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Detecting topological variations of DNA at single-
molecule level

Ke Liu® ', Chao Pan?, Alexandre Kuhn3®, Adrian Pascal Nievergelt® 4, Georg E. Fantner® 4,

Olgica Milenkovic? & Aleksandra Radenovic® '

In addition to their use in DNA sequencing, ultrathin nanopore membranes have potential
applications in detecting topological variations in deoxyribonucleic acid (DNA). This is due to
the fact that when topologically edited DNA molecules, driven by electrophoretic forces,
translocate through a narrow orifice, transient residings of edited segments inside the orifice
modulate the ionic flow. Here we utilize two programmable barcoding methods based on
base-pairing, namely forming a gap in dsDNA and creating protrusion sites in ssDNA for
generating a hybrid DNA complex. We integrate a discriminative noise analysis for ds and ss
DNA topologies into the threshold detection, resulting in improved multi-level signal
detection and consequent extraction of reliable information about topological variations.
Moreover, the positional information of the barcode along the template sequence can be
determined unambiguously. All methods may be further modified to detect nicks in DNA, and
thereby detect DNA damage and repair sites.
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anopore sensing is an emerging single-molecule DNA or

RNA sequencing technology which holds great promise

for enabling long readout signals!~-3. There are two types
of nanopores in current use: biological nanopores (a-hemolysin?,
MspA®) and solid-state nanopores (SiN,°-8, 2D materials?-14,
and glass!?). Biological nanopores have several unique properties
that enable DNA strand sequencing based only on temporal ionic
current signals, thereby challenging the current state-of-art next-
generation sequencing techniques that exploit fluorescent labeling
and optical detection.

The two types of nanopores differ in several aspects: First,
biological pores have well-defined pore geometries with pre-
scribed atomic precision. The narrow constriction (1.4 nm for a-
hemolysin and 1.2 nm for MspA) facilitates the sequential dif-
ferentiation of individual nucleotides along the strand. Second,
the incorporation of a so-called “molecular motor” onto the pore
mouth can ratchet single-strand DNA in a base-by-base manner.
However, this also limits the sequencing speed to 450 nt/s!®.
Third, the lipid bilayer used to host biological pores can be
chosen to have a low dielectric constant for low-noise sensing.
Despite these advantageous features, biological pores also have
some intrinsic drawbacks: The fragility of the lipid bilayer that
supports the pore; the technical difficulties encountered to graft
biological pores into a large-scale array (more than 1,000,000
pores/cm?); and most importantly, the structural drawback rela-
ted to the long P-barrel in a-hemolysin which “dilutes” the ionic
current signal of a single nucleotide from the narrow constriction.
Thus, a single-nucleotide resolution is hard to expect from such a
pore structure.

Our work based on atomically thin MoS, nanopore represents
a development in DNA sequencing in favor of solid-state nano-
pores!”. Single-layer MoS, has a thickness of 6.5 A13:18 equal to
twice the distance between two bases in dsDNA. Several theore-
tical studies have predicted that MoS, has a superior performance
in base reading due to its unique electronic properties!®-21. In
realistic strand sequencing applications, the spatial uncertainty
created when the strand translocates through the nanopore is
vital to determining the location information and in de novo
assembly of the target sequence. Spatial resolution in traditional
SiN,. nanopores is limited to more than ten bases due to its
thickness. Nanopore data reduce to a time-resolved current sig-
nal. Hence, the accuracy of conversion from a temporal signal
into a spatial sequence depends on the homogeneity of the
translocation velocity. So far, the homogeneity of the transloca-
tion velocity remains a major point of contention in the literature.
Singer et al.2% used synthetic peptide nucleic acid probes attached
to a target viral gene and showed good localization certainty using
translocation data. Plesa et al.23 observed a large velocity fluc-
tuation related to the reduced drag force exerted on the untran-
slocated part of the DNA coil while long DNA unfolds to
translocate through the nanopore. Bell et al.# exploited a digital
encoding method to study the long-range arrangement of tar-
geted sites along DNA strands. As a result, this raises the issue of
the uncertainty in resolving the localized information of a feature
along the DNA strand. Before addressing this question, one has to
first distinguish real translocation events from rejection events.
Due to the expected high entropic barrier at the nanopore
entrance, the probability of true translocation is not expected to
be even close to one. For intact dsSDNA, the wide distribution of
dwell time and conformational folding complicate the inter-
pretation of translocation data.

