
fgene-12-639418 February 25, 2021 Time: 14:40 # 1

ORIGINAL RESEARCH
published: 02 March 2021

doi: 10.3389/fgene.2021.639418

Edited by:
Dana C. Crawford,

Case Western Reserve University,
United States

Reviewed by:
Steven J. Schrodi,

University of Wisconsin–Madison,
United States

Matthew Oetjens,
Geisinger Health System,

United States

*Correspondence:
Joseph J. Grzymski

Joe.Grzymski@dri.edu

Specialty section:
This article was submitted to

Applied Genetic Epidemiology,
a section of the journal

Frontiers in Genetics

Received: 09 December 2020
Accepted: 12 February 2021

Published: 02 March 2021

Citation:
Read RW, Schlauch KA,
Lombardi VC, Cirulli ET,

Washington NL, Lu JT and
Grzymski JJ (2021) Genome-Wide
Identification of Rare and Common
Variants Driving Triglyceride Levels

in a Nevada Population.
Front. Genet. 12:639418.

doi: 10.3389/fgene.2021.639418

Genome-Wide Identification of Rare
and Common Variants Driving
Triglyceride Levels in a Nevada
Population
Robert W. Read1, Karen A. Schlauch1, Vincent C. Lombardi2, Elizabeth T. Cirulli3,
Nicole L. Washington3, James T. Lu3 and Joseph J. Grzymski1,4*

1 Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States, 2 Department of Microbiology
and Immunology, School of Medicine, University of Nevada, Reno, Reno, NV, United States, 3 Helix Opco, LLC., San Mateo,
CA, United States, 4 Renown Health, Reno, NV, United States

Clinical conditions correlated with elevated triglyceride levels are well-known: coronary
heart disease, hypertension, and diabetes. Underlying genetic and phenotypic
mechanisms are not fully understood, partially due to lack of coordinated genotypic-
phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of
9,183 sequenced participants with longitudinal electronic health records to examine
consequences of altered triglyceride levels. Specifically, Healthy Nevada Project
participants sequenced by the Helix Exome+ platform were cross-referenced to their
electronic medical records to identify: (1) rare and common single-variant genome-wide
associations; (2) gene-based associations using a Sequence Kernel Association Test;
(3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked
to triglyceride levels. The study identified 549 significant single-variant associations
(p < 8.75 × 10−9), many in chromosome 11’s triglyceride hotspot: ZPR1, BUD13,
APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X)
was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-
based triglyceride associations were identified; six of these genes surprisingly did not
include a single variant with significant associations. Results at the variant and gene level
were validated with the UK Biobank. The combination of a single-variant genome-wide
association, a gene-based association method, and phenome wide-association studies
identified rare and common variants, genes, and phenotypes associated with elevated
triglyceride levels, some of which may have been overlooked with standard approaches.

Keywords: GWAS, PheWAS, triglycerides, whole exome sequencing, rare variant analysis

INTRODUCTION

Hypertriglyceridemia is prevalent in the US adult population: 31% have borderline high triglyceride
measurements (≥150 mg/dL) and 16% have high triglyceride levels (≥200 mg/dL) (Miller et al.,
2011). Severe hypertriglyceridemia (≥500 mg/dL) was shown to be associated with 33–38% greater
medical costs in 2008, after adjustment of clinical conditions such as cardiovascular disease, heart

Abbreviations: HNPT_EU, Healthy Nevada Project triglyceride cohort; HER, electronic health record; CHD, coronary heart
disease; LD, linkage disequilibrium; MAF, minor allele frequency; PCA, principal component analysis; VEP, Ensembl Variant
Effect Predictor v.101; DM2, type II diabetes; PheWAS, phenome-wide association study; GWAS, genome-wide association
study; CRP, C-reactive protein.
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failure, hypertension, and diabetes (Nichols et al., 2011). Elevated
triglycerides are associated with diabetes (Subramanian and
Chait, 2012) and a reported risk factor for coronary heart disease
(CHD), yielding an ongoing national health concern (Kathiresan
et al., 2008; Ewald and Kloer, 2012; TG and HDL Working Group
of the Exome Sequencing Project et al., 2014; Han et al., 2016;
Siewert and Voight, 2018).

Hypertriglyceridemia is a notable health burden in Nevada,
where many residents live in rural, typically underserved
communities, including more than thirty unique Native
American tribal reservations. Contribution to this health
concern is the high percentage of adult obese and overweight
Nevadans (27 and 66%, respectively), as it is well known
that body mass index (BMI) is linked with blood triglyceride
levels (Kim et al., 2012; Van Hemelrijck et al., 2018). The
Healthy Nevada Project (HNP), a population health study
developed in collaboration between Renown Health and the
Desert Research Institute in Reno, Nevada, was established in
2016 to examine the effects genetics may have on Nevadan
health outcomes. Whole-exome sequencing data paired with
cross-referenced Electronic Health Records (EHR) are now
available for more than 30,000 participants in Northern
Nevada. Although many studies have examined the effects
between single nucleotide variants and triglyceride levels
(Kathiresan et al., 2008; Lippi et al., 2008; Coram et al.,
2013; Weissglas-Volkov et al., 2013; TG and HDL Working
Group of the Exome Sequencing Project et al., 2014; Dron
and Hegele, 2017; Yamada et al., 2018), none, to the best of
our knowledge, have performed a three-pronged approach:
single-variant genome-wide association studies (GWAS)
of both rare and common variants; gene-based association
analysis of both common and rare variants (Ionita-Laza et al.,
2013); and comprehensive phenome-wide analyses (PheWAS)
(Carroll et al., 2014). Via this approach, our study replicated
a number of well-known triglyceride-linked variants and
identified several variants with no known associations to
triglycerides. Both the single-variant GWAS and the gene-based
association results were validated in a cohort (N = 35,321) of
UK Biobank participants with exome-sequencing (Van Hout
et al., 2019). Lastly, comprehensive EHR-based phenome-
wide analyses uncovered clinical conditions associated with
changes in triglyceride levels and examined pleiotropy in
triglyceride-linked variants.

