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There is some evidence that an improved understanding of executive control in the
human movement system could be gained from explorations based on scale-free, fractal
analysis of cyclic motor time series. Such analyses capture non-linear fractal dynamics
in temporal fluctuations of motor instances that are believed to reflect how executive
control enlist a coordination of multiple interactions across temporal scales between
the brain, the body and the task environment, an essential architecture for adaptation.
Here by recruiting elite rugby players with high motor skills and submitting them to
the execution of rhythmic motor tasks involving legs and arms concurrently, the main
attempt was to build on the multifractal formalism of movement control to show a
marginal need of effective adaptation in concurrent tasks, and a preserved adaptability
despite complexified motor execution. The present study applied a multifractal analytical
approach to experimental time series and added surrogate data testing based on
shuffled, ARFIMA, Davies&Harte and phase-randomized surrogates, for assessing
scale-free behavior in repeated motor time series obtained while combining cycling
with finger tapping and with circling. Single-tasking was analyzed comparatively.
A focus-based multifractal-DFA approach provided Hurst exponents (H) of individual
time series over a range of statistical moments H(q), q = [−15 15]. H(2) quantified
monofractality and H(-15)-H(15) provided an index of multifractality. Despite concurrent
tasking, participants showed great capacity to keep the target rhythm. Surrogate
data testing showed reasonable reliability in using multifractal formalism to decipher
movement control behavior. The global (i.e., monofractal) behavior in single-tasks did
not change when adapting to dual-task. Multifractality dominated in cycling and did
not change when cycling was challenged by upper limb movements. Likewise, tapping
and circling behaviors were preserved despite concurrent cycling. It is concluded that
the coordinated executive control when adapting to dual-motor tasking is not modified
in people having developed great motor skills through physical training. Executive
control likely emerged from multiplicative interactions across temporal scales which puts
emphasis on multifractal approaches of the movement system to get critical cues on
adaptation. Extending such analyses to less skilled people is appealing in the context of
exploring healthy and diseased movement systems.
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INTRODUCTION

Modern conceptions of the movement system in humans are
closely related to the notion of a multifractal architecture of
executive control (Dixon et al., 2012; Stephen et al., 2012; Ihlen
and Vereijken, 2013; Delignières et al., 2016; Bell et al., 2019).
Executive control refers to the fundamental ability in humans to
elaborate, maintain and adjust intentional goal-directed actions
in changing environments. An effective control needs to link the
brain, the body and the task environment to ensure movement
stabilization through intricate interactions widely distributed
among perceptual, cognitive and motor functions.

Fractal dynamics has been inferred an essential background
for a typical architecture of control, providing the movement
system with essential properties of flexibility (adaptability) and
robustness reflected in aiming stabilization. Although counter-
intuitive with the notion of movement stability, variability is
inevitable in repeated motor instances. Increasingly over the
past few years, researchers have demonstrated that a structured
temporal variability in movement system output represents a
non-trivial substrate for exploring the architecture of movement
control (Diniz et al., 2011; Delignieres and Marmelat, 2012; Ihlen
and Vereijken, 2013; Wijnants, 2014). Fluctuations over time
are not just random errors but the output of a dynamically
organized system. The identification of fractal dynamics with
homogeneous sized fluctuation as a function of temporal scales
(monofractal) has evolved over years to include the conception
of finer multifractal properties (Ihlen and Vereijken, 2013).
Multiplicative cascade models have been developed to account
for multiplicative interactions within complex systems, which has
inspired investigations of executive control in motor behavior
(Ihlen and Vereijken, 2010, 2013; Stephen et al., 2012; Kelty-
Stephen et al., 2013; Mangalam and Kelty-Stephen, 2020).
Multiplicative cascading is believed to give rise to heterogeneous
fractal dynamics. The degree of heterogeneity is generally
associated to the degree to which multiplicative interactions
shape the system architecture, which is translated in system
output dynamics. Thus, the strength of interactions across scales
could be captured by measures of multifractality in motor
time series, as said measures index variations in fractal scaling
exponents which themselves describe how fluctuations are related
to observational scales.

In that respect, methodological developments have been an
active part of research in fractal physiology (Chhabra and Jensen,
1989; Eke et al., 2002, 2012; Ihlen and Vereijken, 2013; Kelty-
Stephen et al., 2013; Mukli et al., 2015; Delignières et al., 2016).
While mostly monofractality in time series of motor behavior has
depicted a global power-law linking fluctuations to observational
scales, multifractal approaches have reported on the presence
of several power-laws, and a more intricate system architecture,
where the shape and more precisely the width of the multifractal
spectrum is believed to capture the multiplicative interactions
across temporal scales.