Results
ds-ss—-ds DNA complexes. In our experiment, we designed
ds-ss—-ds DNA complexes by annealing base-paired matched

ssDNA to a template, and probed such a complex using the
standard SiN, nanopore. To assess the readout success rate and
velocity profile of rigid DNA segments through a small nanopore
(~3nm), we designed two identical dsDNA segments with
approximately one Kuhn length (~50 nm), and linked them by a
soft ssDNA segment. The scheme is sketched (Fig. 1a), where the
ds-ss—-ds DNA complex translocates through a SiN, nanopore in
the presence of an electrical field. A small nanopore was created
by a focused electron beam on a locally thinned SiN, membrane
(Fig. 1b, ¢). A good control over the nanopore size is critical for
all subsequent nanopore experiments (Supplementary Fig. 1).
Ideally, the nanopore size should be around 3 nm in diameter,
which barely allows the translocation of the complex. To verify
the yield of the formed constructs, we used atomic force micro-
scopy (AFM) to image the individual molecules in physiological
conditions to obtain relevant height information. Figure 1d shows
an example of a 1 pm x 1 um scanned surface with more than 20
pieces of our DNA complexes. The overall yield of forming
ds-ss-ds complex is more than 80%, a result obtained after
analyzing a number of such scans. AFM gives a direct statistic
based on counting single molecules. A zoomed-in image of one
such complex (marked by the white dashed rectangle in Fig. 1d, )
represents the three segments being designed. Due to the low
imaging forces of force-distance-based AFM in liquids, the
measured height profile is close to the nominal height profile for
single-stranded and double-stranded DNA. From the cross-
sectional profile (Fig. le), one can easily distinguish two ds seg-
ments from the ss segment. After characterizing the constructs,
we performed nanopore single-molecule translocation experi-
ments. The hypothetical current trace with two discrete levels
captures the structure of our complex (Fig. 1f).

During the nanopore translocation experiments, the complex
was fed through the cis-side and a positive bias was applied on the
trans-side with a pair of Ag/AgCl electrodes. Four molar LiCl
were used to enhance the ionic signal and reduce the velocity?>.
More details about the approach can be found in the Methods
section. According to typical events observed during such
experiments (Fig. 2a), we have classified the events into the
following groups: “212” type events, corresponding to complete
translocation; other types, such as “2” and “21”, that may be
attributed to partial translocation. We used a classical conduc-
tance blockage model to compute the pore size and the nanopore
length (see Supplementary Discussion 1 and Supplementary
Table 1). Assuming two levels induced by ss segment and ds
segment, we obtained a good agreement for the nanopore size and
the nanopore length. As shown in the scatter plot of collected
events, “212” type represent a small fraction of the total number
of events. We used standard clustering algorithms to classify all
types of events. Three major clusters were identified, and plotted
using blue, red, and green circles. Only 10% of the events were
assigned to the “212”. The current blockages induced by ssDNA
and dsDNA are 0.8+0.15 and 1.5+0.18nA, at 400mV,
respectively. It is interesting that the mean dwell time of “2”
type events coincide with the mean dwell time of the first level of
“212” or “21” type events. So, we speculate that the “2” and “21”
events are partial translocations. In our experiments, most of the
spike-like events include a single level, indicating that only the
first dsDNA segment entered the pore. This finding is striking
and it indicates a high entropic barrier for a complete
translocation in such a small nanopore. Partial translocatons
have also been observed in biological nanopores29-28, as well in
the context of narrow solid-state nanopores??-30, However, most
solid-state nanopores are relatively big, facilitating complete
translocation. In contrast, for narrow nanopores (~3 nm), the
entropic barrier plays a vital role. We used a barrier model to
understand molecular transport cross a nanopore in our previous
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Fig. 1 a A schematic illustration of a nanopore membrane, where a programmed DNA passes through a nanopore in the SiN, membrane. The device is
mounted between two reservoirs filled with a saline solution and connected to a current-to-voltage amplifier to induce a transmembrane bias across the
membrane. b A low-magnification TEM bright-field image shows the locally thinned region on the SiN, membrane. The nanopore is marked by the black
square. Scale bar is 50 nm. ¢ A high-magnification TEM bright-field image presents a single 2.5 nm nanopore, which is slightly larger than the dsDNA

cross-section (2.2 nm). Scale bar is 2 nm. d An overview AFM image of the programmed ds-ss-ds DNA complex on Mica under physiological conditions.
About 20 molecules can be examined by one scan. e A zoom-in image of one hybrid marked by the white square in d. The height profile captures the
hybrid nature of the compound. f The hypothesized current signal in the nanopore based on the DNA structure. Source data used to generate this figure

can be found in the Source Data file

publication!”. The probability of a complete translocation has an
exponential dependence on the barrier energy.