This triglyceride-focused study examines common, rare, and
very rare variants on a genome-wide and phenome-wide scale.

MATERIALS AND METHODS

Data Disclosure Statement
In order to minimize unintentional sharing of information
that can be used to re-identify private information, a subset
of the phenotype data generated for this study is available
at https://www.dri.edu/renown-ihi/healthynvprojectgenetics/.
Additionally, genotype data that support the findings of this
study will be made available upon reasonable request. Please see
Data Availability Statement.

The Renown EHR Database
The Renown Health EHR system was instantiated in 2007
on the EPIC system (EPIC System Corporation, Verona,
WI, United States), and contains lab results, diagnosis
codes (ICD9/ICD10), and sociodemographic information
of approximately 1.6 million hospital patient visits from 2005 to
the present date.

Genotype Sample Collection
The HNP is a population health study of Nevadans, with specific
targeted recruitment in rural and socioeconomically depressed
Northern Nevada areas. The project consists of two phases: Phase
I began in 2016, in which genotyping was conducted on 10,000
adult volunteer participants as described in Read et al. (2019);
Schlauch et al. (2020). Phase II was initiated in 2018, using the
Helix Exome+ platform (Helix, San Diego, CA, United States).
As of December 2020, approximately 30,000 sequenced Phase
II participants in the HNP have cross-referenced electronic
medical records. The study presented here examines a subset
of 9,183 European HNP participants with at least two recorded
triglyceride and BMI measurements. We refer to this as the
HNPT_EU cohort.

IRB and Informed Consent
This study was conducted under a human subject protocol
approved by the University of Nevada Institutional Review Board
under project #1106618-15. Participants in the Healthy Nevada
Project undergo written and informed consent to having genetic
information associated with electronic health information (EHR)
in a de-identified manner. Inclusion criteria are individuals older
than 18 years who can appear in person at an HNP study location
to participate in the education and consent process. A copy of the
consent can be found at https://healthynv.org/about/consent/.
Patient identifiers are not incorporated into the research EHR:
the EHR and genetic data are linked in a separate environment
via a unique identifier as approved by the IRB.

Processing of Clinical Data
Most HNPT_EU cohort participants had multiple BMI
recordings across the 14 years of EHR; the mean number of BMI
records across the individuals was 16.2 records; the maximum
number of BMI measures per individual was 652. For HNPT_EU
individuals with more than one recorded BMI measure, a
more complex quality control step was first performed before
computing the average BMI value to remove likely erroneous
values. Specifically, if participant i had multiple BMI records,
the standard deviation σiBMI of those records was computed. If
any of participants’ BMI measures were less than the threshold
σT1 or greater than the threshold σT2 (explained below), they
were excluded before computing the average of the remaining
BMI measures. The threshold σT1 is the lower 2.5th percentile
of the approximately normal distribution of; similarly, σT2 is
its upper 2.5th percentile. This additional quality control step
excluded BMI values such as “3986.19” and “3.” A total of
4.7% of outlying BMI values for those individuals with multiple
records were excluded.
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The majority of HNPT_EU participants also have multiple
triglyceride lab results recorded across the 14 years; these
results span nine different lab tests each with independent
reference ranges. We standardized these reference ranges using
methods from Read et al. (2019). This approach applies a simple
linear transform to convert each test’s reference range into the
most commonly recorded test. For individuals with multiple
triglyceride records, outliers were also excluded following the
same process as with multiple BMI measures described above.
Mean quality-controlled BMI and triglyceride values for the
HNPT_EU cohort, Type II diabetes ICD 9/ICD 10 codes and
antihyperlipidemic medications are available at the link: https:
//www.dri.edu/renown-ihi/healthynvprojectgenetics/.

Sequencing
Sequencing was performed in the Helix Laboratory (CLIA
#05D2117342, CAP# 9382893) using the Helix Exome+, a
proprietary medical-grade exome that includes additional non-
coding targets resembling a microarray backbone within one
sequencing assay (Helix., 2019; Cirulli et al., 2020). Coverage
for this platform is based on 4,000 Exome+ results (2,000 male
and 2,000 female) and includes full base-pair level histograms
(Helix., 2019). Results demonstrate that more than 90% of the
bases have greater than or equal to 20× coverage for popular
reference panels including ACMG-59 and the Ashkenazi Jewish
carrier screen. Moreover, this assay has been validated using
high confidence calls from public reference materials such as the
Platinum genomes (Eberle et al., 2017) and the National Institute
of Standards and Technology (NIST) Genome in a Bottle (GIAB)
(Zook et al., 2014) with sensitivity, precision, repeatability, and
reproducibility all greater than 99.9%. Sequencing data were
aligned to GRCh38 with variant calling implemented by Helix.
(2019) and Kendig et al. (2019) following established sequencing-
specific quality control metrics and GATK best practices (Helix.,
2019; Cirulli et al., 2020).

