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Abstract

Expression quantitative trait loci (eQTL) studies have generated large amounts of data in different organisms. The analyses
of these data have led to many novel findings and biological insights on expression regulations. However, the role of
epistasis in the joint regulation of multiple genes has not been explored. This is largely due to the computational complexity
involved when multiple traits are simultaneously considered against multiple markers if an exhaustive search strategy is
adopted. In this article, we propose a computationally feasible approach to identify pairs of chromosomal regions that
interact to regulate co-expression patterns of pairs of genes. Our approach is built on a bivariate model whose covariance
matrix depends on the joint genotypes at the candidate loci. We also propose a filtering process to reduce the
computational burden. When we applied our method to a yeast eQTL dataset profiled under both the glucose and ethanol
conditions, we identified a total of 225 and 224 modules, with each module consisting of two genes and two eQTLs where
the two eQTLs epistatically regulate the co-expression patterns of the two genes. We found that many of these modules
have biological interpretations. Under the glucose condition, ribosome biogenesis was co-regulated with the signaling and
carbohydrate catabolic processes, whereas silencing and aging related genes were co-regulated under the ethanol
condition with the eQTLs containing genes involved in oxidative stress response process.
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Introduction

eQTL studies aim to uncover the genetic architecture under-

lying expression regulation. In the past decade, they have been

conducted in many organisms, including yeast, drosophila, mouse,

human and many others [1–5]. A common approach in eQTL

data analysis is to consider association between each expression

trait and each genetic marker through regression analysis, and

attention is usually focused on those trait-marker pairs whose

associations are significant after multiple comparison adjustments.

Despite great success with this approach, some regulatory signals

may not be detected due to the complex nature of regulatory

networks. For example, genetic buffering relationships often exist

in the phosphorylation regulatory network in yeast [6], where pairs

of regulators have overlap in function. Similar phenomenon has

also been observed in the transcriptional regulatory network in

yeast [7]. Single marker analysis may not capture such regulatory

patterns, where the genetic effects act through interactions

between markers, necessitating the need to incorporate interac-

tions in the analysis. However, extending beyond single marker

analysis presents many challenges including the computational

demand and the lack of statistical power, because a much larger

number of models need to be considered and the need to control

the overall false positive results. Storey et al. [8] developed a step-

wise regression method to detect epistasis on the genome-wide

scale. This method is computationally feasible but may miss

epistatic effects involving markers having weak marginal effects.

Wei et al. proposed a Bayesian partition model which may detect

more loci having epistatic effects but weak marginal signals [9].

However, this Bayesian approach did not compare favorably with

an exhaustive search scheme to detect features with weak marginal

signals but strong epistatic effects in practice [10]. To reduce the

model search space and increase statistical power, Lee et al.

adopted genetic interaction networks identified by large-scale

synthetic genetic array (SGA) analysis as prior for detecting

epistasis in yeast [11]. Since they only consider interacting SNPs

that have already been identified, its application is limited to those

organisms where comprehensive prior knowledge is available,

which is rare in practice.

Although most eQTL studies considered the expression levels of

individual genes as response, a conceptually different approach

was proposed by Li et al. [12] to consider ‘‘liquid association’’ (LA)

between a pair of genes. LA aims to identify differential co-

expressions, versus differential expressions, across different sam-

ples/conditions and the identified LA may offer insights that may

not be captured by analysis based on single genes. Li and
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colleagues later introduced this 2D-trait concept into eQTL study

[13]. The goal of such 2D-trait based eQTL analysis is to identify

genetic markers that can affect the co-expression patterns between

two genes. Since co-expression patterns reflect co-regulation status,

such 2D-trait analysis can assess whether the co-regulatory

relationship between two genes is associated with certain genetic

markers, which is complementary to analyzing the expression

patterns of individual genes. For example, in signal transduction

pathways, transcriptional factors (TFs) are often regulated by post-

transcriptional regulation such as phosphorylation and dephos-

phorylation. Such regulations are difficult to detect because there

may be little change at the expression levels for these genes.

However, post-transcriptional regulation does affect TFs’ activities,

which further affect the expression levels of their target genes. In this

case, if a genetic marker affects post-transcriptional regulation, its

effect may be captured by the change of co-expression patterns of

the targets of TFs, so a LA analysis may lead to the identification of

such markers, where it may be difficult to detect these signals using

single gene expressions as the response. Recently, Ho et al. [14]

proposed a conditional bi-variate normal model to analyze LA that

simultaneously captures means, variances, and correlation between

a pair of genes. Under a similar framework, Chen et al. [15]

proposed a penalized likelihood approach to effectively detecting

causal genetic loci using iterative reweighted least squares, and Daye

et al. [16] further considered the heteroscedastic problem. Although

these methods have broadened the scope of eQTL analysis, none

have considered the possibility that markers may have no or weak

marginal effects but strongly interact to affect the correlations

patterns among gene expressions, which may happen if there is

genetic buffering between the markers and this is the focus of our

current manuscript.

One major challenge to consider interactions effects on 2D-

traits is the large number of models to be examined. For example,

with 6000 genes in yeast, a total of 18 million 2D-traits can be

formed. If we collect 4000 markers from each yeast strain,

considering each pair of markers for their interaction effects will

involve 8 million pairs of markers. Therefore, an exhaustive search

of all 2D traits versus all marker pairs will evaluate 1014 models, a

prohibitive number with the current computing power based on

the existing methods mentioned above. In this manuscript, we

propose a computationally efficient algorithm to identify these

Epistasis-2D associations based on conditional bivariate models

and likelihood ratio test. In our procedure, we proposed to use a

statistic called PA (Potential of Association) to filter out trait and

marker sets that are unlikely to be significant before performing

the more rigorous likelihood ratio tests. When we applied our

method to a yeast eQTL dataset, we were able to identify many

‘‘Epistasis-2D’’ associations that could not inferred from single

marker based analysis, where 2D refers to our focus on gene co-

expression patterns and epistasis refers to our focus on detecting

how loci interact to affect 2D-traits.

Results

Detecting Epistasis-2D associations
Overview of our strategy. Figure 1 describes our strategy to

detect Epistasis-2D associations. In this manuscript, we define a

module as the collection of a pair of loci and a pair of genes, and

our objective is to find Epistasis-2D modules where the two loci

interact to affect the co-expression patterns between the two genes

in the module. To facilitate statistical analysis, the joint conditional

distribution of the two genes for a given pair of genotypes at the

two loci is modeled as a bivariate normal distribution, where we

are primarily interested in whether the correlation between two

genes is dependent on the joint genotypes between two markers.

Under the null hypothesis, all the conditional correlations are the

same, whereas they differ under the alternative hypothesis. We

used the likelihood ratio test to test the null hypothesis. Because it

is computationally prohibitive to consider all possible modules

using the likelihood approach, we employed a statistic called PA

(Potential of Association) to filter out modules unlikely having an

association signal. Due to our focus on 2D-traits, we are not

interested in those modules containing linkages that can be

identified using 1D-traits in this manuscript. Neither are we

interested in those modules having only marginal signals.