Another important question that can be studied in our setting
is the intramolecular velocity variation in “212” events (ie.,
complete translocation). A large variation has been observed for
the relative ratio of dwell time of the three segments (Fig. 2b, left).
We used the relative ratio in dwell time to describe the variation
for an average of 31 “212” events. In this case, we observed
fractional dwell times, assuming total dwell time to be one, of
0.43+0.12, 0.25+0.12, and 0.32+0.08 for each of the three
segments, respectively (Fig. 2b, right). We used a reference map
that assumes constant velocity and compared it to the experi-
mental observations. The first ds segment has the lowest
translocation speed among the three segments. The middle ss
segment has the largest relative variation due to its softness. The
last ds segment has a faster translocation speed than the first ds
segment.

Discriminative noise analysis. To better understand the nature
and variations of the two current levels, we focused on devising
new methods for discriminating the two DNA topologies based
on the empirical distribution and the power spectral density
(PSD) of the noise associated with signals generated by no-DNA

(Level 0), ssDNA (Level 1), and dsDNA (Level 2). Noise analysis
can facilitate the event detection for the “212” pattern and reveal
the physical nature of the two different types of translocations
(Fig. 3a). In order to reliably detect “212” events, one needs to
accurately discriminate between transitions in the Level 1 and
Level 2 phases. We used two transition prediction schemes: One
in the time domain, based on simple Gaussian mixture model
(GMM) fitting, and another one in the frequency domain, based
on flicker and thermal noise modeling (see Supplementary Dis-
cussion 2). We start by considering the simplest noise model for
Levels 1 and 2, in which we subtract the empirical average from
the signals and then fit a probability distribution in the time
domain for the remaining noise signal. Unfortunately, a Gaussian
distribution cannot be used to model the noise present in Level 1
and Level 2 signals as it does not pass the Anderson-Darling
test3!. The histograms of those two signals exhibits a high degree
of asymmetry (Supplementary Fig. 2), which may be intuitively
justified as follows. When an ssDNA segment of a certain length
enters the pore, one out of four possible nucleotides may mod-
ulate the ion current at any point of time, so that the histogram of
the unknown signal fits that of a 4-mixture model. Similarly,
when a dsDNA segment enters the pore, only two pairs of
nucleotides are possible, causing another output 2-mixture dis-
tribution. Those two mixture models should be clearly
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Fig. 2 a Scatter plot of a translocating ds-ss-ds DNA complex in a nanopore. Three clusters (blue, red, and green) denote the events that can be seen from
the plot. Representative events for each cluster are listed below and denoted as “2", “212", and “21", respectively. A routine CUSUM#7 method is used to fit
the multi-levels. b For “212" type events, a large intramolecular velocity variation is observed. The propositional average translocating time for each
segment is calculated statistically (using 31 molecules). Source data used to generate this figure can be found in the Source Data file

distinguishable, as each nucleotide and each Watson-Crick
pairing of nucleotides gives rise to different noise readings, both
in terms of ground levels and noise variance. Hence, we fit the
noise of nine typical “212” events from observed data by a GMM.
A detailed description of the Anderson-Darling test and the
definition of a GMM are provided (see Supplementary
Discussion 2).

The quality of the GMM approximation improves with the
number of components in the mixtures model, and with four
components we observe that the weighted distribution distance

D=n[* (F,(x) — F(x))’w(x)dF(x), (1)

between the hypothesized GMM cumulative distribution function
and the empirical cumulative distribution function lies within the
tolerance boundaries of our hypothesis test.