Statistical Analysis of Sequencing Data
Raw genotype data of rare and common variants were processed
through quality control pipelines for a single-variant GWAS
modified to include rare variants (Anderson et al., 2010;
Panoutsopoulou and Walter, 2018; Cirulli et al., 2020), using
GRCh38. Relationship inference was performed with KING,
which identified 4,019 pairs of first-degree relatives (Manichaikul
et al., 2010). For all related participants, only the participant with
the highest genotyping rate was retained (Anderson et al., 2010).
Variants out of Hardy–Weinberg equilibrium (p < 1 × 10−6)
were excluded. Genotype call rates were similar to those in
other studies (Reed et al., 2015; Panoutsopoulou and Walter,
2018). Quality control thresholds were as follows: variant call
rates greater than 95% and individual call rates greater than
70% were deemed high quality. To ensure statistically powerful
rare-variant associations, any variant with less than ten copies
of the minor allele across the HNPT_EU cohort was removed.
This resulted in 5,712,318 non-pruned, high-quality variants in
the single-variant GWAS. Variants are generally classified as rare
if their minor allele frequency (MAF) < 0.01; low-frequency
when 0.01 ≤ MAF < 0.05; and common if MAF ≥ 0.05. The

filtered high-quality variants contained 35.84% rare, 20.26% low-
frequency, and 43.89% common variants. To distinguish the
many rare variants in our platform with MAF as low as 0.0002,
we use the term “very rare” variants with 0.0002 < MAF < 0.001.
Sequencing ontologies were noted for all variants (i.e., missense,
nonsense, synonymous, indels, frameshifts, etc.), and no variants
were excluded based on ontology type.

Variants underwent the same quality control in the SKAT
gene collapse as for the single-variant analysis above, and those
in linkage disequilibrium (LD) with surrounding variants were
pruned. PLINK v1.9 (Purcell et al., 2007) was implemented
for pruning, using standard parameters (50 variants per sliding
window; window size of five variants; r2 = 0.5) (Anderson et al.,
2010). As an additional quality control step for the gene-based
analysis, variants with less than three copies of the minor allele
were excluded. Variants carried by one or two people may,
in some cases, indicate a sequencing error and may decrease
the strength and specificity of the analysis. Note that gene-
based methods are better-powered, so the previous threshold
of a minimum of five carriers in the single-variant GWAS
was relaxed. This removed 5,459,154 variants from the analysis.
A total of 2,697,018 variants was used in the discovery gene
collapse analysis: 69.96% were rare, 11.68% were low-frequency,
and 18.36% were common. These variants were grouped into
25,283 gene sets.

A standard principal component analysis (PCA) applied
to pruned variants corrected for population substructure in
the single-variant, gene-based, and phenotype-wide association
analyses. Statistical models were adjusted by the first four
genotypic principal components (P1, P2, P3, and P4), which
yielded a genomic inflation factor of λ ≤ 1.003.

Effect Sizes
Effect sizes are measured here as raw (non-standardized) beta-
coefficients of the genotype covariate in the linear regression
model for each variant using PLINK. Sizes are reported in terms
of triglyceride measures in mg/dL units, as in Willer and Mohlke
(2012). Note that power studies performed on standardized effect
sizes of the linear regression are identical to those performed
on raw values. By standardizing the response variable (e.g.,
triglyceride measures) into its z-score and then performing linear
regression, the transformed genotype effect size is in terms
of standard deviation units of the original response variable
(Supplementary Text).

Genotype Annotation
Variants were annotated generally using dbSNP build 1531

and PhenoScanner V2 (Staley et al., 2016; Kamat et al., 2019).
Functional characterization of variants was performed by
Ensembl Variant Effect Predictor v.101 (VEP) (Supplementary
Table 1). Subsequently, single-variant and gene-based
associations were mapped using PhenoScanner V2, ClinVar
(January 31, 20212), and the NHGRI-EBI Catalog of human

1ftp.ncbi.nlm.nih.gov/snp
2https://www.ncbi.nlm.nih.gov/clinvar/
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genome-wide association studies3. If associations or their proxies
were not found in these databases, they are denoted in the
manuscript as “not published to the best of our knowledge.”

Power of Single-Variant GWAS
QUANTO (Gauderman, 2002) was applied to approximate
necessary sample sizes to detect a range of effect sizes with
several MAFs and at least 80% statistical power under the additive
model at a two-sided Type I error level of 5%. The mean and
standard deviation triglyceride levels of the HNPT_EU cohort
were used (119.29 and 67.64 mg/dL, respectively). To detect
standardized effect sizes greater than one standard deviation
unit with adequate power and reasonable sample sizes, the MAF
of a single variant was restricted to at least 5 × 10−4; tests
of variants with this MAF were sufficiently powered to detect
standardized effect sizes of one standard deviation (67.64 mg/dL)
with a sample size of N = 9,183. Note that this MAF corresponds
to approximately ten carriers in a sample of size 9,183. Similarly,
tests of variants with MAF of 0.001 are well-powered to detect
effect sizes of 42.5 mg/dL; tests of variants with MAF of 0.005 are
adequately powered to detect effect sizes of 20 mg/dL, both with
N = 9,183. Variants with MAF between 0.01 and 0.05 generate
well-powered hypothesis tests to detect effect sizes between 14
and 6.5 mg/dL, respectively, with N = 9,183. Tests of common
variants proved powerful enough to test much smaller effect
sizes: any test with common variants is well-powered to detect
effect sizes less than 6.5 mg/dL with 9,183 participants. These
observations show that the HNPT_EU of 9,183 participants
allows for adequately powered tests of both rare and common
variants in the single-variant GWAS, with larger and smaller
effect sizes, respectively.

Single-Variant Genome-Wide
Association Study (GWAS)
Using 9,183 participants with high-quality call rates, a linear
regression on triglyceride levels vs. genotype was performed with
PLINK v1.9, under the additive genetic model with covariates
age, sex, BMI, DM2 diagnosis, whether the participant was
on an antihyperlipidemic drug at any time, and the first
four genotypic principal components (PC1–PC4). This model
represents a combination of statistical models used in previous
association studies targeting triglyceride measures (Teslovich
et al., 2010; Willer et al., 2013; Gao et al., 2014; Davis et al.,
2017). Age was defined as the participant age in 2020. Residuals
were normally distributed under this model (Hoffmann et al.,
2018b). Association tests with p-values less than 8.75 × 10−9

were considered statistically significant: a threshold based on
a Bonferroni correction with the total number of high-quality
variants used in the GWAS.