The reliability in evaluating subtle changes in complex motor
behavior strongly depends on accurate determination of the
shape of the multifractal spectrum. A method called focus-based
approach removes certain ambiguities in spectrum determination

(Mukli et al., 2015). The approach is based on computing
the coordinates of a focus point which helps for a correct
determination of the linear relation between fluctuations and
scales on a log-log scale, whatever the range of observational
scales. Interestingly the focus-based multifractal formalism holds
for time-domain (detrended fluctuation analysis, DFA, signal
summation conversion, SSC) and frequency-domain (wavelet
leaders based on continuous wavelet transform) approaches of
movement variability. As “good practices” warn on the use
of multifractal methods on series smaller than 1,000 samples,
a number of movement repetitions that is hardly achievable
without fatigue or dropout, the fact that several methods
may benefit from a focus-based approach helps strengthening
applications of multifractal formalism to motor control (Torre
et al., 2019). Of similar importance, the presence of multiple
power-laws reflecting nonlinear rather than linear processes in
time series is critical for a satisfactory understanding of the
architecture in movement control (Ihlen and Vereijken, 2013).
In this regard, a great deal of attention has been paid in recent
years to the fact that additive linear processes, not only nonlinear
multiplicative processes, may be at the origin of multifractal
signature in time series. To tease apart these different sources
of multifractality, it is advised to employ multifractal analyses
in conjunction with a form of surrogate analysis, that provides
linearized surrogate versions of original time series (Ihlen and
Vereijken, 2010; Eke et al., 2012; Racz et al., 2018, 2019).

Fractal-based approaches of executive control have
highlighted the role of internal sources and external sources
of variation on fractal properties in movement control. Simple
reaction tasks where each trial generates the same stimuli and the
same kind of response is a good example where external sources
of variations are minimized. By contrast, in multiple reaction
tasks each trial differs to a different extent which introduces more
external sources of variation. This is reflected in both the global
(monofractal) scale-free behavior and the multifractal behavior
of movement variability which thus allows distinguishing
singular responses when either internal of external sources of
variability dominate (Ihlen and Vereijken, 2013; Wijnants, 2014);
behavioral time series decorrelates with increasing sources of
external variations, as they did in pathological systems.

The multifractal formalism offers an opportunity to unravel
effective adaptation through the multifractal architecture of
motor behavior. In response to changing constraints, the
motor variable will exhibit successively periods with small
fluctuations to stabilize performance despite constraints and
periods with large fluctuations reflecting transitions to adapt
to any source of variation. The associated persistent and
impersistent architecture of the motor behavior are at the origin
of a wide range of local singularity exponents, which is reflected in
a large multifractal spectrum (Ihlen and Vereijken, 2013). Thus,
multifractal formalisms applied to movement system provides
added value to explore adaptation in executive control in context
of change in environmental constraints. Following this line of
thought, adaptation does not resonate like an unclear general
concept. It has nicely been demonstrated recently that fractal-
based approach of sensorimotor variability found very interesting
echo in concepts of adaptability and adaptation in movement
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system (Torre et al., 2019). While exploiting a multifractal
approach of finger tapping time series performed with gradual
sensory input deprivation, the authors showed that distinct
fractal properties in motor behavior reflect impaired functional
ability on the one hand, and effective internal adaptation of
the movement system for maintaining performance despite
constraints on the other hand.

The aim of the present study was to build on the multifractal
formalism to explore movement control when adapting to dual
motor tasking. By recruiting elite rugby players having developed
high skills in coordinating legs and arms motor execution, a
marginal need of adaptation is hypothesized, which should be
reflected in preserved multifractal motor behavior.

MATERIALS AND METHODS

Participants
Eight Bordeaux University students participated in this
experiment after providing informed consent, according to the
guidelines of the Faculte de STAPS and approve by the Faculte
des STAPS Institutional Review Board, in accordance with the
Declaration of Helsinki. Experiments were part of their academic
curriculum, for which they received credits. All participants
were elite female rugby players aged 21 ± 2 years, 1.64 ± 0.6 m
63 ± 7 kg. All of them have been playing rugby for more than 7
years and have reached a National or International level. They
exhibited no motor impairment at the time of the experiments.

Apparatus and Data Recordings
Participants pedaled at 60 rpm (see below) on a friction-loaded
cycle ergometer (Monark 818E, Monark, Sweden) against a
friction load amounting to 10 N (power output 60 W). A light
meter pod connected to a PowerLab (AD Instruments) was
used to detect the duration of successive pedal revolutions
at a sampling frequency 1 kHz. A table was fixed in front
of the participant, on which she could comfortably rest her
arms while cycling.

As regards finger-tapping while cycling, a plastic box
containing an iPod (Apple, Cupertino, CA, United States) was
placed on the table at a comfortable distance chosen by the
participant. The index finger of their dominant arm was equipped
with a thimble. The iPod recorded the sound made by the index
hitting the box at a sample frequency 44.1 KHz.

Circling while cycling was performed thanks to the cover
of a salad spinner. Again, the light meter Pod signal served
for detecting the duration of each turn. Finger-tapping and
circling in single-task condition were obtained in similar
conditions, seated on the cycle ergometer saddle, but the
participant did not pedal.

Custom Matlab (R2019b, Mathworks) routines were
developed to detect peak-to-peak time intervals in each of
the recorded signal (Figure 1) and to extract motor time series
with high temporal resolution (given high sampling rates,
1 and 44.1 kHz).