Here, n stands for the number of data points, while w(x), the
weight function, equals

w(x) = [F(x)(1 = F(x)] . (2)

As already described, a four-component model is also
intuitively justified by the fact that each signal is modulated not
only by the dsDNA or ssDNA topology, but also by the actual
symbol composition of the DNA strands (involving the four
nucleotides). A four-component GMM allows for identifying
typical differences in the parameter of the noise associated with
Level 0, Level 1, and Level 2 signals (Fig. 3b, c), which can be used
to discriminate between them (here, the Level 0 signal

corresponds to the absence of DNA inputs). For example, one
discriminative feature is the significantly larger number of small
current values in Level 2 noise as opposed to Level 1 noise.
Furthermore, Level 2 noise tends to exhibit steeper increases or
decreases in the signal values when compared to Level 1.

Noise in solid-state nanopores has also been studied in the
frequency domain, in which relevant noise components include
flicker noise, dielectric noise, and capacitive noise32-34. It is now
well-established that solid-state nanopore signals generated in the
base current (Level 0) regime have a significant flicker noise
component in the low-frequency (LF) domain, and that the noise
characteristics change based on the content of the pore. Of special
interest are the PSD models described in the earlier publica-
tions32-34, which assert that the noise PSD may be described by
Eq. (3), where f denotes the noise frequency and where a3, a,, as,
and a4 are the corresponding coefficients in the expansion. LF
flicker noise is mostly captured by the first component, where f3 >
0, while white thermal noise is captured via the term a,, dielectric
noise via asf, and capacitive noise via a,f2. Unlike all previous
noise modeling approaches, we try to fit the noise model not just
to a Level 0 signal, but to Level 1 and Level 2 signals as well.
Figure 3d shows that, indeed, there exist observable differences in
the noise spectra associated with different current levels in LF
part. The frequency components for f < 5 kHz are consistent with
the published results, and they follow a 1/f law, which is easily
fitted by a single term a,/f%, different levels have different values
for the parameters a; and 8 (Table 1). However, for Level 1 and
Level 2 noise with f<200Hz, our measurements are more
consistent with white thermal noise. But this should still be a
distinguishing feature of Level 0 noise on one side and Level 1
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Fig. 3 a Typical curent trace, with current modulations induced by complexes translocating through a nanopore. Red lines indicate segments of Level 1 and
Level 2 in the events. b Cumulative density functions (CDFs) of Level O, Level 1, and Level 2 noise using a 4-component Guassian mixture model (GMM).
c Probability density functions (PDFs) of Level O, Level 1, and Level 2 noise using a 4-component Guassian mixture model (GMM). d Power spectral density
(PSD) of Level O, Level 1, and Level 2 noise using standard pwelch methods. e A sample “212" event, in which the Level 1 signal is hard to accurately
discriminate without the noise spectrum analysis. Source data used to generate this figure can be found in the Source Data file

Table 1 Fitted noise parameters for frequencies f <5 kHz

a, (with a 95% confidence bound)

B (with a 95% confidence bound)

Level O noise
Level 1 noise
Level 2 noise

414 %1075 (1.30 x 1075, 6.98 x 1075)
3.70x1073 (1.90 x 1073, 9.30 x 10-3)
3.15x1073 (9.33x 1074, 7.24 x1073)

0.202 (0.110, 0.294)
0.380 (0.170, 0.591)
0.473 (0.289, 0.656)

and 2 noise on the other side. To perform spectral fitting, we used
Welch’s method for estimating the PSD (see Supplementary
Discussion 2).

1

fﬁ

S=a; 5+ a, +asf +a,f’. (3)

The fitted parameters are listed in Table 1.

We conclude the analysis by pointing out that a recent trend in
nanopore signal processing is to use the Hilbert-Huang Trans-
form (HHT)3>. HHT is a useful empirical tool for analyzing
nanopore traces as it is designed to work for signals that are
nonstationary and nonlinear (see Supplementary Discussion 2).
PSD analysis is suitable for topological signal detection, as the
information-bearing signal in the studied setting has significantly
simpler spectral discriminators than the one encountered when
performing DNA bases detection or estimation. Still, HHT
remains a useful tool that self-adapts to nonstationary and
nonlinear nanopore signals. To illustrate the point, we performed
the HHT analysis, and one of the findings is shown (Supple-
mentary Figs 3 and 4). Note that Level 1 signals tend to have
larger energy in the given frequency range than level 0 and
2 signals, and consequently, energy may be used as a means to

discriminate the events. Better results may be expected for a larger
number of events, as our analysis only makes use of 40 samples.