Gene-Based Collapse Analysis
SKAT is a standard method to examine gene effects by combining
common and rare variants in a gene by up-weighting rare variants
and down-weighting common variants to balance effect sizes (Lee

3https://www.ebi.ac.uk/gwas/

et al., 2012; Ionita-Laza et al., 2013). The SKAT analysis was
performed using the R package SKAT4, and the weighting scheme
outlined by Ionita-Laza et al. (2013): rare variants are weighted as
Beta(MAF; 1,25); common variants are weighted as Beta(MAF;
0.5,0.5). Covariates included in the model were the same as those
used in single-variant GWAS: age, sex, BMI, DM2 diagnosis,
whether the participant was on an antihyperlipidemic drug at any
time, and PC1–PC4. Gene-based association tests with p-values
less than 2.0 × 10−6 were considered statistically significant; this
threshold was based on a Bonferroni correction with n = 25,283
(Auer and Lettre, 2015).

Phenome-Wide Association Study
(PheWAS)
The R package PheWAS v. 0.99.5.4 (Carroll et al., 2014)
was used as a basis to perform phenome-wide association
analyses (PheWAS). Specifically, the PheWAS investigated
whether triglyceride levels are a predictor of incidence of
specific phenotype groups in the HNPT_EU. Each phenotypic
group was investigated via a simple logistic regression using
the covariates age, sex, BMI, DM2 diagnosis, and the first
four genotypic principal components to adjust for ethnicity.
Participant ICD codes recorded in the EHR were converted
into 1,857 phenotype groups (“phecodes”) using the PheWAS
package as described in Denny et al. (2013) and Carroll et al.
(2014); 1,386 of these phenotype groups contained more than
20 cases and were examined for association with triglyceride
levels. Any model in which the maximum likelihood estimate
could not be calculated due to quasi-complete or complete
separation by the predictor variable (Venables and Ripley, 1999)
was excluded at this point from further investigation. The
significance level was computed by first calculating the adjusted
p-values for the multiple hypothesis tests performed using the
Benjamini–Hochberg false discovery rate (FDR) (Benjamini and
Hochberg, 1995) and selecting the raw p-value corresponding to
the FDR = 0.05 significance level, following a modification of
Denny’s protocol (Denny et al., 2013). This level (α = 3.8 × 10−3)
is represented by the red line in Figure 1. Statistically significant
results are shown in Supplementary Table 2.

A series of PheWAS were performed to investigate pleiotropy
of the 549 variants found to be statistically significant in the
single-variant GWAS. Specifically, each analysis examined
760,914 possible phenotype–genotype associations of 549
variants and 1,386 phenotype groups with at least 20 cases in
the HNPT_EU. In order to identify associations across diverse
conditions and diseases, three statistical models were used: the
identical model as in the GWAS; a second model broadened
to include age, sex, BMI, and PC1–PC4; and a third model
including only age, sex, and PC1–PC4. These two latter models
directly follow published studies that identify pleiotropy in
triglyceride-associated variants (Ridker et al., 2008; Dehghan
et al., 2011; Kraja et al., 2011; Middelberg et al., 2011; Schunkert
et al., 2011; Nelson et al., 2017; Hoffmann et al., 2018b; Ligthart
et al., 2018). The additive genotype model was used as the
predictor for the phenotype. To account for spurious results

4https://cran.r-project.org/web/packages/SKAT/index.html
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FIGURE 1 | Phenome-wide analysis in the HNPT_EU between triglyceride levels and EHR diagnoses. Each point represents the p-value of an individual association
between triglyceride levels and incidence of one of 1,372 phenotype groups, with covariates age, sex, DM2, and PC1–PC4. The x-axis shows different phenotypic
conditions, grouped into 11 groups. The y-axis presents the -log10 transform of the p-value of each association. The significance level α = 3.8 × 10-3 is shown by
the horizontal red line. Comprehensive results can be found in Supplementary Table 2.

due to either the small counts of rare variants in case/control
cohorts, or possible diagnosis or data-entry errors in the EHR, a
conservative Bonferroni correction was performed to adjust for
the false discovery rate.

Any model in which the maximum likelihood estimate could
not be calculated due to quasi-complete or complete separation
of the phenotype incidence by minor allele incidence (Venables
and Ripley, 1999) was excluded from further investigation. The
significance level of each PheWAS was then computed via a
Bonferroni correction as α = 0.05/N, with N the number of
feasible models tested. Models with the predictor (genotype)
coefficient deemed statistically different to zero via a t-test at a
p-value less than α were retained. A standard Fisher exact test
(one degree of freedom) was performed on the allelic distribution
between cases and controls as in Schlauch et al. (2016, 2019).
The raw p-value and power of the Fisher test are included
in Supplementary Table 3. The table also contains the allelic
odds ratio that describes the association between the specific
phenotype and minor allele of each variant, irrespective of
covariates. The final column (Supplementary Table 3) indicates
which covariates were included in the statistical model.

Biobank Validation
The UK Biobank Resource (UKB5) provided a validation
cohort for HNPT_EU single-variant and gene-based association

5www.ukbiobank.ac.uk

discoveries. The validation cohort includes 35,321 European
UKB participants with BMI measures [Field ID 21001],
triglycerides [Field ID 30870], incidence of DM2 [Field ID
130708], and antihyperlipidemic medications [BNF code in the
GP prescription records, Field ID 42039]. UKB participants had
one or two records of the continuous variables; thus means were
computed without any further quality control. We used the FE
version 43 of the UKB PLINK-formatted exome files [Field ID
23160] (Regier et al., 2018) for the gene-based analysis. Imputed
UKB genotypes [Field ID 22801–22823] were used to replicate
HNPT_EU associations. Demographics of the UKB cohort are
presented in Supplementary Table 4.