FIGURE 1 | Raw signals recorded with light detection (sampling rate 1 kHz)
during circling (bottom panel) and sound detection (sampling rate 44.1 kHz)
when cycling and finger tapping (tapping is shown as an example). For
circling, interpeak time intervals are illustrated by red dots placed on
successive peaks detected by a Matlab routine. For sound wave recordings
(middle panel), the sound wave was squared (upper panel), then a threshold
was detected unambiguously (inset) by a Matlab routine using a threshold.

Experimental Design
In a randomized order [using random() in a spreadsheet],
participants executed five runs on separate days: cycling,
cycling+tapping, cycling+circling, tapping, circling.

Experimental Procedure
Participants performed each motor task following a
classic synchronization-continuation paradigm (Wing and
Kristofferson, 1973). When dual-tasking, cycling was performed
as the prior task. During the initial phase lasting 30 s, participants
had to cycle in synch with the tempo 1 Hz imposed by the
metronome. Then, the metronome was stopped and the consign
was to keep the rhythm for the next 10 min. After 1 min
free cycling, the metronome initialized the second motor task
performed at 2 Hz, either tapping or circling. A gap between
the rhythm of the concurrent tasks (1 vs. 2 Hz) was used to
prevent synchronization during dual-tasking, which could be a
source of particular behaviors e.g., complexity matching. When
executed as a single-task, tapping and circling were stopped after
5.5 min because the aim was to obtain at last 512 repeated motor
instances to get 512-sample time series, a value that was de facto
reached after 5 min at 2 Hz.

Experimental Time Series and Drift
Drift is frequent in time series of repeated motor instances.
Although any pre-processing stage applied on time series is

Frontiers in Physiology | www.frontiersin.org 3 April 2021 | Volume 12 | Article 662076

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-662076 April 12, 2021 Time: 20:23 # 4

Arsac Multifractal Dynamics in Dual-Motor Tasks

not trivial for fractal-based analyses (Ludescher et al., 2011),
it is generally advised to correct obvious drifts. Drifts in
empirical signals of finite length might represent low-frequency
high amplitude fluctuations that are relevant properties of the
system. In power-law analyses the weight of such low-frequency
fluctuations may influence the result of scaling computations,
although this effect is drastically smoothed when one employed
a focus-based approach to assess scaling exponents, as used here
(see below). This being said, due to the finite length of empirical
time series in experimental sciences, fractal characteristics are
always evaluated in given ranges of observational scales (Eke
et al., 2012; Ihlen, 2012). As explained below, scale-free properties
were assessed in the present study using scales including 10 to
N/4 samples, where N is the total number of samples (here 512).
In brief, as it has been advised to remove drifts in time series for
reliable analyses (Hu et al., 2001), here experimental time series
were detrended by using a quadratic model fitting to the original
series, which represents a very low frequency phenomenon with
no fluctuating characteristics strictosensu, and represents signal
persistence beyond the scope of control examination (Figure 2).
Alternative attempts to remove the drift based on an elegant data-
driven method are presented in Supplementary Material 1, but
did not demonstrated successful performances.

Multifractal Analysis
Fine temporal structures have been evidenced in most
physiological signals, exhibiting scale-free (fractal) dynamics. In
the multifractal formalism, it is rooted that instead of a single
scaling exponent a set of scaling exponents better describe
scaling in fluctuations of different sizes. The multifractal
analysis is founded on characterizing scaling at several statistical
moments q, where negative values of q magnify small fluctuations
and positive moments q magnify large fluctuations (Ihlen and
Vereijken, 2013). Here, characteristic scaling exponents were
obtained by running a focus-based multifractal analysis on
experimental series after removing drift and resizing series to
512-samples. For experimental series with N > 512 samples, 256
samples were selected on each side of the median sample. The
method used here is based on detrended fluctuation analysis
(DFA). Non-expert readers can find a detailed explanation
of a fractal analysis using local detrending methods (DFA)
combined with a step-by-step implementation of the routine in a
spreadsheet (Arsac and Deschodt-Arsac, 2018).

In brief, DFA computes fluctuation size in linear detrended
windowed parts of sample series that must have an “irregular
landscape” shape, characteristic of fractional Brownian
movements (fBm). Hence as a first step for most physiological
signals that resemble stationary fractional Gaussian noises
(fGn), the time series is cumulatively summed. Then standard
deviation σ is calculated at different window sizes ranging from
a minimal to a maximal scale, arbitrary chosen to cover the range
of fluctuations that are under scrutinization. Here, smin = 10
and smax = N/4. To diminish effects of non-stationarity on
fluctuations analysis, the local linear trend is subtracted in each
window. The power-law dependence of σ on s is quantified by
the Hurst exponent H according to σ (s)∝ sH (Eke et al., 2012).
The multifractal generalization of DFA consists in repeating the

analysis by using a set of q moments, here q was an integer in the
range [−15 15], to get the unified scaling function that resumes
the link between fluctuations size S and scales s at different
moments q:

S
(
q, s
)
=

{
1

Ns

Ns∑
w=1

σ(w, s)q
} 1

q

(1)

where Ns is the number of non-overlapping windows, each
containing s samples, that is possible to build in the finite length
time series and w is the index of the actual window size (number
of samples) of calculation. For q = 0, a logarithmic averaging
procedure was employed, which is a classic approach. As advised,
the observational scales were evenly spaced on a log scale due to
the plot that serves determining the scaling exponent by fitting to
a linear model (Almurad and Delignières, 2016). As at this stage
S depends on s and on q, the generalized Hurst exponent H(q)
can be used to established their relationship according to S(q,s)
∝ sH(q), which is acquired by a linear regression on the values of
S(q,s). In other words, scaling exponents at each q are obtained
from the slope of the fit, in the sense of minimal least-square
approximation, of log S(q) vs. log (s) (Figure 3).