Protruded ssDNA in MoS, nanopores. In solid-state nanopores
based on SiN,, due to the material’s intrinsic thickness, its spatial
resolution is limited to 5 nm3°, which converts into 15 bases. To
be able to sense a small feature, the nanopore volume should be as
small as possible to enable good sensitivity. In order to pass the
barcoded hybrid, the nanopore orifice must be slightly bigger
than the cross-section of the hybrid, which is ~2 nm. And in the
meantime, the nanopore membrane should be as thin as possible.
To take the advantage of a thin MoS, nanopore, we used short
oligos (22-30mers or 7-9 nm) carrying a small barcoded single
(or multiple) feature sequence to calibrate the velocity profile
based on the temporal position of the secondary blocking strand
on the template.

Figure 4a illustrates the basic experimental setup, in which a
single-layer MoS, nanopore membrane is sandwiched between
two reservoirs filled with ionic buffer and equipped with a pair of
Ag/AgCl electrodes to apply a transmembrane potential. A
barcoded ssDNA translocates through a nanometric pore on the
MoS, membrane under electrophoretic force. A single-layer MoS,
is suspended over a ~50 nm opening on an SiN, supporting
membrane to have a confined region for nanopore formation
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Fig. 4 a A schematic illustration of a MoS, nanopore membrane, where a barcoded DNA passes through a MoS, nanopore supported on the SiN,
membrane. The device is mounted between two reservoirs filled with saline solution connected to a current amplifier to apply a transmembrane bias across
the membrane. b A bright-field optical image of as-transferred single-layer MoS, over the supporting SiN, membrane. Scale bar is 10 pm. ¢ An HRTEM
image (high-resolution transmission electron microscopy) of the pristine MoS, lattice of size 12 nm x 12 nm. Scale bar is 2 nm. d A typical current trace
illustrates one barcoded DNA signal together with other seven template ssDNA signals. The all-points histogram shows three discrete levels for an open
pore baseline, ssDNA, and barcode, respectively. e A cartoon illustration of the translocation trajectory through the nanopore. The hypothesised current
signal in nanopore shows the discrete 3-step process. In the experiments, two scenarios can be detected, one in which we have 3’ entering and another one
in which we have 5’ entering. f A histogram of the relative temporal positions of the secondary-level centers (104 events) and its correlation to the
longitudinal positions of the barcode in the sequence. Normalized events are dispalyed on the right. Source data used to generate this figure can be found in

the Source Data file

while maintaining mechanical stability and reducing 1/f noise
(Fig. 4b). The suspended part of the MoS, layer is carefully
characterized by transmission electron microscope (TEM).
Figure 4c shows crystalline features of the MoS, lattice, indicating
the good quality of the material. Previously, we have developed an
electrochemical reaction (ECR) method3” to create a single
nanopore on MoS, substrates with sub-nm precision. The
current-voltage (IV) characteristics (Supplementary Fig. 5) are
before (black curve) and after (red curve) the formation of a 3 nm
pore. The pore size can be calculated from a widely accepted pore
size versus conductance model without using the time-consuming
TEM procedure to determine the pore size3839,

The sequence 3'-GACTAGGGTGACAATCTACCAC-5" was
used as the template ssDNA with the barcode 5’ (Propynyl-C);3’
binding to the complementary sequence on the template. Here,

we used a melting-temperature (T,,) enhanced base, propynyl-
modified cytosine, to improve the stability of the complex. The
translocation measurements are done at 4 °C to keep the barcode
hybridized to the template. Figure 4d shows a continuous trace
with a high event frequency of 20 Hz. Translocation events
appear in the trace as downward spikes due to the transient
residing of single DNA molecules inside the nanopore. When
inspected carefully, two types of events are observed: shallow and
fast ssDNA translocation events, and multi-level and slow
barcoded ssDNA translocation events. The all-points histogram
(Fig. 4d right) indicates the level of the dsDNA barcoded part
equals ~3.2nS, and is much higher than the level of 1.8nS
observed for ssDNA. We used a threshold of 2nS in blockage
conductance to categorize barcoded events from ssDNA events.
In the scatter plot (Supplementary Fig. 6), and quite surprisingly,
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barcoded events have much larger dwell time compared to
ssDNA. This is probably due to the friction between the barcode
and the edge of the MoS, nanopore. Electrochemically etched
MoS, nanopores have oxide protruding around the pore fringe,
which has various possibilities of functionalization!®, and thus
can further slow down the translocation. Most barcoded
translocation events take place within milliseconds, which
translates into a velocity range of 2000-20,000 nt/s. The fact that
this speed in solid-state nanopores is much faster than that in
biological nanopores potentially allows a much higher throughput
in the former case. With the state-of-art current amplifier
(Chimera Instruments, Inc.) with a bandwidth of up to 1 MHz,
sufficiently many points are acquired for each nucleotide for its
identity to be resolved.