Quality control steps for UKB exome data closely followed
that of the HNPT_EU Exome+ data platform. Related individuals
were removed using the genetic kinship matrix provided by
the UKB [Field ID 22021]. Variants out of Hardy–Weinberg
equilibrium (p< 1 × 10−6) were excluded. Empirical calculations
of the UKB differed due to the difference in sequencing
platforms; call rate distributions were used to set thresholds:
call rates less than 99% and individual call rates less than
98% were removed. PLINK v1.9 (Purcell et al., 2007) removed
variants in LD, based on the same parameters used in the
discovery cohort.

Single-variant validation included the identical linear model
as in the discovery cohort with covariates age, sex, BMI,
DM2 diagnosis, antihyperlipidemic medication status, and the
first four principal components. Principal components were

Frontiers in Genetics | www.frontiersin.org 5 March 2021 | Volume 12 | Article 639418

http://www.ukbiobank.ac.uk
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-639418 February 25, 2021 Time: 14:40 # 6

Read et al. Genetics Driving Triglycerides in Nevada

generated identically to those in the HNP cohort. The same
significance level was used (p-value < 8.75 × 10−9). Gene-based
validation in the UKB was based on 1,935,811 single variants
and its significance level was identical to the discovery analysis
(p < 2.0 × 10−6).

RESULTS

Demographics
The mean level of standardized and quality-controlled
triglyceride levels of the HNPT_EU was 119.29 mg/dL with
standard deviation of 67.64 mg/dL (Table 1). As the effect size
is directly related to the expected value (mean) and variation
of the response variable, we expect raw effect sizes to be
proportionally large values.

Single-Variant GWAS
The single-variant GWAS identified 549 statistically significant
non-pruned variants (p < 8.75 × 10−9) associated with
triglyceride levels in the HNPT_EU (Supplementary Figure 1
and Supplementary Table 5). As Supplementary Figure 1 shows,
144 variants in the well-known triglyceride hotspot 11q23.3 were
shown to be associated with strong significance to triglyceride
levels in the HNPT_EU. There are published associations within
this multi-gene region (BUD13, ZPR1, APOC3, SIK3, and
APOA5), as well as MLXIPL, LPL, and GCKR to triglyceride
levels: we list only a few here (Kathiresan et al., 2008; Willer et al.,
2008; Hegele et al., 2009; Hindorff et al., 2009; Murray et al.,
2009; Ariza et al., 2010; Johansen et al., 2010; Ken-Dror et al.,
2010; Teslovich et al., 2010; Waterworth et al., 2010; Kraja et al.,
2011; Comuzzie et al., 2012; Kettunen et al., 2012; Coram et al.,
2013; Keller et al., 2013; Lutz et al., 2015; Yamasaki et al., 2015;
Hoffmann et al., 2018b; van der Harst and Verweij, 2018; Wojcik
et al., 2019).

Gene-Based Association Analysis
SKAT identified 16 gene-based associations at a significance level
of α = 2.0 × 10−6 (Figure 2 and Table 2) in the HNPT_EU.
Fifteen of these were previously published as being related to
triglyceride, lipid and/or BMI measurements including APOA5,
ZPR1, BUD13, APOC3, GCKR, LPL, SIK3, BAZ1B, and APOA4

TABLE 1 | Demographic information for HNPT_EU.

Cohort size 9,183

Age (years) 58.68 ± 15.62

Male (%) 3,081 (33.55)

DM2 1,489 (16.21)

Prescribed antihyperlipidemics 3,544 (38.59)

Quality-controlled BMI 29.13 ± 6.43

Quality-controlled triglycerides 119.29 ± 67.64

Table of cohort characteristics. Continuous variables are presented as mean ± SD;
categorical variables are presented as counts and percentages. All values were
standardized with a custom algorithm to remove outliers (see section Materials and
Methods). BMI is in kg/m2; triglyceride units are mg/dL.

(Merkel et al., 2002; Tsutsumi, 2003; Mar et al., 2004; Florvall
et al., 2006; Corella et al., 2007; Willer et al., 2008, 2009, 2013;
Hegele et al., 2009; Hindorff et al., 2009; Murray et al., 2009; Qi
et al., 2009; Ariza et al., 2010; Delgado-Lista et al., 2010; Johansen
et al., 2010; Keebler et al., 2010; Ken-Dror et al., 2010; Waterworth
et al., 2010; Chambers et al., 2011; Kraja et al., 2011; Major et al.,
2011; Ota et al., 2011; Carvalho-Wells et al., 2012; Coram et al.,
2013; Weissglas-Volkov et al., 2013; Hassan et al., 2014; Yamasaki
et al., 2015; Lu et al., 2016; Obata et al., 2016; Sakamoto et al.,
2018) (Supplementary Table 6). Several of these genes reside in
the chromosome 2 and 11 triglyceride hotspots. The two most
significant gene-based associations in the HNPT_EU were the
zinc finger protein encoded by ZPR1 and Apolipoprotein A-V
encoded by APOA5 (p = 2.39 × 10−42 and p = 1.36 × 10−40,
respectively) (Table 2).

Ten of the significant gene-based associations contained
at least one statistically significant variant identified by the
single-variant GWAS. Three of these genes had a stronger
agglomerative gene-based effect than their respective single-
variant associations; thus, their associations were not driven by
a single statistically significant variant (Table 2). Conversely,
six gene-based associations had no overlap in the single-variant
GWAS. These associations would be undetected in a study based
solely on a single-variant GWAS.