When applied to empirical time series the above
multifractal approach sometimes yields corrupted results.
The methodological developments by Mukli et al. (2015)
overcome a major limitation by enforcing the behavior of the
scaling function using the introduction of a well-defined focus
point at the largest scale (Figure 3). They have introduced
the so-called focus-based approach, using a theoretical focus
of the scaling function to guide the regression for obtaining
the generalized Hurst exponent H(q). In fact, on empirical
time series with finite length, the regressed functions converge
to one specific point termed focus, that could be included in
linear computations, thus rendering the multifractal analysis of
empirical time series very robust. The rationale for introducing
this focus in the computational analysis can be simply shown
by replacing s with the total length of the signal in S(q,s) of Eq.
(1); this results in the disappearance of the sum and therefore
q from Eq. (1). It is worth noting that similar steps leading
to the characterization of the H(q) vs. s relationship using a
focus-based approach can be followed while applying alternative
time-based or frequency-based approaches of fluctuations as a
function of s and q, e.g., Signal Summation Conversion (SSC) or
Wavelet Leader (WL) as exposed in the seminal paper (Mukli
et al., 2015). In order to strengthen the present result obtained
by applying FMF-DFA, results obtained with FMF-SSC and
FMF-WL following computations as in the seminal paper are
provided in Supplementary Material 2.

Here, global (monofractal) scaling associated with the long-
range correlations and long-term memory of the signal was
captured in H(2) (Hurst exponent when the multifractal
parameter q = 2, which is equivalent to the scaling exponent
α reported in most DFA-based studies). The degree of
multifractality was estimated by 1H15 calculated as H(-15)-
H(15) as a measure of how much the scaling is different for small
and large fluctuations (Figure 3).
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FIGURE 2 | Experimental time series before (upper panels) and after (bottom panels) drift removal obtained in each participant (A–H). Blue lines are single task
series. Red lines are cycling+tapping in left panels and tapping+cycling and circling+tapping in right panels. Yellow lines are cycling+circling.

FIGURE 3 | End-point parameters obtained with multifractal analysis of experimental time series (cycling as an example). The scaling function (A) is acquired by
multifractal DFA. In that, standard deviation is calculated as a function of scale and the process is repeated along several statistical moments q. The generalized
(q-dependent) Hurst exponent (B) is acquired via linear regression with the focus used as a reference point. Global scale-invariance (monofractal) is described by
H(2), while the degree of multifractality is captured as the difference between H(q) calculated at the minimal (−15) and maximal (15) q moments.

Because the FMF-DFA method systematically provides
uncorrupted Hurst exponents irrespective whether the
signal is a true multifractal or not, multifractality needs
to be tested separately. Verification of true multifractality
generally consists in the following steps (Eke et al., 2012):

(i) identifying general scale-free behavior and the presence
of long-range correlations (LCR), (ii) distinguishing true
multifractality from background multifractal noise, and
(iii) determining the nonlinear origin of the expressed
multifractal scaling.
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Surrogate Data Testing
Multifractal scaling in empirical time series can appear as a
consequence of diverse factors that falsify true multifractality.
A number of falsifying sources have been identified, including
heavy-tailed probability distribution, the finite size of the series,
the presence of linear autocorrelations to name a few of them.
Especially the length of the movement series in the present study,
limited to 512 samples, calls for multiple testing to strengthen
any conclusion. The procedures used here roughly follow the
recommendation in Eke et al. (2012) and used in recent years
(Racz et al., 2019).

As first step, to evaluate the presence of long-range
correlations (LCR), the original time series were shuffled to
generate surrogates (n = 40). Shuffling destroys all LCR thus
providing white noise while preserving intact distributions
of the values. The scaling exponent H(2) obtained for each
original series was compared to exponents obtained in shuffled
surrogates. Shuffled series have no more temporally structured
variability so that the exponent of the original series must be
higher if LCR truly exist in the original series. A one-sample t-test
evaluated if the difference in the original and the shuffled scaling
exponents departs from zero.

In addition, the method of Davies and Harte simulations
(Davies and Harte, 1987) and ARFIMA (0,d,0) simulations were
used to generate surrogate monofractal times series (n = 40)
with equal length, variance and H(2) of the experimental time
series. The multifractal index 1H15 was quantified by using
FMF-DFA in experimental and in surrogate series. If 1H15
of the motor time series was outside the range mean ± 2σ
of the 1H15 in surrogates, the presence of multifractal noise
is confirmed.