Figure 4e illustrates a schematic translocation event when a
barcoded short ssDNA passes through the MoS, nanopore. The
barcode signature is represented as the secondary blockage event
in the current signal. In order to have a sufficiently high temporal
resolution, we used a salt gradient condition (cis with low salt
concentration, trans with high salt concentration) to facilitate the
capture of DNA segments and elongate the translocation time*0.
Such a complex has an asymmetric structure, so two possible
orientations might happen during the translocation, as sketched.
We did not observe any directional preference. Both orientations
have almost the same chance to enter the pore. As shown in the
scatter plot (Supplementary Fig. 7), the 5" end has a 52% chance
of entering, while the 3" end has a 48% chance of entering. For the
former case, the average dwell time is 3 + 1 ms, and for the latter
1+0.5ms. This finding somewhat contradicts prior findings
regarding the preferred entering direction in biological nano-
pores®l, Both ends have an equal probability to find the pore
entrance, but experience different friction during translocation. In
a 3 nm MoS, nanopore, the temporal information of the barcode
on the template strand can be clearly seen in the translocation
event. The barcode is only a 1 nm feature, which surprisingly can
be seen by the pulse resistive technique. This also indicates that
the total volume of the feature is comparable to the sensing
volume of the nanopore orifice. This is, to the best of our
knowledge, the first time that a sub-1 nm spatial resolution has
been demonstrated experimentally with solid-state nanopores.
This is mainly due to the usage of a thin MoS, monolayer. The
reason for not being able to detect features smaller than 1 nm is
the temperature required to stabilize the hybrid. Better hybridiza-
tion protocols will be explored in the future to enable single-base
resolution detection.

We normalized all events to have the same dwell time in
arbitrary units due to the variation in dwell time, and also
mirrored 5’ entering events to 3’ entering events (Fig. 4f). For
each event, we found the center of the barcoded level and its
relative temporal position in the whole event. We used a
histogram to plot all the relative temporal positions of the
secondary-level centers and found a good correlation to the
longitudinal positions of the barcode in the sequence. This result
is different from the uncertainty of localized information
observed in long DNA, as we can assume that the translocation
velocity of short oligomers is constant during translocation. The
Zimm relaxation time*? of such a short oligomer is on the same
order as its translocation time. In this case, the whole process can
be considered to be a slow translocation. This can further explain
the good correlation between the temporal position and the
longitudinal position on the sequence.

Discussion
Our findings show that the temporal position of the barcode
properly correlates with its longitudinal position on the template

sequence. This correlation implies that the translocation velocity of
short oligos can be considered to be constant*3. Short circulating
miRNA (~26nt) or non-coding DNA (~100bps) have recently
drawn great attention due to the facts that they play an important
role in regulating gene expression, and they serve as biomarkers
for certain diseases. Our nanopore-based platform can therefore
also be used as a single-molecule sensing tool that allows for rapid
detection and identification of biomarkers, eliminating false-
positive results caused by error-prone amplification in traditional
PCR diagnostic methods. It may also have potential applications in
aligning unknown sequences with multiple known barcodes. This
approach can also be extended to multiple-barcode schemes. For
example, several barcodes can be detected simultaneously within a
single translocation event, which has been demonstrated in the
protein and aptamer complex#4. The reading strategy can be fur-
ther extended to either multiple reads with a single barcode per
read or a single read with multiple barcodes. One technical
obstacle is the variation in nanopore fabrication. We observe large
pore-to-pore difference in dwell time and current. Noise analysis
and pattern recognition could be possible solutions to increase the
fidelity of the method reported.