Significant Phenotypic Associations With
Triglyceride Levels
The first PheWAS identified expected statistically significant
phenotypic associations of triglyceride levels. Triglyceride levels
were strong predictors of incidence of hyperglyceridemia,
hyperlipidemia, disorders of lipid metabolism, hypertension,
and hypercholesterolemia, in tandem with the covariates.
Additionally, triglyceride levels demonstrated a significant
positive effect in ischemic heart disease; hypertensive heart,
renal, and kidney disease; chronic liver disease; a number of
mental disorders, as well as sleep disorders. Higher triglyceride
levels showed a protective effect on osteoporosis. Comprehensive
results are shown in Figure 1 and Supplementary Table 2.

Pleiotropy of Rare and Common Variants
The second series of PheWAS identified variants with a
significant association to one or more phenotype groups. Many of
the variants were associated with hyperglyceridemia, supporting
both EHR diagnoses and the GWAS results above. One example
of recurring pleiotropy is the rare missense variant rs137891079,
which is a significant predictor of higher triglyceride levels in
the HNPT_EU, and is also shown to be a predictor of cerebral
atherosclerosis. Additionally, this variant was found to be
involved in osteomyelitis, and other infections within and outside
of the bone. The variant is not published in current releases
of PhenoScanner, NHGRI-EBI GWAS Catalog or ClinVar. We
note that the variant is extremely rare, with only 10 carriers in
the HNPT_EU, of which two are in the cerebral atherosclerosis
case group. The variant rs947056517 is shown to be associated
with increased incidence of HNPT_EU pancreatic disease; it
is also extremely rare and is not currently published with any
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FIGURE 2 | Manhattan plot of significant SKAT-based gene collapse results. The x-axis represents the genomic start position of 25,283 genes. The y-axis represents
-log10-transformed raw p-values of each genotypic association. For ease of viewing, only genes above the horizontal line, which indicates the significance level
α = 2.0 × 10-6, are annotated.
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TABLE 2 | Significant gene-based associations.

Gene Id Chrom Gene contains at
least one
significant variant
from the
single-variant
GWAS

The gene collapse
association p-value is
greater than the
single-variant
association p-value for
all variants in the gene

HNPT_EU
gene-collapse

p-value

UKB
gene-collapse

p-value

HNPT_EU test
statistic

HNPT_EU
number of tested

variants

HNPT_EU
number of rare
variants tested

HNPT_EU
number of

common variants
tested

Previous
association with

triglycerides

ZPR1 11 Y N 2.39 × 10−42 1.17 × 10−75 66.88 34 26 8 *

APOA5 11 Y Y 1.36 × 10−40 1.16 × 10−124 52.05 25 19 6 *

BUD13 11 Y N 1.13 × 10−37 2.82 × 10−53 48.04 65 34 31 *

GCKR 2 Y N 9.75 × 10−23 1.26 × 10−38 35.39 73 57 16 *

APOC3 11 Y Y 2.65 × 10−18 2.69 × 10−85 28.54 18 13 5 *

LPL 8 Y Y 5.93 × 10−14 1.51 × 10−69 22.09 106 72 34 *

NRBP1 2 Y N 7.15 × 10−10 2.33 × 10−15 19.50 31 29 2 *

CSRNP2 12 Y N 4.09 × 10−08 9.35 × 10−01 14.46 32 25 7

APOA4 11 N NA 5.73 × 10−08 2.01 × 10−35 14.14 30 20 10 *

IFT172 2 N NA 6.46 × 10−08 7.48 × 10−14 17.96 118 92 26 *

BAZ1B 7 N NA 9.38 × 10−08 8.45 × 10−15 15.34 97 67 30 *

SIK3 11 Y N 3.03 × 10−07 1.92 × 10−12 13.61 321 175 146 *

MLXIPL 7 Y N 4.45 × 10−07 1.97 × 10−37 13.44 81 56 25 *

FNDC4 2 N NA 5.03 × 10−07 6.35 × 10−12 14.72 10 9 1 *

PPM1G 2 N NA 7.58 × 10−07 9.36 × 10−01 11.99 37 29 8 *

EIF2B4 2 N NA 1.14 × 10−06 1.05 × 10−17 12.06 36 26 10 *

This table shows the statistically significantly associated genes with triglyceride levels in the HNPT_EU and UKB as identified by the SKAT gene-based association analysis. The second column indicates whether the
gene contains a variant identified in the single-variant GWAS: this demonstrates whether a gene association would have been undetected based on the single-variant analysis alone. The third column indicates whether
the gene-based association is stronger than any single variant association in the gene: “N” indicates that one single-variant association may be driving the gene-based association; “Y” indicates that a combination of
variants is driving the association. Genes marked with an “∗” in the last column have a published association with triglycerides. References for those associations can be found in Supplementary Table 6.
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association to the best of our knowledge. Results from each model
are presented in Supplementary Table 3.

UK Biobank Validation
Significant single-variant associations identified in the
HNPT_EU were examined for validation in the UKB: results
are presented in Supplementary Table 7. Approximately 50%
of the significant HNPT_EU variants lie on chromosomes 8
and 11 and were used for validation. Of 264 significant variants,
253 (95.8%) are imputed genotypes in the UKB resource. Of
these, 209 (82.6%) were validated at p < 8.75 × 10−9. The effect
direction of all variants was equivalent between the two cohorts,
and most had similar magnitudes. Table 2 outlines the validation
of gene-based association results between the two cohorts. Of
16 genes, 14 (87.5%) were validated in the UKB with increased
significance. The two genes that did not demonstrate significant
association to triglycerides in the UKB cohort were PPM1G and
CSRNP2.

