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Abstract: Nosocomial infections caused by antibiotic-resistant bacteria are constantly growing health-
care threats, as they are the reason for the increased mortality, morbidity, and considerable financial
burden due to the poor infection outcomes. Indwelling medical devices, such as urinary catheters,
are frequently colonized by bacteria in the form of biofilms that cause dysfunction of the device
and severe chronic infections. The current treatment strategies of such device-associated infections
are impaired by the resistant pathogens but also by a risk of prompting the appearance of new
antibiotic-resistant bacterial mechanisms. Herein, the one-step sonochemical synthesis of hybrid
poly(sulfobetaine) methacrylate/Polymyxin B nanoparticles (pSBMA@PM NPs) coating was em-
ployed to engineer novel nanoenabled silicone catheters with improved antifouling, antibacterial,
and antibiofilm efficiencies. The synergistic mode of action of nanohybridized zwitterionic polymer
and antimicrobial peptide led to complete inhibition of the nonspecific protein adsorption and up to
97% reduction in Pseudomonas aeruginosa biofilm formation, in comparison with the pristine silicone.
Additionally, the bactericidal activity in the hybrid coating reduced the free-floating and surface-
attached bacterial growth by 8 logs, minimizing the probability for further P. aeruginosa spreading
and host invasion. This coating was stable for up to 7 days under conditions simulating the real
scenario of catheter usage and inhibited by 80% P. aeruginosa biofilms. For the same time of use, the
pSBMA@PM NPs coating did not affect the metabolic activity and morphology of mammalian cells,
demonstrating their capacity to control antibiotic-resistant biofilm-associated bacterial infections.

Keywords: Polymyxin B; poly(sulfobetaine) methacrylate; sonochemistry; nanohybrids; antibacterial
activity; biofilm inhibition; catheter-associated bacterial infections

1. Introduction

The use of implantable medical devices such as indwelling urinary catheters is imper-
ative in the field of modern medicine for managing urinary retention and incontinence in
hospitalized patients [1]. Urinary catheters are a predisposing factor for bacterial coloniza-
tion and the formation of antibiotic-resistant biofilms, causing difficult-to-treat, healthcare-
associated infections (HAI) and prolonged hospitalization [2]. Bacterial biofilms on medical
devices have serious negative impacts on human health since they cause severe chronic
infections and lead to increased mortality, morbidity, and a considerable financial burden
to the healthcare systems [3,4]. Catheter-associated urinary tract infections (CAUTIs) are
among the most common HAIs and represent 80% of the urinary tract infections currently
treated in hospitals [5].

The high incidence of CAUTIs is associated with frequent replacement of the device
and aggressive antibiotic therapy [6], resulting in patients’ discomfort and selection for
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drug-resistant bacterial species [7]. Although silicone catheters were introduced into the
clinical practice as a more efficient alternative to the latex materials, the rapid formation of
the so-called conditioning layer composed of nonspecifically attached proteins that serve as
anchoring spots for establishing resistance to the host defenses, and conventional antibiotic
biofilm structure limits their long-term utilization [8]. Catheters’ functionalization with
conventional antibiotics or metal/metal oxide nanoparticles (NPs) has been suggested as
a prominent measure to decrease the prevalence of biofilm diseases [9–11]. However, these
antimicrobial agents may induce side effects such as inflammation and cytotoxicity, and
instigate the appearance of resistance [11,12]. In consequence, significant efforts are being
made to design novel and more efficient antibiofilm surfaces based on antifouling polymers,
biopolymers [13], or anti-infective/bactericidal enzymes [14–16] with low potential for
promoting resistance occurrence. In our group, we developed hybrid multilayer coatings
of quorum quenching acylase and matrix-degrading amylase on urinary catheters able
to inhibit the biofilm formation in vitro and in vivo [14,17]. We also reported a two-step
biotechnology-based approach for the covalent functionalization of silicone catheters with
antifouling zwitterionic coating using enzyme laccase. Urinary catheters were first plasma
activated and prelaminated to allow the laccase-assisted grafting of the natural phenolic
compound gallic acid (GA). Subsequently, the tethered GA residues were activated by
laccase to phenoxy radicals, triggering an enzymatically initiated radical polymerization of
zwitterionic sulfobetaine methacrylate monomers on the silicone catheters [13]. Although
these strategies are effective in diminishing the biofilm establishment on the surface, they
do not aim to kill the pathogens, and the threat of spreading and infection occurrence may
still persist.