As a third step, a technique called iterated amplitude
adjusted Fourier transform, IAAFT (Schreiber and Schmitz,
1996) provided phase-randomized samples of original time
series while preserving essential information in amplitude, and
only linear processes. IAAFT was employed here to generate
surrogates (n = 40) of original series of cycling, tapping and
circling and verify the presence of true nonlinearity multifractal
phenomenon. It is expected that the width of the multifractal
spectrum (1H15) is greater in original time series than in IAAFT-
surrogates preserving only linear processes.

Alternative (ARFIMA) Modeling
It has been advised that heuristic and/or graphical methods
(like DFA) may serve as descriptive tools of fractal properties,
but should rather be accompanied with alternative methods
when it comes to statistical inference. Autoregressive fractionally
integrated moving average (ARFIMA) modeling is a classical
approach to highlight fractal properties in time series. ARFIMA
are models of autoregressive moving average where the
differentiation is fractional. The differencing parameter d is not
an integer but a real number. The present analysis was limited
to the most simple model ARFIMA (0,d,0) that is supposed to
contain only long-range correlations.

The d parameter was estimated by using Whittle
approximation of the maximum likelihood estimator thanks

to the package for Matlab provided by Inzelt and served to
determine the scaling component σ arfima of the series.

ARFIMA holds only for fractional gaussian noise (fGn) and
d is bounded within the interval [−0.5 0.5]. For fractional
Brownian motion (fBm), it is possible to differentiate the series,
applied ARFIMA, then estimate the fractional parameter of the
fBm by adding 1 to the d value obtained from the fGn. The
strategy exposed in Roume et al. (2019) was applied here; the
best Whittle approximate of the maximum likelihood estimator
by constrained optimization was found thanks to the routine
developed by G. Inzelt available on the Matworks platform (G,
Inzelt, 2011). When the bounded parameter d reached 0.49999 for
a series, the series was differentiated and the new d obtained was
converted in α value. In concrete terms, only cycling time series
were concerned by the procedure mentioned here. All above
computations were processed in Matlab2019b (The Mathworks,
Natick, MA, United States).

Statistics
Performance was assessed by calculating the coefficient of
variation (CV, %), which is the standard error to the mean divided
by the mean, and the Absolute Error (AE, ms) of time series in
regards to the desired target interval (1 s at 1 Hz and 0.5 s at 2 Hz).

Each set of variables was first tested for normality with the
Shapiro-Wilk test using significant level p = 0.05. A large majority
of samples showed normal distribution, so that comparisons
between samples were performed with repeated measures
ANOVA with no exception to compare situations, and one
sample t-test to analyze surrogates. It is acknowledged that
ANOVA for repeated measures (within-subject factors) > 2
situations (here in cycling) are susceptible to the violation of
the assumption of sphericity. Sphericity is a condition where
the variances of the differences between individual differences
between the situations are equal. Unfortunately, the commonly
used test employed to test sphericity, the Mauchly Test of
Sphericity often fails to detect departure from sphericity in
small samples (here n = 8). As a matter of fact, no testing for
sphericity was conducted prior any analysis of variance here.
Statistics were performed in Matlab (The Mathworks, Natick,
MA, United States).

RESULTS

Performance
Performance in terms of executive control was considered to
be reflected in the ability to intentionally maintain the target
rhythm delivered during the initial synchronization phase.
Performance was assessed by two variables, Absolute Error (AE)
and Coefficient of Variation (CV, %) of the motor time series.

With regard to AE, the repeated measures ANOVA
demonstrated the absence of performance degradation when
dual-tasking either in cycling [AE: F(2, 21) = 1.62, p = 0.221] in
tapping [F(1, 14) = 3.02, p = 0.104] or in circling [F(1, 14) = 1.14,
p = 0.303].

CV provided a slightly different picture wherein CV
during dual tasking increased during tapping [6.8–10.1%,
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TABLE 1 | Results of one-sample t-test for the null hypothesis that the original
time series has a similar α-DFA that its shuffled surrogates (n = 40).

H-test values cycl cycl+tap cycl+circ tap circ tap+cycl tirc+cycl

Participant_A 1 1 1 1 1 1 1

Participant_B 1 1 1 0 1 0 1

Participant_C 1 1 1 1 1 1 1

Participant_D 1 1 1 1 1 1 1

Participant_E 1 1 1 1 1 1 1

Participant_F 1 1 1 1 1 1 1

Participant_G 1 1 1 0 1 1 1

Participant_H 1 1 1 1 1 1 1

H-test = 1 means that the hypothesis is rejected, so that the original time series
cannot be considered random (white) noise.

F(1, 14) = 12.42, p = 0.003] and circling [6.3–10.0%, F(1,
14) = 5.97, p = 0.028]. The CV profile for cycling was similar than
that of AE indicating no influence of dual tasking [F(2, 21) = 2.11,
p = 0.147].

Overall, there was minor-to-no change in rhythm variability
when dual-tasking was imposed.