Conditional bivariate models. Traditionally, for a given

phenotype, the genetic effects of two loci are often modeled as

phenotypy~a0za1Aza2Bza3A|B, ð1Þ

where A and B are the coded genotypes at the two loci, a1 and a2

represent the effects of marker 1 and marker 2, and a3 corresponds

to the interaction effect between markers 1 and 2. Under this

model, the presence of epistasis is captured by a non-zero a3 term.

Now for a pair of phenotypes, their bivariate phenotypes (X,Y) can

be modeled by a bivariate normal distribution [15],

X

Y

� �
*N(

m1

m2

� �
,S(b,A,B)), ð2Þ

where m1 and m2 are the mean values of X and Y, which are set as

constant in our model.

S(b,A,B)~
s2

1 s1s2r(b,A,B)

s1s2r(b,A,B) s2
2

 !

is the covariance matrix and s2
1 and s2

2 are the variances for the two

traits, respectively. As discussed above, our main interest in this

paper is the co-expression between two genes, i.e. the correlation

term in the matrix r which we model in the following form:

r(b,A,B)~b0zb1Azb2Bzb3A|B, ð3Þ

where A and B were defined before and b1, b2, and b3 have similar

interpretations as a1, a2, and a3 but quantify the marker effects on

the correlation.

We note that there is an extensive literature on the difference

between statistical interactions and biological interactions because

Author Summary

eQTL studies collect both gene expression and genotype
data, and they are highly informative as to how genes
regulate expressions. Although much progress has been
made in the analysis of such data, most studies have
considered one marker at a time. As a result, those markers
with weak marginal yet strong interactive effects may not
be inferred from these single-marker-based analyses. In
this article, using joint expression patterns between two
genes (versus one gene) as the primary phenotype, we
propose a novel statistical method to conduct an
exhaustive search for joint marker analysis. When our
method is applied to a well-studied dataset, we were able
to identify many novel features that were overlooked by
existing methods. Our general strategy has general
applicability to other scientific problems.

Statistical Analysis Reveals Epistasis-2D Modules
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the presence or absence of statistical interactions depends on the

specific statistical models used and the scale of the response

variable. When each marker has two genotypes (coded by 0 and 1),

models (1) and (3) fully parameterize the relationship between

phenotype and the four possible genotypes, namely (1,1), (1,0),

(0,1) and (0,0) [8]. In this case, we can reformulate model (3) as

r(bij ,A,B)~
X

i[f0,1g,j[f0,1g
bijI(A~i)I(B~j), ð4Þ

where I is the indicator function, i.e. I(A = i) = 1 if A = i and 0

otherwise.

Although we could use this most general model to identify

interesting modules, a model with fewer parameters may be

preferred to achieve a balance between the goodness of fit and

parsimony of the model. For example, Figure 2A–2B illustrate two

examples where fewer than four parameters are needed to model

the co-expression pattern. In Figure 2A, the correlation between

the two genes for samples having genotype (1,1) (b11) is different

from the samples with other genotypes. Hence two instead of four

parameters are needed to model this module. Similarly, three

parameters are needed for the example shown in Figure 2B where

samples having genotypes (0,1) or (0,0) have uncorrelated

phenotypes. For the best fitted parameter settings with two or

Figure 1. Flowchart of our strategy for detecting epistasis based on 2D-trait. We first use PA-score to filter out modules unlikely to be
significant. Then we filter out modules where the association can also be detected using expression levels (1D-traits). We introduce a conditional
bivariate model to characterize Epistasis-2D module and use the likelihood ratio test to define p-value. Finally, we perform an epistasis test to remove
modules with only marginal signals (Details in Text S1).
doi:10.1371/journal.pgen.1003414.g001

Statistical Analysis Reveals Epistasis-2D Modules
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three parameters, the p-values of these two example are 1:5|10{13

and 7:5|10{13, whereas those for the full model are 4:6|10{12

and 2:9|10{12. In this article, we test all possible parameter

settings for each module and select the model with the most

significant p-value. This approach may yield simpler interpretations

of the modeling results when fewer parameters are used. In

addition, more modules were identified at the same false discovery

rate control using our approach compared to the approach based on

the full model (Materials and Methods, Text S1).

Filtering step to reduce computation burden. There is a

computational barrier to directly apply our model to large scale

data because estimating parameters in the conditional bivariate

models needs numerical solution through iteration [15]. To reduce

computation burden, we propose a filtering step which removes

modules with low possibility to be significant from further

considerations using a statistic called ‘‘PA’’ (Potential of Associ-

ation). This statistic estimates the lower bound of the p-value for

each module. Because PA can be directly calculated from the

Figure 2. Epistasis-2D modules. In module (A), the co-expression patterns between the two genes GOT1 and ERV14 depend on the joint
genotype of the two loci. For samples with genotype (1,1) the co-expression correlation is different from the other samples. Hence the proper
parameter setting in the conditional bivariate model is (b1,b2,b2,b2) where only two parameters are required. Similarly, in module (B), the co-
expression patterns between the two genes PTP2 and GAB1 can be classified to three categories with the proper parameter setting being
(b1,b2,b3,b3). (C) The two candidates in module A, Yip1 and Mst28, may interact to regulate GOT1 and ERV14 through the mediator complex Sec23/
Sec24. (D) The two candidates in module B, Hog1 and Ssk22, may interact to regulate PTP2 and GAB1 through two TFs Rlm1 and Yap1.
doi:10.1371/journal.pgen.1003414.g002

Statistical Analysis Reveals Epistasis-2D Modules
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observed values (expression values and genotypes) without

numerical iterations, it can be used to remove most modules

before applying the conditional bivariate model. Our real data

analysis showed an average reduction of 16 fold computational

time with this filtering step (Materials and Methods, Text S1).

Application to yeast eQTL data
We applied our method to a dataset containing gene expressions

and genotypes for 109 segregants from a cross between laboratory

(BY, noted as 1) and wild (RM, noted as 0) strains of Saccharomyces

cerevisiae [3]. The expression levels were measured under two

different conditions: glucose and ethanol. We applied our method

to the expression data collected under these conditions, and

identified 225 and 224 pairs of genes (2D-traits), respectively,

whose correlation patterns were under the epistatic control of pairs

of markers at an estimated false discovery rate (FDR) v0:2
(Materials and Methods, Text S1, Table S3). As far as we are

aware, none of these detected marker interactions have been

reported to affect expression traits, and our results revealed a new

group of regulation patterns that have been overlooked in the

literature. Among the 225 and 224 gene pairs, there is an

enrichment of pairs having the same functional annotations (31

out of 225 with a p-value of 0.05 and 58 out of 224 with a p-value

of 2|10{11) according to GO slim. Despite this statistically

significant enrichment, most pairs have different functional

annotations suggesting either unknown functions for these genes

or interactions between different biology processes.

We observed that the functional distributions of the Epistasis-2D

associations are dependent on the environment condition under

which the eQTL data were collected. This is consistent with the

literature on the importance of the environment on gene

expression regulations [17]. Also consistent with previous finding

that the trans-acting linkages differ under different environmental

conditions [18], our results suggest that trans-acting loci are

related to the environment related stress response pathways. The

modules identified by our method may be followed up with

experimental studies for validation and learning to gain further

insights on their biological relevance.