This work extends beyond the described state of the art by developing a novel bifunc-
tional nanoenabled coating for simultaneous inhibition of nonspecific proteins adherence
and initial bacterial settlement on silicone surface, together with the effective killing of
the incoming P. aeruginosa bacteria upon contact. Contrary to the most frequently used
surface functionalization techniques, which are time consuming and environmentally haz-
ardous [18], we employed a single-step green sonochemical approach for simultaneous
synthesis of hybrid zwitterion/peptide NPs and their deposition on catheters, without the
need for any surface pretreatment or coating additives. Ultrasound nanoenabled coating
technology is water based, implies low temperature (20 ◦C), and allows the generation of
durable “ready-to-use” surface nanostructured antimicrobial products [19]. Furthermore,
the nanosized combination of bactericidal Polymyxin B and antifouling poly(sulfobetaine)
methacrylate (pSBMA) is envisaged to improve the peptide stability [18], repelling the
proteins and residues of dead bacterial cells, and synergistically enhance the antibiofilm
activity of the coatings at lower nontoxic concentrations of the actives. Nanoformulation of
biocides endows them with additional mechanisms of antimicrobial action, e.g., membrane
disruption and “invisibility” to the defense system of bacteria that does not recognize them
as a threat. The improved physical interaction and disturbance of the bacterial membranes
by these nanoentities will lead to bacteria eradication, avoiding resistance development.

The antibacterial activity of the developed hybrid nanocomposites coating was as-
sessed against Pseudomonas aeruginosa as the most common pathogen causing indwelling
medical devices-associated infections. Furthermore, the antibiofilm efficiency of such
NPs coating was assessed in vitro in both static and dynamic conditions, under constant
artificial urine flow mimicking the real situation during catheterization. The biocompatibil-
ity was also assessed by monitoring the changes in the mammalian cell lines’ metabolic
activities and morphology upon exposure to the coatings for 1 and 7 days.

2. Materials and Methods
2.1. Materials

Polymyxin B and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hy-
droxide (sulfobetaine methacrylate, SBMA) (95%) were purchased from Sigma-Aldrich
(Madrid, Spain). Potassium persulfate (K2S2O8, ≥99%) was purchased from Chem-Lab
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(Zedelgem, Belgium). The pSBMA was prepared as previously described [20]. Briefly,
0.1 mol.% of initiator K2S2O8 was added to 0.2 M of an aqueous solution of SBMA monomer.
The polymerization reaction proceeded at 60 ◦C for 6 h under continuous stirring. Sub-
sequently, the polymer solution was transferred to dialysis membranes (cut off 13 kDa)
against distilled water for 1 week. Then, the obtained solution was lyophilized for 2 days
and stored at room temperature until further use.

Gram-negative Pseudomonas aeruginosa (P. aeruginosa, ATCC 10145), human fibroblast
(ATCC-CRL-4001, BJ-5ta), and keratinocyte (HaCaT cell line) cells were obtained from the
American Type Culture Collection (ATCC LGC Standards, Barcelona, Spain). Live/Dead®

Kits for mammalian cells viability kit was provided by Thermo Fischer Scientific (Sant
Cugat del Vallès, Spain). AlamarBlue Cell Viability Reagent and Live/Dead BacLight Kit
(Molecular probes L7012) were obtained from Invitrogen, Life Technologies Corporation
(Madrid, Spain). Polydimethyl/vinylmethyl siloxane urinary (Foley) catheters and silicone
sheets designated according to ASTM D 1418 were purchased by Degania Silicone Ltd.
(Degania Bet, Israel). All other chemicals were provided from Sigma-Aldrich (Madrid,
Spain) and used without further purification.