Testing for True Monofractality
In order to evaluate if the computed values of H(2) derived
from FMF-DFA in original time series unambiguously reflect
the presence of long-range correlations, the original H(2) values
were compared (one-sample t-test) to H(2) obtained in shuffled
surrogates (n = 40) time series. Table 1 shows main statistical
results, where there is essentially no doubt for the presence of
structured variability exhibiting long-range correlations, except
for only 3 out of 56 experimental series, that all concern
the tapping tasks.

Monofractal Properties in Time Series
Scaling Exponent H(2) Derived From FMF-DFA
The monofractal scaling exponents H(2) obtained in each task,
are shown in Figure 4. When single-tasking was compared
to dual-tasking, there was no difference (repeated measures
ANOVA) among cycling situations [F(2, 21) = 0.09, p = 0.912].
In the same way, there was no effect on finger-tapping fractal
characteristic when performed concurrently with cycling [F(1,
14) = 0.67, p = 0.425], nor in circling when performed
concurrently with cycling [F(1, 14) = 0.16, p = 0.696].

When grouped together, H(2) scaling exponents amounted
to 1.02 ± 0.09 for cycling, 0.59 ± 0.09 for finger tapping and
0.76 ± 0.11 for circling. The difference across these motor-task
specific exponents was highly significative [F(2, 52) = 97.27,
p = 1·10−18].

Scaling Exponent H(2) Derived From ARFIMA
An additional precaution before interpreting above results was
to fit experimental time series with ARFIMA models. Scaling
exponents computed from ARFIMA modeling of the series
exhibits quite similar profiles (Figure 4), which strengthens
above H(2) results. Although repeated-measurement ANOVA

reached overall significance [F(2, 21) = 3.78, p = 0.040], the post-
hoc test (Bonferroni) showed the absence of difference in finer
comparisons among three cycling conditions.

Clearly, tapping and circling demonstrated no change with
dual-tasking, [F(1, 14) = 0.83, p = 0.379] and [F(1, 14) = 1.82,
p = 0.198, respectively].

Testing for Multifractality
First, it was tested if 1H(15) in original time series was
outside the mean ± 2 s range of strictly monofractal surrogates
generated by the Davies and Harte method on one hand, and
on ARFIMA(0,d,0) on the other hand. The two methods were
considered complementary given slight different properties in
synthetic monofractal series reported in (e.g., Roume et al., 2019).
As a criterion for excluding multifractal background noise, it was
observed if one of the two methods, not each of them, provided
a range of 1H15 excluding the 1H15 in original experimental
series (Table 2).

Overall, Table 2 indicates that 36/56 original series (all
tasks included) may be considered true multifractal behavior,
distributed as follows: 21/24 (88%) in cycling, 6/16 (38%) in
tapping and 9/16 (56%) in circling. Despite a low percentage
of true multifractal behavior in tapping, a similar analysis
was conducted further for all tasks that consisted in phase-
randomization of experimental series.

Phase randomization in experimental time series (IAAFT) was
performed in order to see if the observed multifractality was
a consequence of true nonlinear dynamics. Table 3 indicates
that 49 out of 56 (88%) of the experimental times series had
nonlinear multifractal properties based on comparison (one-
sample t-test) with their respective IAAFT phase-randomized
surrogates. Nonlinear multifractality dominated in cycling (21/24
or 88%) but also reached 81% in finger-tapping (13/16) and was
most obvious in circling (15/16, 94%).

Multifractal Properties in Single and
Dual-Tasking
The values of1H15 obtained with FMF-DFA in the experimental
times series are shown in Figure 5. With regard to cycling,
repeated measures ANOVA show no significant difference among
single- and dual-task cycling [F(2, 21) = 0.21, p = 0.811].

Similar observations hold for finger-tapping and circling since
no difference were obtained by ANOVA when comparing single-
and dual-tasks [F(1, 14) = 3.82, p = 0.071] and [F(1, 14) = 0.20,
p = 0.664], respectively. As a whole, FMF-DFA indicated no effect
of dual motor tasking on multifractality in motor time series.

DISCUSSION

There are three main findings in the present study: (i) the goal
of maintaining a stable rhythm during concurrent instances of
cycling while finger-tapping or circling can be reached with no
obvious difficulty in elite rugby players, credited with a great
motor coordination; (ii) the global (i.e., monofractal) scale-free
structure of temporal variability was unaltered by dual motor
tasking as well, which may indicate an intact adaptive ability
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FIGURE 4 | Monofractal index. Values of the scaling (Hurst) exponent in time series assessed by FMF-DFA for q = 2,H(2) (top panels) and ARFIMA (bottom
panels). The central mark indicates the mean, dark gray the standard error to the mean (SEM) and light gray the standard deviation. Individual values are
represented by “o” symbols.

despite a complexified task; (iii) motor control exhibited true
multifractality dominantly in cycling, whose absence of change
during dual motor tasking suggests a marginal need of effective
adaptation in executive control during the complexified tasks.