DISCUSSION

Single-Variant GWAS
Variants in well-known triglyceride-related genes such as BUD13
and SIK3 are known to be associated with triglyceride levels,
lipid traits, overall lipid homeostasis, or metabolic syndrome
(Kathiresan et al., 2008; Kraja et al., 2011; Keller et al., 2013;
Sakamoto et al., 2018). Other expected single-variant associations
include those in ZPR1, which codes for a regulatory protein
known to bind several transcription factors that may influence
obesity (Ueyama et al., 2015); variants within ZPR1 are known
to affect triglyceride levels, as well as modulate HDL and total
cholesterol levels (Comuzzie et al., 2012; Hoffmann et al., 2018b;
Wojcik et al., 2019). The gene ZPR1 is known to interact with
the triglyceride-associated gene APOA5 (Ueyama et al., 2015),
which plays an important role in regulating plasma triglyceride
levels, a major risk factor for coronary artery disease (CAD) (van
der Harst and Verweij, 2018). Variants in APOA5 are associated
with triglyceride levels, diseases involving lipid traits, CAD, total
cholesterol levels, and metabolic syndrome (Kettunen et al., 2012;
Zhou et al., 2013; van der Harst and Verweij, 2018).

As noted in Supplementary Table 5, several other variant-
based associations were identified in the HNPT_EU that are
not yet published as far as we are aware. For example,
we observed a significant association between five RASGRP3
variants and elevated triglycerides. The protein product, RAS
Guanyl Releasing Protein 3, is a member of Ras guanyl-
releasing family of proteins that are receptors for phorbol esters
as well as diacylglycerol (DAG) (Stone, 2011). Importantly,
the overproduction of DAG is associated with abnormal
glucose metabolism (Hiramatsu et al., 2002; Das Evcimen and
King, 2007), a published associated condition with elevated
triglycerides (Parks, 2001). Additionally, the study identified
nine variants in DPP6 that were significantly associated with
triglycerides. Previous studies suggest that DPP6 binds specific
voltage-gated potassium channels in neurons and plays a role
in synaptic development and plasticity (Maussion et al., 2016;

Lin et al., 2018). Interestingly, DPP6 is predominantly expressed
by pancreatic islets (Demine et al., 2020), suggesting a role in
fatty acid metabolism. Indeed, previous studies have established
a connection between DPP6 and the glucose-insulin pathway,
as reported by Imai et al. (2008). Two variants in FOXO1 were
also unpublished. Previous research demonstrates that FOXO1,
a nuclear transcription factor, modulates the insulin response
of apoC-III, a key enzyme influencing triglyceride metabolism
(Altomonte et al., 2004).

Gene-Based Association Analysis
Statistical power of classical rare single-variant GWAS is typically
under-powered due to low minor allele frequencies and small
sample sizes. Recent gene-based collapsing techniques such
as SKAT, burden tests, and C-alpha address these issues by
combining variants in a defined genetic region to increase
statistical power. The SKAT method is ideal for our study as it
(a) allows for combinations of common and rare variants via a
weighting scheme (Lee et al., 2012); (b) it does not implicitly
assume that all variants in one gene influence the trait in the same
direction and same approximate magnitude as in the burden test;
(c) it allows covariates to be included in the association model,
unlike the C-alpha test (Wu et al., 2011). We observed variants
within APOC3 and within GCKR that are in proximity to each
other (<10 kb) but have notably different effects on triglycerides
in opposite directions. This is contrary to the main assumption
behind a gene-based burden test (Wu et al., 2011).

We note here the utility of using gene-based association
in tandem with single-variant association techniques. The
advantage of this dual approach is especially pronounced in
APOC3, found to have a strong gene-based association with
triglyceride levels in the HNPT_EU, and one of the most-studied
genes associated to triglyceride levels (Jørgensen et al., 2014;
Hassan, 2014; TG and HDL Working Group of the Exome
Sequencing Project et al., 2014; Kohan, 2015; Carey et al., 2016;
Hu et al., 2016; Crawford et al., 2018; Reyes-Soffer et al., 2019).
The gene collapse mechanism alone does not show that this gene-
based association is driven by only two variants: rs138326449 and
rs5128. The gene-based association (p = 2.65 × 10−18) is based
on 18 variants. Without these two variants, the significance of
the association is p = 0.02, rendering the gene-based association
insignificant, genome-wide. Single-variant HNPT_EU analysis
shows the strength of these associations (p = 5.35 × 10−09 and
p = 2.08 × 10−16, respectively), as well as the notable difference in
their effect magnitude and direction (β = −56.61, and β = 12.56,
respectively). The variant rs5128 is a common variant that was
previously associated with triglycerides in the UKB (Prins et al.,
2017). Variant rs138326449 (R19X) is a well-studied rare loss-
of-function variant with predicted ability to severely disrupt the
function of Apolipoprotein C3, the protein product of APOC3
(TG and HDL Working Group of the Exome Sequencing Project
et al., 2014). Studies showed that this variant is associated with
notably lower triglyceride levels; Jorgensen’s study reported a 39%
decrease and a reduced risk of cardiovascular disease (Jørgensen
et al., 2014; Carey et al., 2016). The HNPT_EU includes 42
heterozygotes (0.46%) whose mean triglyceride level is 51% lower
than in those without the mutation (Supplementary Figure 2).
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Another advantage of using both approaches is that
SKAT identified five genes not observed in the single-variant
association. One gene, BAZ1B was previously associated with
triglycerides in several studies (Kathiresan et al., 2008; Johansen
et al., 2010; Prins et al., 2017) and is hypothesized to be directly
involved in lipid metabolism (Kong et al., 2015). Similarly,
PPM1G, a gene whose protein product has been clinically
verified to regulate the expression of APOE (Benson et al., 2018),
demonstrates a strong association in the HNPT_EU cohort but
does not contain significant single-variant associations. APOE is
necessary in lipid metabolism and triglyceride-related responses
to altered fat intake (Waterworth et al., 2010; Carvalho-Wells
et al., 2012; Willer et al., 2013).