Examples of Epistasis-2D modules. Among the Epistasis-

2D modules (Table S3) identified by our method, many are

biologically meaningful. For example, Figure 2A shows a module

detected under the glucose condition where the two genes (GOT1

and ERV14) are functional in ER to Golgi vesicle-mediated

transport, whereas the two markers interacting with each other to

affect the co-expression patterns between these two genes are

located at chromosome VII:833786-858604 and chromosome

I:187640-193251. These two chromosomal intervals contain 14

and 2 genes, with each having a candidate that also functions in

ER to Golgi vesicle-mediated transport: YIP1 and MST28

(p~7|10{3, Materials and Methods). Both Yip1 and Mst28

are integral membrane proteins that are involved in COPII

transport vesicle formation [19,20]. Literature suggests synthetic

lethality of Yip1 with the heterodimer of the COPII vesicle coat

Sec23-Sec24 and physical interaction between Mst28 and Sec23-

Sec24 [19,20]. These experimental results suggest potential

interactions between Yip1 and Mst28. In addition, Got1 was

identified as a suppressor functioning in the same pathway as Yip1

that regulates biogenesis of COPII vesicle [21]. This observation

suggests a regulatory relationship between Yip1 and Got1. Finally,

Erv14 is involved in vesicle formation [22] and interacts

genetically with both Got1 [23,24] and Sec23 [25]. In summary,

our results and the literature suggest that Yip1 and Mst28 may

interact to regulate the co-expression of Got1 and Erv14, and the

heterodimer Sec23-Sec24 may mediate their effects (Figure 2C).

Another module is shown in Figure 2B with two genes, PTP2

and GAB1, whose co-expression patterns are epistatically regulated

by two loci on chromosomes XII and III. Ptp2 is a phosphatase

that dephosphorylates Hog1 in high osmolarity sensing (HOG)

mitogen-activated protein kinase (MAPK) pathway. Gab1 is a GPI

transamidase subunit and may play a role in the recognition of the

attachment signal. The two chromosomal intervals (chromosome

XII:370434-388933, chromosome III:240331-264124) contain 8

and 13 genes, and each contains a candidate gene that functions in

the HOG MAPK pathway, HOG1 and SSK22 (p~1:5|10{3,

Materials and Methods). Ssk22 is a MAP kinase kinase kinase

(MAPKKK) and Hog1 is a MAP kinase (MAPK). PTP2 is known

to be induced by Hog1-dependant transcriptional factor Rlm1

[26]. GAB1 is transcriptionally regulated by Yap1 [27,28], which is

also the substrate of Hog1 [29]. Hence, the genetic interaction

between Hog1 and Ssk2 and their regulation on PTP2 and GAB1 is

supported by existing literature on the HOG pathway (Figure 2D).

Clustering in the epistasis map reveals functional genetic

modules. The locus pairs identified that epistatically interact to

regulate the co-expression patterns of gene pairs may be inferred

to have genetic interactions and such interactions can be used to

develop a global genetic interaction map. We applied the

hierarchical clustering to this interaction map and found densely

interacting locus clusters (Figure 3A, Materials and Methods).

Under the glucose condition, there was one cluster containing

eight genetic intervals (Figure 3B). These pairs share similar target

gene pairs including six genes (COX4, QCR9, ATP14, TIM11,

STF1 and DBP8), all except DBP8 are encoding proteins functional

in oxidative phosphorylation, whereas DBP8 is a ribosomal gene.

The expressions of oxidative phosphorylation genes are repressed

by glucose, whereas the expression of ribosomal genes are induced

by high glucose signal. Therefore, it is plausible that the expression

of DBP8 is correlated with oxidative phosphorylation genes for

samples with certain genotypes under glucose condition. The eight

intervals are enriched with oxidative phosphorylation candidates

(p~3:5|10{6, Materials and Methods). More specifically, six

intervals contain one candidate annotated to function in oxidative

phosphorylation, including COR1, QCR6, QCR8, CYT1, COX6 and

YJL045W. The other two intervals contain MRPl4 and PET100

which participate in the oxidative phosphorylation process

although they are not noted in GO. Among the proteins encoded

by these candidates, Yjl045w is responsible for the oxidation of

succinate and production of ubiquinone, which is the substrate for

cytochrome c reductase complex containing Cor1, Qcr6, Qcr8,

Cyt1 and the target Qcr9. In addition, Mrp14 is associated with

the Cbp3-Cbp6 complex to promote cytochrome c reductase

complex synthesis and assembly [30]. The cytochrome c reductase

complex oxidizes ubiquinone while reducing cytochrome c, which

in turn serves as the substrate for cytochrome c oxidase complex

including the candidates Cox6 and the target Cox4. Pet100 is a

chaperone that specifically facilitates the assembly of cytochrome c

oxidase. During these processes protons are transferred out of the

mitochondrial membrane, and back into the mitochondrial

matrix. The energy derived from the movement of these protons

is used in ATP synthesis, and the targets Atp14, Tim11, Stf1 are

functional in the F1F0-ATP synthesis (Figure 3C). Hence, these

detected epistatic relationships are well supported by their close

connections in the oxidative phosphorylation pathway.

Function analysis reflects how environment modulates

regulatory modules. To understand how environmental con-

ditions modulate the effects of genetic variants on phenotypic

traits, we investigated whether the gene pairs in the inferred

Epistasis-2D modules are enriched for certain biological processes.

For the 225 and 224 2D-traits identified under the two conditions,

Statistical Analysis Reveals Epistasis-2D Modules
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Figure 4 summarizes the pairs of functions enriched for co-

regulated gene pairs (Materials and Methods). It can be seen that

the patterns are quite different between the two conditions. Under

the glucose condition, ribosome biogenesis tends to be co-

regulated with carbohydrate metabolic process (p~8:9|10{6)

and signaling (p~3:2|10{3). Genes within the cellular respira-

tion process also tend to be co-regulated (p~9:5|10{3)

(Figure 4A). Under the ethanol condition, genes within the RNA

metabolic process (p~1:4|10{5) and translation (p~2:0|10{4)

tend to be co-regulated (Figure 4B).

Glucose response pathway modulates ribosome-related

modules. To understand the differences observed between the

two conditions, we investigated the regulatory loci to bridge the

gap between environment and co-regulated processes. Ribosome

biogenesis is associated with the glucose condition, with ribosome

biogenesis genes induced in response to high, but not low, glucose

signals [31]. This is consistent with our observation that ribosome

biogenesis related regulation was only identified under the glucose

condition. In addition, yeast responds to glucose via several

glucose-sensing and signaling pathways, two of which are reflected

in our results: the main glucose repression pathway through the

complex SNF1 complex to inhibit the Mig1 repressor-containing

complex, and the Gpr1/Gpa2 glucose-sensing pathway which

activates cAMP synthesis [32].