2.2. Ultrasound Coating of Silicone Materials with Polymyxin B and pSBMA NPs

The sonochemical coating was carried out using an ultrasonic transducer Ti-horn (20 kHz,
VC750, Sonics & Materials, Inc., Newtown, CT, USA). The silicone strips (1 × 1 cm2) were
immersed in the ultrasonic pot containing 100 mL aqueous solution of Polymyxin B
(1 mg/mL) and pSBMA (0.5 mg/mL), and the coating of the silicone samples was carried
out for 15 min at 20 ◦C, amplitude of 50%, and energy supply 29.5 W/cm2. Silicones,
coated with 1 mg/mL Polymyxin B and 0.5 mg/mL pSBMA, were used as control samples.
The ultrasonic horn was dipped 2 cm in the solution at a distance from the silicone of
approximately 5 cm. Thereafter, the samples were thoroughly washed with distilled water.
For the tests under dynamic conditions, whole-size silicone 18 fr Foley catheter was coated
as described above.

2.3. Surface-Morphology and Surface-Wetting Characterization

The morphology of the 1 × 1 cm2 pristine silicone and hybrid coated silicone was
investigated by a field emission scanning electron microscope (SEM, Quanta 650 FEG, Field
Electron and Ion Company, Hillsboro, OR, USA) at vacuum mode, operating at 20 kV at
2500× magnification. Contact angle measurements were carried out with mQ water to
determine the hydrophobicity and surface properties of the hybrid nanocomposites. Briefly,
the measurements were performed at room temperature in the air using DSA25 Drop Shape
Analyzer Krüss Instruments (Instrumentación analítica S.A., Prat del Llobregat, Spain) and
applying the sessile drop method. Liquid drops of 2 µL were applied to the material surface.
The contact angle measurements for the determination of the hydrophilic/hydrophobic
characteristics were estimated by the two-dimensional projection of the droplet on both
left and right sides.

2.4. Protein Adsorption Test

Silicone samples (1 cm × 1 cm) were immersed in a 1 mg mL−1 albumin-fluorescein
isothiocyanate conjugate (FITC–BSA) solution (w/v) for 30 min to simulate the immediate
process of protein attachment preceding the biofilm formation. After that, the samples
were washed with distilled water and dried with nitrogen. The protein attachment on
the pristine and coated silicone surfaces was evaluated using a fluorescence microscope
NIKON Eclipse Ti-S (Nikon Instruments, Inc., Amstelveen, The Netherlands).

2.5. Antibacterial Activity of pSBMA@PM Coated Catheters

The antibacterial activity of the functionalized silicone materials was assessed against
Gram-negative P. aeruginosa. Briefly, single colonies of bacteria were grown in Mueller
Hinton Broth at 37 ◦C and 230 rpm overnight. Then, the bacteria were diluted in 100 mM
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phosphate-buffered saline (PBS, pH 6.8) (colony forming units (CFU) mL−1 ~108); subse-
quently, 1 piece (1 × 1 cm2) of silicone was placed with 1.5 mL of bacteria in 15 mL sterile
falcons and incubated for 24 h at 37 ◦C and 230 rpm shaking. The bacterial withdrawn
suspensions were serially diluted in sterile 100 mM PBS, plated on selective Cetrimide
agar, and incubated for 24 h for 37 ◦C, and the viable bacteria were counted using the drop
count method.

