30 40 (39.6) 100 (38.0)

> 30 31 (30.7) 77 (29.3)

Height (m)

≤ 1.60 44 (43.6) 104 (39.5) 0.85

1.60–1.65 30 (29.7) 90 (34.2)

1.65–1.70 15 (14.6) 37 (14.1)

> 1.70 12 (11.9) 32 (12.2)

Alcohol consumption (g�day�1)

0 49 (48.5) 109 (41.4) 0.31

≤ 5 16 (15.8) 62 (23.6)

5–30 29 (28.7) 77 (29.3)

> 30 7 (7.0) 15 (5.7)

Smoking status

Never smoker 63 (64.3) 166 (63.8) 0.52

Former smoker 16 (19.3) 49 (18.8)
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Table 2 provides an overview of risk factors

included in the previously proposed ERS and the per-

formance of these ERSs in our study. The most com-

monly included environmental risk factors were age,

age at menarche, age at first live birth, BMI, parity,

alcohol consumption, menopausal hormone therapy,

and number of first-degree relatives (FDR) with BC.

Factors such as light at night (Wang et al., 2016),

physical activity (Park et al., 2013), and sleep quality

(Wang et al., 2016) were rarely included. The predic-

tive accuracy of the ERS was limited with AUCs rang-

ing from 0.517 to 0.594 in our cohort. The score of

Dierssen–Sotos (Dierssen-Sotos et al., 2018) which was

derived from a case–control study in a Spanish popu-

lation achieved a relatively good performance and was

used for subsequent analyses. For the score of Wang

et al. (2016) who had provided separate algorithms for

premenopausal women and postmenopausal women,

the predictive performance was estimated by the algo-

rithm for postmenopausal women only since most of

the women in our study population were post-

menopausal.

Figure S1 shows the pairwise correlations between

the three types of risk scores. Very low, insignificant

positive correlations were observed for each pair of

scores.

Individual associations for MRS, GRS, and ERS

(Dierssen–Sotos Score) with BC risk are summarized

in Table 3. For GRS and ERS, having a score in the

top quartile was associated with a significantly

increased risk of BC compared to the lowest quartile

without adjustment. However, none of the current

MRS presented a significant association with BC risk.

These results did not materially change after adjusting

for the complementary risk scores and leukocyte com-

position. For example, after adjusting for MRS, ERS,

and leukocyte composition, women in the highest

GRS quartile had a 2.21-fold increased risk of BC

compared with women in the lowest quartile. Adjusted

ORs (95% CI) per standard deviation increase were

1.07 (0.84–1.36), 1.03 (0.81–1.31), 1.01 (0.79–1.30),
1.48 (1.16–1.90), and 1.40 (1.09–1.80) for MRS (423-

CpGs), MRS (248-CpGs), MRS (131-CpGs), GRS,

and ERS, respectively.

The predictive performances of individual risk scores

and score combinations are presented in Table 4. The

predictive accuracy of individual risk score varied with

AUCs ranging from 0.517 to 0.612. The GRS was more

predictive of BC risk [AUC = 0.612, (95% CI: 0.590–
0.632)] than the MRS and ERS. The three individual

MRSs, especially the MRS of 131-CpGs, exhibited very

limited accuracy in predicting BC incidence when com-

paring to GRS or ERS. Moreover, combining 423-

CpGs (the best performing MRS) with GRS or ERS

improved the predictive performance to a very limited

extent [AUC423-CpGs + GRS = 0.621 (0.593–0.640) vs.

AUCGRS = 0.612, (0.590–0.632) and AUC423-

CpGs + ERS = 0.603 (0.583–0.621) vs. AUCERS = 0.594

(0.578–0.612)]. Of note, a full risk model combing MRS,

GRS, and ERS outperformed all other risk prediction

models [AUC = 0.637 (0.616–0.657)]. Further tests for

goodness of fit and tailed-based tests for the combined

model were not statistically significant at P < 0.05 (re-

sults not shown). Additionally, consistent performance

of either individual (MRS, GRS, ERS) or combined risk

score (MRS + GRS + ERS) was observed in the time-

to-diagnosis-specific analyses (Table S4).