Figure 3. Clustering in the epistasis map reveals a functional genetic module in oxidative phosphorylation pathway. (A) The
clustering heatmap of the detected epistasis under the glucose condition. (B) One cluster contains eight highly interacting loci. Their co-targets in the
module are mostly functional in the oxidative phosphorylation pathway. There are candidates also functional in the same pathway at these eight loci.
(C) A diagram showing the regulatory pathway from the literature, where the green circle represents the candidates and the grey circle represents
their targets in the modules.
doi:10.1371/journal.pgen.1003414.g003

Statistical Analysis Reveals Epistasis-2D Modules
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To gain insights of this environment modulated regulatory

relationship, we first studied the linkage between ribosome

biogenesis and signaling process. In our results, two signaling

genes (GPG1 and TFS1) were co-regulated with ribosomal genes

under the glucose condition. They both encode proteins that

function in the glucose signaling pathway. Gpg1 interacts with

the glucose sensor Grp1 and Gpa2 [33], and Tfs1 could activate

the cAMP/PKA pathway. The regulatory loci of these modules

are enriched with glucose metabolic genes (p~3:8|10{3,

Materials and Methods). GPG1 is co-regulated with three

ribosome genes (REX4, RNT1, UTP9), and associated with two

genetic intervals: chromosome XVI:387239-420441 and chro-

mosome XIV:558284-595885. These two chromosomal intervals

contain 14 and 16 genes and each contains a candidate that

functions in the glucose response process: GCR1 and SSN8. Gcr1

forms a complex with Rap1 and Gcr2 to transcriptionally

activate glycolytic genes [34,35], and Rap1 was detected to be

the transcription factor of GPG1 and REX4 [27,28]. SSN8

encodes the RNA polymerase II holoenzyme and is involved in

glucose repression [36], it is repressed by SNF1 complex and

also physically interacts with Snf1 (Figure 5). High-throughput

study has detected genetic interaction between Gcr2 and Ssn8

[37], which may be related to the epistatic interaction between

Gcr1 and Ssn8. How this interaction could influence the

regulation of the genes in the modules maybe an interesting

direction for future studies. The co-regulated ribosomal gene

pairs TFS1 and NOC3 are associated with chromosomal

intervals: XII:514835-516700 and V:430931-458085. The for-

mer interval is located near TFS1 and the latter contains 11

genes, among which one candidate GLC7 is a well known

regulator in glucose response. Glc7 is the phosphatase that

inhibits SNF1 complex (Figure 5). SNF1 complex inhibits the

Mig1 complex, which is the transcriptional regulator of TFS1

[27,28]. Further more, we can also find glucose response genes

among the co-regulatory loci of ribosome biogenesis and

carbohydrate metabolic process. For example, one module

contains two genes GDB1 and NOC3. GDB1 encodes a glycogen

debranching enzyme and NOC3 is involved in ribosome

biogenesis. Their regulatory loci are located at two chromosomal

intervals: IV:1149761-1185630 and XIII:286122-298193, where

enriched with glucose transport genes (p~1:2|10{6, Materials

and Methods). The former contains 15 genes and three

candidates (HXT3, HXT6, HXT7) encode glucose transporters

in glucose response pathway. The latter interval contains two

genes and one candidate HXT2 also encodes a transporter in

glucose response pathway (Figure 5).

Oxidative stress in ethanol modulates aging-related

modules. Under the ethanol condition, 25 pairs of RNA

metabolic genes were co-regulated among the 224 identified 2D-

traits containing 43 unique genes. We note that 11 genes function

in the silencing process, which are known to be related to aging

[38,39]. In addition, two other genes RAS2 and MSN2 are known

to function in the aging process [40]. In total, 16 of these 25 (64%)

pairs contain at least one aging related gene. These aging-related

modules and proposed regulatory candidates are shown in Table

S5. Among the 11 silencing genes, six form three co-regualted

pairs: UBP10-HMLALPHA1, SPT23-RPD3, and ESC2-ZDS2. All

the regulatory loci in the first two modules and many regulatory

loci in the other aging-related modules contain oxidative stress

response related regulators (Table S5), which is interesting because

there is a conjecture that oxidative stress could induce aging in

ethanol environment [38,39]. The metabolism of ethanol is

assumed to induce aging through increased damage from reactive

oxygen species (ROS) produced in oxidative stress response

[38,39], but the exact mechanism is not clear. We discuss the

details of these modules in the following to gain some insights on

how oxidative stress response pathway regulate aging-related

process.

Figure 4. Functional distributions of the gene pairs in the module across different bioprocesses. (A) Under the glucose condition,
ribosome biogenesis genes are co-regulated with signaling and carbohydrate metabolic in the Epistasis-2D modules. Genes within cellular respiration
are also co-regulated. (B) Under the ethanol condition, genes within RNA metabolic and translation are co-regulated. The values shown in the figure
are the 2log10 (p-value) of the enrichment test for each pair of functions.
doi:10.1371/journal.pgen.1003414.g004

Statistical Analysis Reveals Epistasis-2D Modules
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In the UBP10-HMLALPHA1 module (Figure 6A, 6C), Ubp10 is

functional in silencing at telomeres and mating-type loci. It

cooperates with Sir4 to regulate the expression of subtelomeric

genes and mating-type silencing related genes including HMLAL-

PHA1. The mutant of Ubp10 also reveals its influence in the

oxidative stress response [41]. Sir4 is a member of the chromatin

silencing complex (Sir1-4) which is the regulator involved in

assembly of silencing complex at telomeres and mating-type loci

[42]. The SIR complex is also known to link silencing and aging

[43,44]. The regulatory loci in this module are located at

chromosome XV:37207-44482 and chromosome XII:370434-

388933 which contain two and eight genes, respectively. Only one

gene GRE2 in the former interval is noted to have a function.

GRE2 is involved in the oxidative stress response and regulated by

the HOG pathway. The latter interval contain the candidate

HOG1 which are also involved in oxidative stress response

(p~1:4|10{4, Materials and Methods). Hog1 is a kinase that

regulates several transcription factors including Msn2,4 and Yap1

to respond to oxidative stress, and Gre2 is known to be regulated

by Hog1 through Yap1 and function in the repair of oxidative

damage although the details of its role are still not clear [45]. In

addition, the expression of UBP10 is affected by mutations in

Msn2 [27,28] which may mediate the regulation between Hog1

and Ubp10. A recent study indicates that Hog1 could activate Sir2

through Msn2,4 to suppress Hog1 induced ROS accumulation,

but this regulation does not involve Sir4 indicating that the

function of Sir2 here does not depend on its function in silencing

[46]. This observation illustrates a partial interaction between

oxidative stress response and silencing process downstream. Our

results suggest that the function of Ubp10 in silencing is regulated

by Hog1 and Gre2, which builds the upstream linkage between

oxidative stress and silencing regulation. This observation

indicates that oxidative stress response and silencing may be

jointly regulated. The epistatic interaction between Hog1 and

Gre2 needs to be experimentally validated to further characterize

regulation mechanism.