2.6. Biofilm Inhibition Properties
2.6.1. Crystal Violet Assay

The ability of the developed coatings to impede the biofilm formation on the modified
silicone materials was assessed with P. aeruginosa as previously described [14]. Briefly,
1 × 1 cm2 of silicone was incubated with 1.5 mL of bacterium (OD600 = 0.01) in tryptic soy
broth (TSB) in a 24-well microplate. The microplate was incubated for 24 h at 37 ◦C under
static conditions, allowing the bacteria to colonize the silicone materials and form biofilms.
Following the incubation, the nonadhered bacterial cells were washed three times with
2 mL of sterile 100 mM PBS (pH 6.8), and the bacterial biofilms were fixed for 60 min at
60 ◦C and stained with 1 mL of 0.1% (w/v) crystal violet solution for 15 min. Subsequently,
the silicone pieces were placed with 1 mL of 30% acetic acid (v/v) to redissolve the crystal
violet dye fixed on the samples. The absorbance of the resulting solutions was measured
at 595 nm.

2.6.2. Cell Viability Assay

P. aeruginosa were allowed to grow and form biofilm onto the silicone pieces for 24 h,
and the nonadhered cells were washed three times with sterile 100 mM PSB (pH 6.8). The
silicone pieces were placed in sterile 15 mL falcons and 2 mL PBS and sonicated in a US
bath at 37 ◦C for 15 min in terms to remove the biofilm of the silicone surface. Further, the
bacterial cells of the formed biofilm were plated on selective Cetrimide agar, the plates
were incubated for 24 h for 37 ◦C, and the survived bacteria were counted using the drop
count method.

2.6.3. Live/Dead Kit Assay

The live and dead bacteria in the biofilms formed on the silicones were also assessed
using Live/Dead BacLight Kit assay. After biofilm development, the samples were stained
with a mixture of Syto 9 and Propidium iodide (PI) (1:1) for 15 min. The biofilms were
rinsed with 100 µL of 100 mM PBS (pH 6.8). Subsequently, the samples were analyzed
by fluorescent microscopy at Ex/Em 480/500 for Syto 9 staining the live bacteria and PI
at Ex/Em 490/635 labeling the dead bacteria. The stained biofilms were observed under
20× magnification. The live cells were stained in green and the dead ones in red.

Fluorescence microscopy at Ex/Em (480/500) for Syto® 9 labeling the nucleic acid of
all bacteria, with intact and damaged membranes in green and at Ex/Em (490/635) for
propidium iodide quenching the green fluorescence of Syto® 9 dye after penetration into
the damaged cells, consequently staining dead bacteria in red.

2.7. Dynamic Biofilm Inhibition Tests

The ability of the hybrid pSBMA@PM coating to impair the biofilm formation was
evaluated under dynamic conditions using an in vitro physical model of the catheterized
human bladder [14]. Briefly, the nontreated and pSBMA@PM NPs-coated silicone Foley
catheters (18 fr) were inserted into the sterile model and the catheter’s balloon was inflated
with 5 mL 100 mM PBS (pH 6.8). Subsequently, the bladder was filled up to the catheter’s
eye with sterile artificial urine, pH 6.8, prepared according to UNE EN1616 (Sterile Urethral
Catheters for Single Use), and supplemented with 1 mg mL−1 TSB Gram-negative P.
aeruginosa (final OD600 = 0.01). The model was maintained at 37 ◦C for 7 days and supplied
with sterile artificial urine at a flow rate of 1 mL min−1. Then, the catheter was removed,
and the total biofilm mass formed on the surface (catheter’s tip and balloon) was studied
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using crystal violet assay. Nontreated silicone Foley catheter served as a control sample
(no biofilm inhibition).

2.8. Biocompatibility Assessment

The cytotoxicity of the coated catheters was evaluated using human fibroblast cells
(BJ-5ta) and keratinocytes (HaCaT). The functionalized catheters were placed in contact
with the previously cultured cells, and the viable cells were quantified after 24 h and
7 days of contact using AlamarBlue Assay Kit (AlamarBlue®, Invitrogen, Sant Cugat
del Vallès, Spain) [21]. The cells’ morphology was also observed by Live/Dead® Viabil-
ity/Cytotoxicity Assay Kit (Thermo Fisher Scientific, Sant Cugat del Vallès, Spain) for
mammalian cells after exposure of the cells to the coated catheters for 24 h and 7 days as
previously described [22].