4. Discussion

To our knowledge, this is the first study evaluating and

comparing the predictive performance of whole-blood

DNA methylation, and genetic and ERSs for BC inci-

dence in a prospective cohort with up to 14 years of fol-

low-up. All three types of risk scores were predictive of

BC risk. A GRS based on multiple common variants

(269 SNPs) predicted BC incidence with much higher

accuracy than a MRS based on previously identified

CpGs and an ERS derived from previous studies. The

combination of MRS, GRS, and ERS enhanced the risk

prediction with an AUC of approximately 0.64. Similar

predictive accuracies of either individual or combined

risk scores were observed in specific subgroups defined

by time to diagnosis.

Table 1. (Continued).

Characteristics

Cases (n = 101)

No. (%)

Controls (n = 263)

No. (%) P-value

Current smoker 19 (15.4) 45 (17.4)

Physical activity

< once/week 21 (20.8) 68 (25.9) 0.50

≥ once/week 80 (79.2) 194 (74.1)

Sleep quality

Good 87 (91.6) 215 (90.3) 0.62

Common 6 (6.3) 15 (6.3)

Poor 2 (2.1) 8 (3.4)

No. of FDRs with cancer history

0 50 (51.5) 119 (46.5) 0.68

1 35 (36.1) 89 (34.8)

≥ 2 12 (12.4) 48 (18.7)

No. of FDRs with BC

0 93 (92.1) 239 (90.9) 0.06

≥ 1 8 (7.9) 24 (9.1)

aNumbers do not add to total numbers due to missing values.

*P -value < 0.05.
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Previous studies have demonstrated the diagnostic

efficiency of aberrant DNA methylation for BC (Guan

et al., 2018). In the current study, we constructed

MRSs based on previously identified CpGs and evalu-

ated its predictive performance for BC incidence.

Although the discriminatory power of the MRS was

limited, the poor performance should not be misinter-

preted as implying that the methylation status of those

CpGs does not play a role in BC development. A

potential explanation for low predictive value could be

differences between the study populations of the previ-

ous studies in which the CpGs were identified and our

study population. For example, the majority of the

248-CpGs (227 out of 248 CpGs) and all of the 131-

CpGs were both identified within a prospective cohort

of women who were BC-free themselves at recruit-

ment, but had a biological sister with BC (Xu et al.,

2013; Xu et al., 2019). So, the association of methyla-

tion at these CpGs with BC may not be generalizable

to the women from the general population (Xu

et al., 2019). Interestingly, the MRS based on 423

CpGs, which was derived from genetically predicted

rather than directly measured CpG methylation levels,

Table 3. Association of the risk scores with BC incidence in the ESTHER study.

Risk scores Quartiles of risk score Cases Controls Model Ia OR (95% CI) Model IIb OR (95% CI)

MRS (423-CpGs) IQR 104 (90, 118) 98 (85, 115)

Q1 (≤ 85) 16 66 Ref. Ref.

Q2 (85–98] 26 66 1.60 (0.77–3.29) 1.49 (0.71–3.11)

Q3 (98–115] 29 66 1.86 (0.91–3.81) 1.93 (0.93–4.01)

Q4 > 115 30 65 1.82 (0.89–3.75) 1.67 (0.79–3.50)

OR per SD increase 1.10 (0.87–1.39) 1.07 (0.84–1.36)

MRS (248-CpGs) IQR 53 (36, 67) 46 (35, 69)

Q1 (≤ 35) 23 70 Ref. Ref.

Q2 (35–46] 22 62 1.03 (0.51–2.09) 1.08 (0.53–2.23)

Q3 (46–69] 26 68 1.20 (0.61–2.35) 1.27 (0.64–2.54)

Q4 > 69 30 63 1.33 (0.69–2.59) 1.27 (0.64–2.50)

OR per SD increase 1.06 (0.84–1.40) 1.03 (0.81–1.31)

MRS (131-CpGs) IQR 26 (16, 45) 26 (15, 45)

Q1 (≤ 15) 24 68 Ref. Ref.