In the SPT23-RPD3 module (Figure 6B, 6D), Rpd3 is a histone

deacetylase that is involved in Sir2-mediated silencing [47] and

aging [48]. Spt23 may affect silencing caused by Sir1, but its role

in silencing is not clear [49]. Their regulatory loci (chromosome

XII:849485-851826 and chromosome IV:527445-555043) contain

1 and 11 genes, respectively. The former interval contains only

one gene STE11, which is the signal transductor in the HOG

pathway responding to high osmolarity (p~4:5|10{3, Materials

and Methods). RPD3 is transcriptionally regulated by Cin5

[27,28], which is known to be regulated in HOG pathway

through Msn2 under osmotic stress [50]. Rpd3 also functions with

Hog1 and Msn2 in the same pathway to activate osmo-responsive

genes. Although these all indicate regulatory relationships between

the HOG pathway and Rpd3 under osmotic stress, the regulation

may also exist under oxidative stress since many HOG pathway

genes are also involved in oxidative stress response such as Hog1,

Msn2,4 and Cin5. To our knowledge, the role of Ste11 in

oxidative stress response is not clear, which maybe an interesting

direction for future studies. The later interval contains one

candidate VMS1 which also functions in oxidative stress related

process. Vms1 forms a complex with Cdc48Npl4 to regulate targets

under oxidative stress [51,52], while Cdc48Npl4 modulates Spt23

through direct binding [53]. Although the latter regulation is not

discovered under oxidative stress and it is not clear whether this

regulation is related to the function of Spt23 in silencing, these

known regulations provide a potential framework to interpret the

regulation between Vms1 and Spt23. In addition, high-throughput

experiments have captured the genetic interaction between Spt23

and Vms1 [7,54]. To understand the epistatic interaction between

Vms1 and HOG pathway, we investigated the upstream regulators

of Vms1. Under oxidative stress Vms1 is genetically interacted

with Sod2 [51]. Sod2 is downstream of Sch9, and Sch9 is

regulated by Tor1. Tor1 is the main kinase in TOR pathway that

is well known to regulate aging under caloric restriction [38].

VMS1 was also found to be regulated by Tor1 [55]. From

observing the co-expression pattern in the module (Figure 6B), we

note that only when the genotype of Ste11 is 0 (wild RM), SPT23

and RPD3 could be co-regulated, moreover the sign of their

expression correlation depends on the genotype of Vms1. It seems

that Ste11 provides the signal upstream of Vms1. In addition, the

regulation of VMS1 in this module also exists under oxidative

stress. Hence, there may be some crosstalk between oxidative stress

and caloric restriction response pathways. This is plausible because

the two stresses could both be induced by ethanol environment

and cause silencing and aging. Interestingly, Huang et al. [56]

recently demonstrated that Sch9 could integrate nutrient signals

from the TOR pathway and oxidative stress signals from

sphingolipids to regulate aging. Although their proposed signal

transduction from oxidative stress to Sch9 was not related to the

HOG pathway, other studies have shown the close interactions

between Sch9 with HOG-related genes like Hog1, Gre2, Msn2,4

and Rpd3 in other processes [57–59]. Combined with our results,

it is possible that Sch9 could integrate oxidative stress signal from

HOG pathway to regulate aging related processes under the

ethanol condition.

Comparisons between our method and other

methods. In this section, we compare the results from our

method to those from two other methods: a forward search

Figure 5. Glucose modulates ribosome-related modules
through glucose response pathway. The regulatory loci in the
modules contain genes involved in the glucose response pathway (red
nodes). This indicates how the glucose condition modulates the co-
expression pattern between ribosome genes (blue nodes) and glucose
signaling or metabolic genes (green nodes).
doi:10.1371/journal.pgen.1003414.g005
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strategy to identify Epistasis-2D modules (instead of the exhaustive

search scheme adopted by us) and an analysis focusing on 1D

(instead of 2D) traits. For the forward search method, we extend a

forward search algorithm proposed by Storey et al. [8] to consider

2D-traits as follows:

N For each pair of traits, identify the locus primarily associated with

the co-expression patterns where the correlation between the two

traits is modeled as r(b)~b0zb1L1, that is, we first identify

single loci affecting the changes in correlations between two traits.

N After the identification of the first locus, we conduct the

forward search to identify other loci that interacts with the first

locus to affect the correlations between the two traits using the

conditional bivariate test described above for our method. We

also test all possible interaction models for each candidate

module with two genes and two loci and select the model with

the most significant p-value.

Because our method is based on an exhaustive search scheme,

we only focused on the modules identified by our method as the

Figure 6. Ethanol modulates aging-related modules through oxidative stress response pathway. (A) One module contains two silencing
genes, UBP10 and HMLALPHA1. The regulatory loci contain two oxidative stress response genes, Gre2 and Hog1.; (B) One module contains two
silencing genes, SPT23 and RPD3. The regulatory loci contain two oxidative stress response genes, Ste11 and Vms1; (C) A diagram showing the
module A related pathway, which indicates a potential regulatory relationship between oxidative stress response and Ubp10 induced silencing
process; (D) A diagram showing the module B related pathway. The epistatic interaction between the two candidates Vms1 and Ste11 indicates the
potential crosstalk between caloric restriction response and oxidative stress. Moreover, Ste11 may also regulate Pbs2-Hog1 signaling pathway under
oxidative stress besides osmotic stress response.
doi:10.1371/journal.pgen.1003414.g006
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others are not as significant as these identified ones. When we re-

scanned the detected 225 and 224 2D-traits using the forward

search, only 139 and 112 can be identified to be associated with

two loci at the same statistical significance level (pv10{12) in our

method. This is because that the 2D-traits defined by the two

genes in each module are linked to interacting loci with weak

marginal effects, which were missed by the forward search scheme.

To investigate the different signals identified from studying 2D-

traits versus 1D-traits, we compared the linkage results based on

the analysis of single traits for genes involved in the Epistasis-2D

modules. Among the 225 and 224 2D-traits, there are 319 and 378

unique genes, respectively. For each gene, we performed the

Wilcoxon rank sum test to detect eQTLs in the genome. In total,

135 and 60 genes were found to be linked to at least one locus at

the 10{3 statistical significance threshold. Note that our method

excludes all loci that can be found by marginal analysis, so the loci

inferred in this single trait analysis have little overlap with the loci

identified by our method. We observed three hotspot regions in

these eQTLs: hotspot1 (chromosome XV:141621-174364), hot-

spot2 (chromosome XIV:449639-486861) and hotspot3 (chromo-

some III:201166-201167). The hotspot1 region is linked to 117

and 9 genes, and Smith et al. have identified IRA2 as the candidate

gene in this region to affect energy metabolism and growth related

genes [3]. The hotspot2 region is linked to 4 and 8 genes, and

Kang et al. suggested RAS2 as the candidate gene in this region to

affect gene expressions by perturbing the RAS signal transduction

pathway [60]. The hotspot3 region is linked to 4 genes under

ethanol condition, and Brem et al. have identified MAT as the

candidate gene in this region to affect mating response related

genes [2]. Beside these three regions, no other loci are linked to

more than two traits. For those traits not linked to these hotspot

regions, 14 and 39 genes, respectively, most (11/14 and 26/39) are

cis-linked (the QTLs are located within 10 kb of the traits). Our

results suggest that most trans regulated 1D-traits are linked to

regulatory hotspots, which tend to affect multiple genes [60]. For

example, the hotspot1 region was associated with 1159 and 410

genes under the two conditions at FDRv0:05 [8]. For genes with

eQTLs mapped to the same region, the analysis of their co-

expression patterns may identify additional regulators of these

genes. For example, Figure 7 shows an example where the

expressions of the two genes, GPG1 and RNT1, were both affected

by hotspot1. We can see that their co-expressions were regulated

by two other markers located at chromosome XIV:558284-

595885 and chromosome XVI:368296-408883. The candidate

IRA2 involved in hotspot1 mediates glucose response via the

cAMP-dependent pathway. We found candidates SSN8 and GCR1

in chromosome XIV:558284-595885 and chromosome

XVI:368296-408883 which also function in glucose response as

introduced above. This observation suggests that different forms of

regulation may exist. Ira2 globally regulates gene expressions in

the glucose response related pathways including GPG1 and RNT1

[8], whereas Ssn8 and Gcr1 specifically regulate the co-expression

between GPG1 and RNT1. Cis-acting eQTL may affect the gene

expression through affecting transcription factor binding [61,62].