Overall, and despite obvious limitations (e.g., only eight
participants), the present study suggests that an experimental
approach based on the multifractal formalism may unravel fine
adaptations in executive control and underline main properties
of the movement system facing complex motor situations.
The preservation of a relative stable rhythm during repeated
motor instances observed here is not trivial. Experimental

TABLE 2 | Comparison of 1H15 in original time series with the average 1H15 of
strictly monofractal surrogates using either Davies and Harte simulated series
(n = 40) or ARFIMA (0,d,0) simulated series.

H-test values cycl cycl+tap cycl+circ tap circ tap+cycl circ+cycl

Participant_A 1/1 0/1 1/1 0/0 0/0 1/1 1/1

Participant_B 0/0 0/0 1/1 1/1 1/1 1/1 1/1

Participant_C 1/1 1/1 1/1 0/0 0/1 0/1 0/0

Participant_D 1/1 1/1 1/1 0/0 0/0 0/1 1/1

Participant_E 1/1 1/0 1/0 0/0 0/0 0/0 0/0

Participant_F 1/0 1/1 1/1 0/0 1/1 0/0 0/0

Participant_G 1/1 0/1 1/1 1/1 1/1 0/0 0/0

Participant_H 1/0 1/0 0/0 0/0 1/1 0/0 1/1

H-test = 1 means that 1H15 lies outside the 95% confidence interval of the
surrogates, meaning that the original series is likely multifractal. H values for
Davies&Harte are reported at the left of the / symbol and on the right for ARFIMA,
e.g., 1/0 means multifractality is confirmed by Davies&Harte simulations but not by
ARFIMA.

efforts to clarify the meaning of fractal properties may be
hampered by a degraded output performance as usually observed
as a consequence of aging and/or degraded functions in
disease. Although it is acknowledged that age and disease
are putative factors that impair complexity in the movement
system (Hausdorff et al., 1997; Hausdorff, 2007; Manor et al.,
2010), other factors that are more pregnant in the context
of the present study have the potential to promote the
emergence of a new structure in movement control. A first
obvious factor lies in the external source of variation during
a task, be it perceptive-cognitive or cognitive-motor. This is
nicely exemplified in a review by Wijnants (Wijnants, 2014)
where the gradual degree of external source of variability

TABLE 3 | Results of one-sample t-test for the null hypothesis that the original
time series has a similar 1H15 that its phase-randomized surrogates (n = 10).

H-test values cycl Cycl+tap Cycl+circ tap circ Tap+cycl Circ+cycl

Participant_A 1 1 1 0 1 1 1

Participant_B 1 1 1 1 1 1 1

Participant_C 1 1 1 0 1 1 1

Participant_D 1 1 1 1 1 1 1

Participant_E 1 1 1 1 1 1 1

Participant_F 0 1 1 1 1 1 1

Participant_G 1 0 1 1 1 0 1

Participant_H 0 1 1 0 1 1 1

H-test = 1 means that the hypothesis is rejected, so that the original time series has
true multifractal properties, not incidentally due to some linear structure in temporal
fluctuations.
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FIGURE 5 | Degree of multifractality in experimental time series, as assessed by 1H15 (see Figure 3). The central mark indicates the mean, dark gray the standard
error to the mean (SEM) and light gray the standard deviation. Individual values are represented by “o” symbols.

when comparing word naming, multiple-choice then simple-
choice reaction task and precision aiming matches with a
clearer fractal (1/f) scaling in time series. Precision aiming
is a cyclic task (draw lines back and forth between two
visual targets), with poor perturbations of input information,
and demonstrated the clearest fractal organization. Apart age
and disease, and excluding external sources of variations,
monofractal properties have been confronted to sensory feedback
deprivation during finger tapping (Torre et al., 2019). The
authors concluded that monofractal properties do not reflect
internal adaptations but the limit of such adaptations, it means
the loss of adaptability. Building on these findings, it is suggested
that the participants in the present study, maintained motor
performance in each task when executed simultaneously but
also keep an intact ability to adapt reflected in the unchanged
monofractal architecture of executive control. One could say
in addition that cycling here demonstrated the clearer 1/f
scaling in agreement with previous results (Warlop et al.,
2013; Gilfriche et al., 2019), which could be associated with
the lowest external source of variability. This intuition is in
line with the great inertia of the heavy flywheel (22 kg) of
the cycle ergometer, that stores and releases kinetic energy
and help thereby keeping a smooth rotation across successive
movement strokes. The lowest inertia of the salad spinner
(circling) and even lower inertia in the index finger (tapping)
might explained gradually less clear 1/f scaling (α-DFA = 1.0)
in the upper limb movement system. In finger tapping, the
scaling exponent in the present study (Figure 4) was lower
than the scaling exponent obtained in Torre et al. (2019),
likely because of the less comfortable (elevated) rhythm (2
Hz) imposed here.