3. Results and Discussion
3.1. Silicone Functionalization with Hybrid pSBMA@PM NPs

The high-intensity US, supported by electrostatically driven self-assembly, was em-
ployed to develop in situ assembled dual active hybrid NPs of pSBMA and Polymyxin B
and simultaneously deposit them on silicone. The process for US-assisted NP production
and coating on silicone materials is schematically illustrated in Figure 1a. Polymyxin B
is a cationic peptide with positively charged amino residues that bind with the anionic
sites on the zwitterionic polymer, leading to successful NPs formulation. Simultaneously,
the resulting hybrid pSBMA@PM NPs were deposited onto silicon surfaces in a “throw-
ing stone” mode under the US field. The surface morphology of the developed hybrid
pSBMA@PM coating was investigated using SEM. The obtained SEM images (Figure 1b) re-
vealed successful silicone functionalization with spherical and uniform-sized nanohybrids.
A larger population of spheres of 3 µm, however, were also observed, which is a common
phenomenon associated with the electrostatic-driven self-assembling complexation of small
peptides with zwitterionic polymers [23]. The coating deposition was further confirmed
by the changes in the wettability of the coated silicone (Figure 1c). The pristine silicone
is hydrophobic with a water contact angle of 112.3◦ ± 2.5◦. Upon coating with pSBMA
and Polymyxin B, the water contact angle decreased statistically significantly (Figure 1c) to
93.6◦ ± 0.4◦, whereas the values obtained for the silicone functionalized with pSBMA or
Polymyxin B were 101.4◦ ± 2.7◦ and 110.5◦ ± 1.1◦, respectively. Apparently, the zwitteri-
onic polymer improved the hydrophilicity of the surface, and it is expected to reduce the
nonspecific protein attachment and biofilm growth on catheters [13].

3.2. Initial Protein Attachment

The nonspecifically attached proteins on the surface of the hydrophobic catheters are
believed to trigger the initial bacterial adherence and biofilm formation [24]. The protein
adsorption on the pristine and coated silicone samples was evaluated by fluorescence
microscopy using FITC labeled BSA protein. Figure 2 shows the FITC-labeled protein
attached to the pristine silicone, Polymyxin B, pSBMA, and hybrid silicones. Untreated and
Polymyxin B treated silicones strongly adsorbed BSA, forming aggregates that would fur-
ther serve as anchoring points for bacterial cells to adhere to the surface and initiate biofilm
growth. As expected, pSBMA functionalized silicone reduced the protein adsorption, and
this is in agreement with the results from the biofilm inhibition tests obtained further. BSA
did not adhere to the surface of the zwitterion (pSBMA)/Polymyxin B modified silicone
surface, confirming their antifouling potential. The antifouling pSBMA is able to inhibit
the conditioning layer formation and impair the bacterial colonization onto silicone surface
due to the formation of hydration film, disrupting the hydrophobic interactions between
the silicone material and the proteins.
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Figure 1. (a) Schematic representation of US-assisted pSBMA@PM NPs formulation and their 
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Figure 1. (a) Schematic representation of US-assisted pSBMA@PM NPs formulation and their
deposition onto silicone surface. Surface characterization of sonochemically coated with pSBMA and
Polymyxin B silicone materials: (b) SEM images of pristine and pSBMA@PM coated silicone catheter
and (c) Water contact angles measurements of the developed nanocoatings. All data are mean values
of three independent experiments. Stars represent the statistical differences between the different
groups of samples, ** p < 0.01; *** p < 0.001.
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Figure 2. Fluorescence images taken after 30 min of incubation in 1 mg mL−1 of FITC-labeled BSA solution.