Additional association signals besides cis-acting loci suggest other

regulatory mechanisms for these genes. Hence, analysis based on

1D-traits and 2D-traits complement each other in identifying

regulatory signals and they may reflect different regulation

mechanisms.

Discussion

We have developed a novel statistical approach to identifying

gene pairs whose co-expression patterns are jointly regulated by

interacting loci through the analysis of eQTL data. Our approach

is based on modeling the joint expression levels with a bivariate

normal distribution whose covariance matrix is dependent on the

joint genotypes at two candidate loci. Although different model

search strategies have been proposed to jointly analyze multiple

markers and their interactions based on genome wide data, e.g.

marginal search, forward search and exhaustive search, the ability

to conduct an exhaustive search allows us to identify interacting

loci with weak marginal effects [63]. To facilitate an exhaustive

search of all gene pairs versus locus pairs, we also proposed a

filtering process to only focus on those modules that are likely to be

statistically significant. This filtering process is one important

component of our strategy to reduce the computational burden

without reducing statistical power for discoveries. The application

of our method to a yeast data set has identified many interacting

loci with weak marginal signals which would not have been found

without the exhaustive search strategy. Compared to the existing

methods to detect epistasis, we considered the 2D-trait, especially

their co-expression patterns, as the phenotype. As discussed in the

introduction section, using such 2D-traits may help to detect post-

transcriptional regulation from the change of expression correla-

tions between downstream genes. As shown with the examples in

the results section, we detected many regulatory loci containing

candidate genes encoding kinases or phosphatases that regulate

the co-expression correlation between the targets of their TF

substrates. None of these modules could have been detected using

1D-traits. Since we only focus on modules which can not be detect

using 1D-mapping in this paper, we may miss potential Epistasis-

2D modules with genotype-dependent mean values (m) through

1D-Map filtering and assuming m1~m2~0 in our model. About

13% modules were filtered using 1D-Map filtering, therefore

around 13% Epistasis-2D modules could be missed by our

method. Although we could introduce more parameters in our

model to allow for genotype-dependent mean values, this may

introduce noises that lead to reduced statistical power with limited

sample size. More detailed discussion on the trade-off between

statistical power and model adequacy is provided in the

supplementary materials (Text S1, Figures S6 and S7).

We applied our strategy to a well studied yeast eQTL dataset

and detected many epistasis modules, most of which have not been

discovered to date and many may be interpreted with existing

biological literature. We found that the co-regulated genes in the

modules inferred under different environments were enriched for

different biological processes. For example, under the glucose

condition, ribosome biogenesis tends to be co-regulated with

glucose response and glucose metabolic processes. The loci jointly

regulating their expression patterns are enriched with genes in the

glucose response pathway. Under the ethanol condition, silencing

and aging related genes were found to be co-regulated. The loci

jointly regulating these genes are enriched with genes in the

oxidative response pathway, consistent with the hypothesis that the

metabolism of ethanol would induce aging through increased

damage from ROS produced in oxidative stress response.

Through detailed discussion of several identified modules, we

proposed potential regulatory mechanisms between oxidative

stress signal and aging process.

Interpretation is difficult in eQTL linkage studies because the

detected eQTLs often have low resolution, e.g. large intervals,

with many candidate genes. Traditional linkage analysis with

single genes and one locus often offers limited information to

identify a candidate gene around the locus to understand the

linkage signal. Since Epistasis-2D modules detected in our study

involve two genes and two loci, the biological association of the

two genes offers additional information to prioritize candidate
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genes in the inferred loci as shown in the examples in the results

section. However, significant challenges remain to identify

candidate genes in the inferred loci and interpret the results.

First, there is genetic buffering in a robust regulatory network, and

we may not be able to infer all the direct linkages from eQTL

studies. The mediators not observed between indirectly linked loci

and genes make it more difficult to interpret the regulatory

linkage. Second, in the Epistasis-2D modules, the genetic loci may

affect one of the two target genes or both of them, and either

situation will cause the variation of the co-expression pattern. This

also increases difficulty for interpreting the linkage results.

Therefore it is often necessary to incorporate information from

other resources to interpret the detected modules. For example, in

the oxidative phosphorylation pathway modules we illustrated in

the results section, the co-expression patterns between Dbp8 and

other oxidative phosphorylation genes are co-regulated. Since the

candidates we predicted are all involved in the oxidative

phosphorylation pathway, it is quite possible that only the

expression of oxidative phosphorylation genes in Dbp8-related

modules, but not the expression of Dbp8, is actually affected.

Similarly, we also investigated different types of databases to

collect evidences and interactions for interpreting other discussed

modules. It is important to integrate other data sources including

protein interactions, transcription and proteomics data under a

consistent framework to better interpret the results. This generic

idea has been formalized in different ways for interpreting one-to-

one linkages [64–67], and more work is needed to adapt these

methods to interpret the modules identified by our method.

Utilizing our results through integration of multiple data sources is

an interesting future direction. Our strategy could also be applied

to other eQTL data in mouse or human. For example, in the

mouse eQTL data, there are around 2000 markers which is

Figure 7. 1D-trait and 2D-trait reflect different genetic regulations. RNT1 is up-regulated in segregants bearing the BY allele at IRA2
(IRA2 = 1); GPG1 is up-regulated in segregants bearing the RM allele at IRA2 (IRA2 = 0); the expressions of RNT1 and GPG1 are negative correlated
except in segregants bearing the BY allele at two other loci containing candidates GCR1 and SSN8.
doi:10.1371/journal.pgen.1003414.g007
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comparable to the yeast data and the number of differentially

expressed transcripts was around 8000 [4]. In this case, the search

space is on the order of 1013, which can be readily handle by

paralleling our algorithm. In the human eQTL data, up to over

5,000,000 SNPs may be genotyped and up to 50,000 transcripts

may be profiled. This will dramatically increase the computation

time. We may reduce the computational burden by focusing only

on those transcripts of interest (e.g. those known to be relate to

diseases) or setting more stringent cutoffs in the filtering process to

accelerate the processing. However, more computationally

efficient methods need to be developed to identify Epistasis-2D

modules for these data if we want to consider all the traits and

markers. One possible direction is to jointly consider multiple

markers within a region as those done for GWAS data [68,69].