The gene-based association of FNDC4 with triglycerides
was not observed in the single-variant GWAS. FNDC4, which
codes for Fibronectin Type III Domain-Containing Protein
4, functions as an anti-inflammatory factor on macrophages.
(Bosma et al., 2016) and Lee et al. (2018) reported that FNDC4
mitigates hyperlipidemia-induced insulin resistance through the
suppression of inflammation and endoplasmic reticulum stress
in adipocytes. PhenoScanner shows that this gene was previously
associated with triglycerides based on the study by Willer
et al. (2013), Staley et al. (2016), and Kamat et al. (2019)
(Supplementary Table 6).

A gene-based association with EIF2B4 was also undetected
in the single-variant GWAS. This gene codes for the Eukaryotic
Translation Initiation Factor 2B Subunit Delta, one of five
subunits of the eIF2B complex. This complex is crucial for
initiating the translation of mRNAs into peptides and therefore
regulates the translation rate in the context of several different
stress conditions (Rabouw et al., 2019; Marintchev and Ito, 2020).
Variants in this gene have been associated with inappropriate
insulin secretion from pancreatic β-cells (Bursle et al., 2019)
and mutations in other subunits, which affect eIF2 signaling,
have been associated with early onset diabetes (De Franco et al.,
2020). Moreover, studies in animal models have connected eIF2
signaling to heart inflammation cardiac hypertrophy (Zhang
et al., 2020). Willer et al. (2013) also found an association between
this gene and triglycerides (Supplementary Table 6).

Significant Phenotypic Associations With
Triglyceride Levels and Pleiotropy
Elevated triglyceride levels were shown to be a significant
predictor of expected phenotype groups (disorders of lipid
metabolism, hyperlipidemia, and hypercholesterolemia,
hypertension, ischemic heart disease, hypertensive heart
disease) in the HNPT_EU, but also some less canonical clinical
conditions, such as chronic liver and kidney diseases and several
mood disorders. The odds ratios for these continuous-variable
based associations are near one, indicating a small increase
in absolute risk given a one-unit change in triglyceride levels;
however, across the physical range of triglycerides, these
differences are notable. The HNPT_EU odds ratio between
triglycerides and chronic liver disease is approximately 0.3%
(p-value < 4 × 10−9); although that implies only a 0.3% increase
in the odds of developing chronic liver disease with a 1-mg/dl

increase in triglyceride levels, it is notable that an individual
with a triglyceride level of 150 mg/dl has a 10% increase in odds
of developing chronic liver disease compared to a participant
with the mean cohort level of 119 mg/dl, with respect to
fixed covariates.

A number of established triglyceride-related variants listed in
Supplementary Table 5 have been shown to exhibit pleiotropic
effects in European cohorts with elevated C-reactive protein
(Ridker et al., 2008; Dehghan et al., 2011; Ligthart et al., 2018),
metabolic syndrome traits (Kraja et al., 2011), cholesterol levels
(Hoffmann et al., 2018b), cardiovascular risk factors (Middelberg
et al., 2011), coronary artery disease (Schunkert et al., 2011;
Nelson et al., 2017), among others. These are quantitative
trait studies, while the PheWAS is based on incidence of
disease or condition as dictated by ICD codes. Our study
does, however, identify pleiotropy in a number of variants. The
variant rs77466627 is indicative of increased incidence of cardiac
complications. Cerebral atherosclerosis also shows an increased
incidence in the HNPT_EU in minor allele carriers of the variant
rs137891079. A common variant, rs4938303, is found to be
somewhat protective of GERD. It is of interest that many of the
non-hyperglyceridemic associations have not yet been reported
and may merit further examination in larger cohorts. As a
majority of the variants tested in this study are indeed very rare,
additional care must be carried out when examining associations.
Although the Fisher test power calculation may add reassurance
to the hypothesis test, all very rare variant hypotheses presented
here should ultimately be carried out in larger cohorts.

UK Biobank Validation
The UKB is a standard European cohort for common and rare
variant analysis validation (Hoffmann et al., 2018a; Glentis et al.,
2019; Cirulli et al., 2020; Siewert et al., 2020). As noted in
the results, single-variant and gene-based associations identified
in our study were validated to a great degree in the UKB:
effect sizes and magnitudes, for the significant single-variants in
both cohorts were, in most cases, very similar (Supplementary
Table 7). The validation of the gene-based analysis was performed
on an identical European cohort using the UKB exomes (Regier
et al., 2018). Table 2 presents the gene-based validations. The two
associations that could not be validated, PPM1G and CSRNP2,
could be attributed to the differences in the cohort characteristics,
or differences in the genotyping platforms: the UKB platform
contains only exomes and exome adjacent variation (Van Hout
et al., 2019), while the Helix Exome+ platform includes exomes
and many other intronic and non-coding sites. In conclusion, the
single-variant and gene-based GWAS results in the HNPT_EU
were validated with strong significance in the UKB.

Using standard GWAS methods and gene-based association
techniques with very rare, rare and common variants, coupled
with a comprehensively EHR-cross-referenced cohort of notable
size, our study validated a number of known gene-based and
variant-based links with elevated triglycerides.

It also uncovered variants associated with elevated triglyceride
levels that, to the best of our knowledge, are unpublished.
Additionally, direct links between triglyceride levels and
unexpected diseases in the HNPT_EU were exhibited. Pleiotropy
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of triglyceride-related variants revealed further associations yet
unrecorded. We recognize that many variants reported here are
very rare (and thus possibly unpublished) and will require future
validation with larger cohorts. Although mostly academic in
nature, the study, with its combination of approaches (single-
variant GWAS, gene-based associations, phenotypic associations,
and phenotype–genotype analyses), provides a powerful platform
for the Healthy Nevada Project dataset. These are the first steps to
explore a range of diseases and conditions, and to bridge bench
and bedside with personalized translational medicine.
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