3.3. Antibacterial Activity of the Hybrid pSBMA@PM NP Coating

The antibacterial activity of the hybrid nanocoating was evaluated against P. aeruginosa,
which is one of the most common Gram-negative pathogens, associated with foreign body-
related infections. Polymyxin B is a cationic polypeptide that is highly efficient against
Gram-negative bacteria due to the enhanced interaction with the lipopolysaccharides
in their outer membrane, leading to cell membrane disruption and death [25,26]. Such
bactericidal mechanisms of action do not exert selective pressure and, therefore, reduce the
probability of the appearance of resistance [25].

Catheters coated only with the peptide demonstrated up to seven-log reduction
in P. aeruginosa free-floating bacterial growth (Figure 3). In the same fashion, hybrid
pSBMA@PM coating led to similar bacterial growth reduction due to the Polymyxin B-
induced bacterial death. Although zwitterionic polymers are mainly used to inhibit initial
protein and bacterial adhesion [8,13], the silicones functionalized with pSBMA unexpect-
edly reduced P. aeruginosa viability by four logs. The US-assisted nanotransformation
of pSBMA probably led to changes in the polymer conformation and surface charge ori-
entations of the zwitterionic ligands imparting antimicrobial functionalities due to the
enhanced interaction with the bacterial cell membrane [27].
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groups of samples (*** p < 0.001); ns—not significantly different (p > 0.05).
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3.4. Inhibition of P. aeruginosa Biofilm Formation by the Hybrid pSBMA@PM NP Coating

The inhibition of P. aeruginosa biofilm formation was further assessed at static condi-
tions using crystal violet and bacterial viability assays. The crystal violet method provides
quantitative data for the total biomass inhibition, while the cell viability test provides infor-
mation for the live bacterial cells attached to the material [28,29]. Strong biofilm formation
was observed on the pristine silicone after 24 h of incubation with P. aeruginosa bacteria. In
addition to the strong antibacterial efficiency of Polymyxin B-coated silicones, these were
not able to inhibit the total biomass formation or affect the bacterial cell viability on the
surface, when compared with the pristine silicone (Figure 4a,b). Cationic polymers such as
Polymyxin B interact with the negatively charged bacterial cells inducing cellular lysis on
silicone surfaces [30]. The residual bacterial debris block the direct contact of the peptide
with the incoming live bacteria and also serve as anchoring points for them to form biofilm
structures. Additionally, there are several lines of evidence that the electrostatic interaction
between the peptide and bacteria stimulates the intercellular aggregation and formation
of clusters on the surface that are insusceptible to bactericides [30] and also promote the
growth of biofilm structures [30,31]. From another point of view, pSBMA coating impeded
P. aeruginosa catheter colonization and total biomass formation by 55% (Figure 4a) but was
not able to affect the viability of P. aeruginosa surface-attached biofilm cells (Figure 4b). The
live bacterial cells may further spread to other parts of the device or living tissues limiting
the long-term application of this coating. Importantly, simultaneously deposited pSBMA
and Polymyxin B showed higher inhibition of total biomass formation when compared
with the pristine silicone and catheters coated individually with pSBMA or Polymyxin
B. Up to 97% inhibition of P. aeruginosa biofilm and four-log reduction in bacterial cell
viability within the biofilm was achieved due to the synergistic action of both antifouling
and bactericidal actives (Figure 4a,b). The increase in the silicone hydrophilicity due to
the zwitterionic component of the coating decreases the free surface energy and reduces
the initial protein adherence and bacterial anchoring [32], allowing the peptide to exert its
bactericidal activity.