Materials and Methods

Conditional bivariate model
We define a module in this manuscript as the collection of a pair of

loci and a pair of genes, denoted as M : ~fL1,L2,G1,G2g, where L1

and L2 represent two loci and G1 and G2 represent two genes. Our

objective is to identify Epistasis-2D modules where L1 and L2 interact

to affect the co-expression patterns of G1 and G2. To formally

describe our model, we use (A,B,X ,Y ) to denote the genotypes of L1

and L2 and the expressions of G1 and G2. We assume that,

X

Y

� �
D(A,B)*N(

m1

m2

� �
,S(bij ,A,B)) ð5Þ

where

S(bij ,A,B))~
s2

1 s1s2r(bij ,A,B)

s1s2r(bij,A,B) s2
2

 !

is the covariance matrix, and

r(bij ,A,B)~
X

i[T ,j[T

bij I(A~i)I(B~j) ð6Þ

where I is the indicator function, i.e. I(A = i) = 1 if A = i and 0

otherwise, and T is the set of genotypes. For example, in the yeast

dataset T~f0,1g. In this study, we focus on associations that can not

be detected using 1D-trait (expression level), i.e. we assume that m1

and m2 are independent of A and B. This simple model may have

overall good statistical power to detect Epistasis-2D modules as

discussed in detail in the supplementary materials (Text S1, Figures

S6 and S7). Without loss of generality, we let m1~m2~0, which

approximately hold after applying the following transformation to the

expression data:

N For each gene, calculate the rank of the expression for each

sample, denoted as R1,:::,Rn;

N Calculate the transformed expression level for each gene as

W{1(
R1

nz1
),:::,W{1(

Rn

nz1
), where W(:) is the cumulative

normal distribution;

The normal quantile transformation based on individual genes is a

means to ‘‘normalize’’ the sample observations so that our procedure

is robust to the effects of extreme observations and/or highly skewed

distributions [12,15] (Text S1, Figures S1 and S2). In our model, we

assume that s1 and s2 are independent of the genotype because we

found this specification achieved a good balance between model

adequacy and simplicity. We illustrate this through the analysis of

simulated data and a subset of the real data in the supplementary

materials (Text S1; Figures S3, S4, S5). We found that although it

was feasible to fully consider genotype dependent variances, there

may be overall power loss due to additional model parameters,

especially when the sample size is limited.

Considering a sample with n individuals, let (ak,bk,xk,
yk)k~1,:::,n represent the genotypes and expressions in the kth

sample. The model parameters h~(bij ,s1,s2) in (8) can be

estimated using the maximum likelihood estimates (MLE), where

the log-likelihood function is,

l(h)~{
1

2

Xn

k~1

flog½(1{r2(bij ,ak,bk))s2
1s2

2�z

1

1{r2(bij ,ak,bk)
½x

2
k

s2
1

z
y2

k

s2
2

{
2r(bij ,ak,bk)xkyk

s1s2
�g:

ð7Þ

Our goal is to identify gene pairs whose correlations depends on

the joint genotypes of the two loci. We consider 12 epistatic models

(Table S1) versus the null hypothesis that the correlation is the

same for different joint genotypes. To focus on epistatic

interactions, we then compare the most significant model with

two single association models. The comparisons are based on the

likelihood ratio (LR) test.

Filtering process
Since MLE needs to solve a numerical optimization problem,

applying the tests above to all possible modules is computationally

expensive. Therefore, we introduce a statistic ‘‘PA-score’’ (Poten-

tial of Association) to estimate the lower bound of the p-value for

each module. The PA-score is defined as,

PA~nlog(1{r̂r2){
X
i,j[T

nij log(1{r̂r2
ij) ð8Þ

where nij is the number of individuals with genotypes A~i and

B~j, r̂rij is the Pearson correlation coefficient of the expression

levels among the nij individuals and r̂r is the correlation coefficient

among all the individuals.

We prove in the Text S1 that the expectation of PA corresponds

to the lower bound of p-value for each module. In this case, we

could control the sensitivity by choosing the cutoff for PA to filter

out modules before performing the LR tests. In this paper, we

chose a cutoff value of 45 for PA which has an estimated sensitivity

w0.995. The sensitivity here is one minus the percentage of the

significant LR test modules which will be filtered out by PA score

filtering. The details of the sensitivity estimation are provided in

the supplementary materials (Text S1, Figure S8). After the PA-

score filtering, more than 106 modules remained for each

condition. Using the LR tests, we identified 225 and 224 2D-

traits whose correlation patterns were under the epistatic control of

pairs of markers. Therefore we estimated that 225|
0:005

0:995
&1

epistatic controlled 2D-traits was filtered out by PA score in each

condition. Since PA can be directly calculated from the data, the

filtering process can reduce the total computing time by a factor of

16 from our experiments with the data (Text S1).

Yeast dataset
We analyzed the yeast dataset collected by Kruglyak

and colleagues [3]. The expression data were downloaded
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from http://www.plosbiology.org/article/info%3Adoi%2F10.

1371%2Fjournal.pbio.0060083, with 4,482 genes measured in

109 segregants derived from a cross between BY and RM. The

experiments were performed under two conditions, glucose and

ethanol. We removed 63 genes with more than 10 missing values

in either condition for a total of 4,419 genes analyzed. The

authors provided genotypes at 2,956 loci. We combined

neighboring loci having fewer than 5 discordant calls among

the 109 samples, leading to 820 merged markers. In this

manuscript, we still call these merged markers as markers to

simplify the discussion. For each marker pair, an individual can

have four joint genotypes, (0,0), (0,1), (1,0), and (1,1). We only

considered marker pairs where there were at least 15 individuals

for each joint genotype. There were a total of 305,301 such pairs.

Therefore, we tested 305301|C2
4419&3|1012 modules. The

algorithm was implemented in R. Applying our procedure to one

condition took one week of one CPU on a Linux cluster with

2.40 GHz CPU.

False discovery rate estimation
We estimate the false discovery rate (FDR) through a

permutation technique similar to previous study [8]. Specifically,

we randomly permutated the expression data across all the genes

and applied our procedure to the permuted data set using exactly

the same setting as the real dataset. That is we used the same cutoff

45 for PA, and the same cutoff 10{12 for p-values of the LR tests

(also select the best model). For a given threshold for LR tests, we

counted the number of unique 2D-traits involved in modules with

their p-values lower than the threshold. Note that we did not use

the number of modules to calculate FDR because a 2D-trait may

be mapped to multiple neighboring marker pairs since neighbor-

ing markers tended to have similar genotypes. Hence, we use 2D-

trait to label the modules for FDR estimation. We performed ten

permutations for each condition to yield ten sets of 3|1012

simulated null modules, and the results were consistent across

these ten permuted data sets (Table S2). For example, at the

threshold value of 10{12, the average number of unique 2D-traits

involved in modules with a statistical significance level less than

10{12 in the permuted dataset was 36.4 (SD = 4.9) and 38.5

(SD = 5.1), respectively. Therefore, with a total of 225 and 224

significant 2D-traits identified for the observed data under the two

conditions, the estimated FDR was v0:2 for both conditions (Text

S1, Table S3).