One main finding in the present study lies in unchanged
scaling exponent when adapting to dual motor task (Figure 4),
which may indicate an intact adaptability in executive control
(Torre et al., 2019). It is important to note that even finger
tapping, whose H(2) far from the ideal 1.0 exponent may
indicate a more constrained movement requiring more attention
and cognitive resources, did not affect fractal dynamics in
cycling when participants must adapt to dual-tasking. A first
reason may come from the high-motor skills in the participants,
which means that future research is needed in less expert

population to explore the limit of adaptability, as shown to
be reached in other dual-task combining cognitive constraints
with movement (Blons et al., 2019). An alternative hypothesis
would posit that finger tapping do in fact hampered executive
control of cycling but this is not reflected in a degraded
adaptability but in effective adaptation. The present study
was purposely designed to tackle this issue by exploring the
multifractal signature of the experimental time series, based
on previous demonstration that changes in multifractality
reflects effective adaptation in sensorimotor control (Torre
et al., 2019). As a main result, an absence of change
in multifractality was observed in skilled participants here
(Figure 5), leading to the conclusion that they demonstrated
a preserved effective adaptation during each motor task, be it
complexified by concurrent arms and legs movement control.
The intuition that executive control is better described by
multifractal non-linearity has been under the scope of many
recent studies (Stephen et al., 2012; Ihlen and Vereijken,
2013; Bell et al., 2019). The issue has been addressed with
the marked concern of teasing apart different sources of
multifractality (Eke et al., 2012; Ihlen and Vereijken, 2013).
As employed here, the combination of FMF-DFA with the
analysis of surrogate data testing could bring out more clearly
the existence of true multifractality and the contribution of
nonlinear processes in stabilizing motor behavior. The higher
1H15 in original time series when compared to their surrogates
is an argument for inferring multiplicative interactions across
temporal scales as a stabilizing factor (Bell et al., 2019).
While fractal properties in repeated instances of cycling, finger
tapping and circling have already been addressed, the present
work takes a step further since it reveals a true multifractal
architecture in the movement system and it rules out the
incidental influence of linear (additive) processes (Ihlen and
Vereijken, 2013; Anastas et al., 2014). Recently, an appealing
study based on recording epochs in densely sampled hand
movements during the Fitts Task argued that there is a so
intense contribution of non-linear interactions across scales
in stabilizing hand movement behavior that the wider-than-
surrogate multifractal spectra index is in close relationship with
aiming variability as quantified by standard deviation in times
series (Bell et al., 2019).
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The present results can hardly infer the exact mechanisms
through which multifractality in motor behavior is preserved.
The main idea is that long-range correlations arise from
principles that are generic to most complex systems.
Multifractality supports interaction-dominant dynamics, an
intuition wherein interactions among system components
are more important that components properties themselves
to apprehend the system behavior. The very architecture
of interactions might rely on degeneracy (Delignières and
Marmelat, 2013) or on cascade dynamics (Ihlen and Vereijken,
2013), both conceptions of motor control organization being
not mutually exclusive. The degeneracy hypothesis describes
a degenerated network wherein components could belong to
several pathways and where neighbor pathways share common
components. Adopting this point of view would mean deeper
degeneracy in motor control networks of elite rugby players and
the presence of multiplicative cascades in control organization.
They do not exhibit a simplified motor behavior after years of
motor learning but true multifractality, preserved in complexified
tasks. In agreement with modern theories, motor learning of
performance optimization may rely on the complexification of
underlying networks (Nourrit-Lucas et al., 2015).

Overall, above results leave some emerging questions
unanswered. The presence of true multifractality was not
unequivocal among elite athletes here (Table 2). One may want
to explore individual control behavior more finely. Delignières
and Torre suggested the exploitation of different modes of control
along a same motor task (Delignières and Torre, 2011). They also
demonstrated that the scaling exponent in finger tapping and
circling is both individual- and task-specific (Torre et al., 2011).
The rugby players here were selected for their high motor-skills
in an attempt to get as homogenous as possible behavior to draw
reliable conclusions despite a reduced number of participants.
Yet, individual strategies cannot be excluded and deserve further
research, that should include less skilled participants.

CONCLUSION

The present study plaids for the presence of nonlinear
interactions spanning several temporal scales in executive control
as a reliable marker of adaptation in complexified motor
tasks. The literature suggests that degeneracy (Delignières and
Marmelat, 2013) and multiplicative cascade dynamics and
interactivity across scales (Ihlen and Vereijken, 2013) might
support control organization in movement system, which may

represent a critical architecture for stabilizing repeated motor
instances. Present findings extend previous knowledge on the
putative role of non-linear multifractal dynamics in both control
of goal-directed movement (Ihlen and Vereijken, 2013) and
prospective coordination to enhance perception (Mangalam and
Kelty-Stephen, 2020; Mangalam et al., 2020). As those previous
observations have been made in much shorter temporal scales
of densely sampled movements and depict a similar multifractal
architecture, this is a strong argument for a fractal nature of
movement system in the sense that similar congruent architecture
properties have now been observed over a wide range of
temporal scales.

Since elite rugby players with high level of motor coordination
participated to the present study, the robustness in control
multifractality certainly unravel a specific architecture shaped by
years of physical training. Therefore, it is appealing to establish
whether less skilled participants will show poorer performance
in movement stabilization, a different multifractal architecture of
motor control and a deeper reorganization when dual-tasking.
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