Q2 (15–26] 24 65 0.94 (0.44–2.00) 0.82 (0.37–1.80)

Q3 (26–45] 25 62 1.22 (0.58–2.53) 1.34 (0.63–2.85)

Q4 > 45 28 68 1.16 (0.59–2.31) 1.30 (0.64–2.63)

OR per SD increase 1.02 (0.80–1.32) 1.01 (0.79–1.30)

GRS IQR 15.50 (15.06, 15.88) 15.21 (14.83, 15.59)

Q1 (≤ 14.83) 20 66 Ref. Ref.

Q2 (14.83–15.21] 17 66 0.85 (0.41–1.77) 0.80 (0.37–1.72)

Q3 (15.21–15.59] 23 66 1.15 (0.58–2.29) 1.18 (0.58–2.42)

Q4 > 15.59 41 65 2.08 (1.10–3.93) 2.21 (1.14–4.30)

OR per SD increase 1.50 (1.18–1.91) 1.48 (1.16–1.90)

ERS (Dierssen-Sotos) IQR 0.99 (0.39, 1.51) 0.69 (0.19, 1.42)

Q1 (≤ 0.19) 13 60 Ref. Ref.

Q2 (0.19–0.69] 20 61 1.47 (0.70–3.07) 1.46 (0.67–3.14)

Q3 (0.69–1.42] 28 61 2.07 (1.02–4.18) 2.06 (0.99–4.27)

Q4 > 1.42 30 60 2.23 (1.11–4.50) 2.50 (1.19–5.25)

OR per SD increase 1.36 (1.08–1.71) 1.40 (1.09–1.80)

aModel I includes individual risk score and, in case of MRS, leukocyte composition.
bModel II includes individual MRS (423-CpGs or 248-CpGs or 131-CpGs), GRS, ERS, and leukocyte composition.

Table 4. Risk prediction by individual and combined risk scores for

BC.

Risk scores AUC (95% CI)

Combined AUC

(95% CI)

Single risk scores

423-CpGs 0.557 (0.536–0.580)

248-CpGs 0.545 (0.524–0.563)

131-CpGs 0.517 (0.501–0.542)

GRS 0.612 (0.590–0.632)

ERS 0.594 (0.578–0.612)

Multiple risk scores

423-CpGs + GRS 0.621 (0.593–0.640)

423-CpGs + ERS 0.603 (0.583–0.621)

GRS + ERS 0.635 (0.615–0.656)

423-CpGs +

GRS + ERS

0.637 (0.616–0.657)
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performed even better in our study than the MRS of

the other two sets that had been derived from mea-

sured methylation levels. It is also worth noting that

there was hardly any overlap between the genetically

predicted CpGs and methylation measured CpGs (423-

CpGs and 248-CpGs, 423-CpGs and 131-CpGs)

which supports suggestions that there may still be

much room for the improvement in the derivation of

MRS.

The performance of our version of GRS score is

generally consistent with the observation from a recent

GWAS used to establish a GRS for risk stratification

and early detection of BC (Mavaddat et al., 2019). In

the current analysis, the performance of our version of

GRS (269 SNPs) with an OR (95% CI, per SD

increase) of 1.48 (1.16–1.90) and an AUC (95% CI) of

0.61 (0.59–0.63) was similar albeit slightly less favor-

able compared with performance previously reported

for the original GRS containing 313 SNPs [OR = 1.61,

(1.57–1.65), AUC = 0.63 (0.63–0.65)]. A potential rea-

son for the slightly weaker performance in our study

could be incomplete validation, as 29 out of 313 SNPs

were excluded because of missing values in > 10% of

our sample.

We also conducted a literature search to identify

ERSs used for BC risk prediction and validated their

predictive performance for BC incidence in our study

sample. Although many researchers have put substan-

tial efforts in developing models for risk prediction,

the overall results are not promising (Anothaisintawee

et al., 2012). In the current study, most of the ERSs

yielded poor predictive accuracies with AUCs ranging

from 0.52 to 0.59. The lack of predictive value of

ERSs might be explained by heterogeneity of study

populations used to derive the scores and missing

information on some risk factors (i.e., numbers of pre-

vious breast biopsies, breast inflammation, and light at

night) in several models (Gail et al., 1989; Novotny

et al., 2006; Wang et al., 2016). However, the main

reason for the low predictive values would probably be

that the risk factors included in these scores were not

good predictors of BC risk. Notably, improved predic-

tive accuracy was observed when ERS was combined

with GRS, suggesting that rather than developing

more risk scores based on environmental risk factors,

future studies should explore possibilities of enhancing

predictive performance by combining risk factors with

novel laboratory markers, such as MRSs or GRSs.