The biofilm formation and viability of the cells were also assessed using fluorescent
microscopy after staining with a Live/Dead Kit (Figure 4c). This assay allows the visualiza-
tion of dead and alive bacterial cells within the biofilm [33]. The microscopic observations
(Figure 4c) were in corroboration with the results from crystal violet and live bacterial cells
count assays and further validated the potential of the developed nanoenabled coatings
to prevent the P. aeruginosa biofilm formation on silicone surfaces. The untreated siliones
and silicones coated with Polymyxin B showed very well established P. aeruginosa biofilms,
and a large amount of green-stained bacterial cells was obtained for the pSBMA coatings,
indicating their inefficiency in inhibiting biofilm growth reduction in the biofilm, but most
of the cells were live, as obtained in the other tests. In contrast, the adhered P. aeruginosa
cells on the silicone surface coated with pSBMA@PM nanocomposites were significantly
reduced, confirming the strong antifouling and antibacterial features of the developed
nanoenabled coating.

3.5. Biofilm Inhibition Tests in an In Vitro Model of Catheterized Bladder

pSBMA@PM NPs were produced and coated onto silicone Foley urinary catheters in
order to validate the biofilm inhibition activity of the coatings in conditions mimicking the
catheter in use. Treated and untreated Foley urinary catheters were inserted in an in vitro
model of the human bladder and constantly supplied with artificial urine (1 mL min−1)
during 7 days, the lifetime period for clinical application. After 7 days, the catheters were
removed and the formed total biofilm mass on the pristine, and pSBMA@PM catheters was
evaluated. The pSBMA@PM coating led to an 80% reduction in P. aeruginosa total biofilm
formation on the catheter’s tip and balloon due to the bifunctional hybrid nanocomposites
(Figure 5). The balloon of the catheter is inflated inside the bladder and is entirely immersed
in urine over the time of catheterization. This part of the indwelling urinary catheters is
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considered the most susceptible to bacterial colonization and the consequent establishment
of antibiotic-resistant biofilms by urinary tract pathogens.
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3.6. Biocompatibility Assessments

Polymyxin B targets the bacterial cell membranes and in high amounts can induce
toxicity to mammalian cells. Nanosized materials, on the other hand, possess unique
psychochemical properties and may also induce toxicity. Thus, the evaluation of the
toxicity of the engineered coatings is an essential issue for their biomedical application.
pSBMA@PM silicone materials were subjected to cytotoxicity tests using two mammalian
cell lines—namely, fibroblasts and keratinocytes. The results obtained after the cells’
exposure to the hybrid coating for 24 h and 7 days demonstrated that the pSBMA@PM-
coated materials did not affect significantly human cell viability, and more than 95% of
the cells were viable (Figure 6a), probably due to the insufficient Polymyxin B amount
associated with human cell toxicity. The results from the Live/Dead Kit tests confirmed the
biocompatibility of this bifunctional material and did not show changes in the morphologies
of mammalian cells (Figure 6b). Considering the excellent biocompatible properties, the
developed hybrid coatings could be further evaluated in vivo without considering the
possible cytotoxic implication.
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4. Conclusions

Silicone materials were coated with hybrid zwitterionic/peptide NPs in a one-step
environmentally friendly water-based sonochemical process performed at RT, without
the need of surface pretreatment or any coatings additive. The engineered nanoenabled
coatings showed increased hydrophilicity and reduced protein adsorption, important
parameters governing the initial steps of sessile bacterial growth on indwelling medical
devices. Moreover, the complementary mode of action of the nanoformulated Polymyxin
B and pSBMA resulted in an eight-log reduction in the free-floating P. aeruginosa growth
and 97% inhibition of resistant biofilm establishment on silicone material. Importantly, the
biofilm formation on the SBMA@PM-coated samples was reduced by about 80%, compared
with the biofilm produced on the balloon of the pristine catheters, in a dynamic setup
simulating the real usage conditions of the device. These coatings did not induce changes in
the metabolic activity and morphology of human cells for the same time frame of catheter
application, and therefore, the designed dual-targeting approach could be an effective
alternative for reducing CAUTIs.
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