Merging of Epistasis-2D modules
Among the inferred Epistasis-2D modules, neighboring markers

tended to show similar patterns of interactions as discussed

previously [70]. We merged neighboring markers with fewer than

15 individuals showing discordant genotypes among all samples,

leading to 266 merged markers for clustering analysis. Table S4

listed all detected Epistasis-2D modules after the merging.

Clustering in the epistasis map
We define an epistasis map E under a specific condition as

Eij~

1 if there is at least one Epistasis{2D module containing Locus i and Locus j,

0 otherwise:

 

We performed hierarchical clustering on this map using Cluster

3.0.

Functional enrichment analysis for all gene pairs in the
modules

For each gene, we used GO slim to annotate its function. The

gene pair in each Epistasis-2D module were annotated with a pair

of functions. To investigate whether a particular pair of functions

were over-represented among the Epistasis-2D modules, we

performed the following hypergeometric test,

p~
Xn

i~k

Ci
MCn{i

N{M

Cn
N

ð9Þ

where N is the total number of gene pairs, M is the number of

gene pairs with two specific functions, n is the number of gene

pairs from Epistasis-2D modules, and k is the number of Epistasis-

2D gene pairs having the specific two functions. The p-values were

Bonferroni corrected for multiple testing.

Before analyzing the results, we note that many genes involved

in these function categories are overlapped. Under the glucose

condition, 18 genes annotated as ‘‘precursor metabolites/energy’’

actually consist of carbohydrate metabolic genes (7/18) and

cellular respiration genes (11/18). Genes annotated as ‘‘cofactor

metabolic’’ are also highly overlapped with these two processes (7/

13). In addition, genes annotated as ‘‘RNA metabolic process’’ are

mainly involved in ribosome biogenesis (33/80). Under the

ethanol condition, most genes annotated as ‘‘transcription’’ and

‘‘chromosome organization’’ are involved in the RNA metabolic

process (32/34, 9/19). According to these overlaps, the main

differences between the two conditions can be summarized as

shown in Figure 4.

Functional enrichment analysis for chromosome intervals
Since a chromosomal interval encompassing the markers may

contain multiple candidate genes, we need to perform enrichment

analysis to investigate whether there is statistically significant

evidence for the enrichment of certain function. We performed

hypergeometric test to investigate whether a particular function

was over-represented among the genes located at the chromo-

somal intervals within one or several modules. The p-value was

calculated as,

p~ P
n

i~1

Xni

j~ki

C
j
M C

ni{j

N{M

C
ni
N

ð10Þ

where n is the total number of considered chromosome intervals,

N is the total number of annotated genes, M is the number of

genes with specific function, ni is the number of genes in ith

chromosome interval, and ki is the number of genes having the

specific function in ith chromosome interval. The gene function is

defined by GO annotation at level 5 (downloaded from DAVID

Knowledgebase [71,72]). The calculation detail of the examples

that discussed in the results section was listed in Table S6.

Supporting Information

Figure S1 Examples showing the effect of normal quantile

transformation. (A) Example 1 with an outlier which overestimates

the correlation. (B) Normal quantile transformation (NQT) of

Example 1 can reduce the effect of the outlier. (C) Example 2 with

an outlier which underestimates the correlation. (D) Normal

quantile transformation can reduce the effect of the outlier.

(EPS)
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Figure S2 Comparison of correlation coefficients calculated

from the original data and transformed data. As shown in the

figure, there is a high degree of correlation between gene

expression correlation coefficients calculated from normalized

and unnormalized data.

(EPS)

Figure S3 Comparison of estimating standard deviation from

MLE and using SD = 0.97. (A) For the identified Epistasis-2D

modules with large LR statistics, the LR statistics calculated from

the two methods are highly correlated. (B) For randomly sampled

modules with relative low LR statistics, the LR statistics calculated

from the two methods are also highly correlated. (C) The

distribution of the estimated standard deviations for the Epista-

sis-2D modules. (D) The distribution of the estimated standard

deviations for random sampled modules.

(EPS)

Figure S4 Comparison of the statistical power of model (3) and

model (6) using simulated data. (A) For simulated IMDVED

modules with 100 samples, using model (6) resulted in higher

power than model (3) for 54% of the modules. (B) For simulated

IMIVED modules with 100 samples, using model (6) resulted in

lower power than model (3) for 88% of the modules. (C) For

simulated IMDVED modules with 500 samples, using model (6)

resulted in higher power for 89% of the modules. (D) For

simulated IMIVED modules with 500 samples, using model (6)

resulted in lower power than model (3) for 94% of the modules.

(EPS)

Figure S5 Comparison of the statistical power of model (3)

versus model (6) using real data. For modules with pv10{10 based

on the LR tests, using model (6) resulted in lower power than

model (3) for 73% of the modules.

(EPS)

Figure S6 Comparison of the statistical power of model (3) and

model (20) using simulated data. (A) For simulated DMIVED

modules with 100 samples, using model (20) led to higher power

than model (3) for 58% of the modules. (B) For simulated IMIVED

modules with 100 samples, using model (20) resulted in lower

power than model (3) for 88% of the modules. (C) For simulated

DMIVED modules with 500 samples, using model (20) led to

higher power for 92% of the modules. (D) For simulated IMIVED

modules with 500 samples, using model (6) resulted in lower power

than model (3) for 96% of the modules.

(EPS)

Figure S7 Comparison of the statistical power of model (3) and

model (20) using real data. For modules with pv10{10 in the LR

tests, using model (20) resulted in lower power than model (3) for

96% of the modules.

(EPS)

Figure S8 Evaluation of PA score and sensitivity estimation. (A)

For simulated IMIVED modules, the LR scores and PA scores are

highly correlated. (B) For simulated IMDVED modules, the

correlation between LR scores and PA scores is lower than that in

IMIVED modules. (C) For simulated DMIVED modules, the

correlation between LR scores and PA scores is also lower than

that in IMIVED modules. (D) For simulated negative controls, the

correlation between LR scores and PA scores is much lower than

that in IMIVED modules. (E) The correlation between LR scores

and PA scores in sampled modules from yeast dataset. (F) For

simulated IMIVED modules and different threshold c, the fraction

of modules with PA - LR w -c is relatively robust to the LR score

level. (G) IMIVED modules have higher fraction of modules with

PA - LR w -c for different threshold c. (H) Distribution of the

difference between the PA scores and LR scores in yeast data. As

shown in the figure, PA-LR = 25.8 (dash line) is the 0.005

quantile.

(EPS)

Table S1 Parameter settings.

(PDF)

Table S2 Number of unique 2D-traits in significant modules

(pv10{12) in each permutated dataset.

(XLSX)

Table S3 FDRs under different cutoffs.

(XLSX)

Table S4 Epistasis-2D modules.

(XLSX)

Table S5 ‘‘RNA metabolic-RNA metabolic’’ co-regulated

modules.

(XLSX)

Table S6 Functional enrichment analysis for Epistasis-2D

modules.

(XLSX)

Text S1 Supplementary methods and simulation study.

(PDF)
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