We performed time-to-diagnosis-specific analyses to

explore whether the individual risk scores or score

combinations performed better in cases who had

shorter time to diagnosis. In a subgroup analysis, only

the performance of ERS (Dierssen–Sotos) and a

combination of three risk scores supported the hypoth-

esis, but differences between shorter and longer time

to diagnosis were small and did not reach statistical

significance. However, power for such subgroup analy-

ses was very limited due to sample size limitations.

The predictive values of the three individual risk scores

or score combinations for subgroup (e.g., defined by

age and follow-up time) or subtype-specific BC screen-

ing warrant further exploration.

Compared with GRS, MRS was less predictive of

BC risk. This, however, does not imply that MRS does

not hold potential for risk stratification for BC risk.

Whereas large-scale GWASs have been conducted

since more than 10 years (Easton et al., 2007), large-

scale epigenome-wide association studies have been ini-

tiated only recently (Xu et al., 2013) and may yield

substantially better MRS in the future. In contrast to

GRS, MRS and ERS are though not static over life-

time. Although this may be considered a disadvantage

for straightforward risk stratification (e.g., determining

a starting age of screening), MRS and ERS may have

additional use in reflecting the merits of specific pre-

vention efforts.

Specific strengths of our study include its longitudi-

nal design in which blood samples for methylation and

genotyping analysis, along with environmental risk fac-

tor data, were collected years before BC diagnosis.

This allowed for simultaneous evaluation and compar-

ison of the ability of three different types of risk vari-

ables for BC risk prediction. In addition, the selection

of incident BC cases through linkage to the Saarland

Cancer Registry ensured an almost complete ascertain-

ment of incident cancer cases in the population from

which our study participants originated. However, our

study has several limitations that require careful dis-

cussion. First, the limited sample size restricted the

study’s power and precision of estimates, particularly

in stratified analysis. For example, the AUC for score

combination in cases with time to diagnosis ≤ 7 years

was larger than that in cases with time to diagnosis

> 7 years, but this difference did not reach statistical

significance. Future studies with larger sample sizes

should address predictive values of MRS, GRS, and

ERS and their combination for BC risk prediction in

specific population groups. Likewise, future studies

with larger sample size should also address potential

improvement of prediction by including interactions

between the included factors such as gene–environment

interactions (Barrdahl et al., 2014; Campa et al., 2011;

Maas et al., 2016; Nickels et al., 2013; Rudolph et al.,

2015; Schoeps et al., 2014). Second, it is difficult to

compare the results between our study and previous

studies, where different methylation analysis
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techniques were used to investigate different CpG sites.

Although the EPIC assay covers more CpGs across

the whole genome compared with the Illumina 27 or

450K used in previous studies, it cannot be ruled out

that some key loci with powerful diagnostic perfor-

mance were missed. Finally, although we paid careful

attention to internal validation, further validation in

external, independent cohorts would be highly desir-

able. In particular, our results pertain to a Caucasian

study population from Germany; hence, the perfor-

mance of our versions of MRS, GRS, and ERS needs

to be validated and potentially adapted for ethnically

diverse populations.

5. Conclusion

In summary, despite these limitations, our study pro-

vides new detailed insights into the individual and

joint associations of MRS, GRS, and ERS with BC

risk. Although the contribution of all three types of

risk scores to risk stratification is still modest for the

time being, with GRS so far slightly outperforming

MRS and ERS, our findings demonstrated that comb-

ing MRS, GRS, and ERS can enable more precise risk

prediction and therefore holds potential to improve

risk stratification in BC screening. With further

improvements of GRS and MRS by large-scale inter-

national GWAS and EWAS efforts, and incorporation

of additional risk signatures, such as microRNA-based

signatures (Hamam et al., 2017), substantial further

improvement of risk stratification should become pos-

sible which will enable more targeted, risk-adopted

approaches in BC screening.
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