Methods
Nanopore membranes fabrication. The SiN, and MoS, membranes are prepared
using the previously reported procedure!337. Briefly, 20-nm-thick supporting SiN,
membranes are manufactured using anisotropic KOH etching to obtain 10 pm x
10 um to 50 um x 50 um membranes, with size depending on the size of the
backside opening. Reactive ion etching (RIE) is used to make a 50 nm opening on
that membrane. CVD-grown MoS2 flakes were transferred from sapphire sub-
strates using the MoS2 transfer stage in a manner similar to the widely used
graphene transfer method®~!! and suspended on opening. Membranes are first
imaged in the TEM with low magnification in order to check suspended MoS,
flakes on opening.

Nanopores in SiN, membranes were made using a JEOL 2200FS high-
resolution transmission electron microscope’-S.

DNA complex hybridization. The following three oligonucleotides (named oligl,
olig2, and olig3) were used to generate the ds-ss—ds DNA complex: >oligl

5'-CTTGGGAAATTGAATCACTTTTTGGTCCAGCAGTGAAATTTCCTG
TGACTCAGTAAATCACTTTAACTAATGAAGGAATAACAATCCCAGAGG
AGCAGAAGTTTCAACTATGCAGATTATTTCTGAGATTTAAAAAGTGAC
TCTTCAAAGAAATAAGTCCCTGGAGGCTGTTGGCTCTCTATAAAGGCTG
ACTTTCCACTCTCTTAAGTAGCTCATTTTGGCCCCGAGACAAGATTCAGT
TGGTGGTTTTTAATAAATAACGTTTTTGTATTACAAAAGTAAAATTTAGA
AAATTTACAGAAGAAGGAATTACGAAAAAACAACTCATTAGCCACAGA
CAACCAGATAATTCGTAATATGCCATTGTATTAATATTTCTTTCTGGTC
ATTTTTGATATGTCTGTTTTTATGTGATGCTAAACAAATTCAAATGCAA
TTGCATTGCTGCTTCA-3’ >olig2

5'-CTTTGAAGAGTCACTTTTTAAATCTCAGAAATAATCTGCATAGTT
GAAACTTCTGCTCCTCTGGGATTGTTATTCCTTCATTAGTTAAAGTGATT
TACTGAGTCACAGGAAATTTCACTGCTGGACCAAAAAGTGATTCAATTT
CCCAAG-3' >olig3

5-TGAAGCAGCAATGCAATTGCATTTGAATTTGTTTAGCATCACATAA
AAACAGACATATCAAAAATGACCAGAAAGAAATATTAATACAATGGCAT
ATTACGAATTATCTGGTTGTCTGTGGCTAATGAGTTGTTTTTTCGTAATT
CCTTC-3'

The sequences of oligl and olig2 are reverse-complements of the sequences in
bold in oligl. The three oligonucleotides can thus be annealed to form a ds-ss—ds
DNA complex.

The protocol is detailed below: (1) mix three oligos in the ratio of 1:1:1 in the
annealing buffer (100 mM potassium acetate; 30 mM HEPES, pH 7.5); (2) load the
sample into an eppendorf tube and ramp quickly to 95 °C and hold for 30 min; (3)
cool down to 75 °C slowly with 20 cycles (1 cycle/min) with the cycle step of 1°C
with a rate of 0.3 °C/s; (4) hold at 75 °C for 30 min; (5) cool down to 25 °C slowly
with 50 cycles (1 cycle/min) with the cycle step of 1 °C with a rate of 0.3 °C/s; (6)
hold at 4 °C until nanopore experiments or AFM measurements.

For short protruded complex, propynyl-modified cytosine oligos are used to
enhance the affinity of a standard oligonucleotide sequence to its complementary
nucleotide strand. Each modified base can raise the melting temperature up to 2.8 °C
after hybridization. Generally, it can be used to label short DNA/RNA targets where
normal oligonucleotides do not show sufficient affinity or specificity.

AFM imaging. AFM imaging was performed in photothermal off-resonance tap-
ping® on a custom-built microscope based on a Bruker MultiMode AFM, as describe
elsewhere®. DNA hybrids were diluted in 10 mM HEPES (4-(2-hydroxyethyl)-1-
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piperazineethanesulfonic acid) pH 7.3 to a concentration of about 5 ng/uL. Two
microliters of 20 mM NiCl, solution was pipetted on a freshly cleaved 3 mm Mica
disk. Then, 2 puL of 10 mM HEPES pH 7.3 solution was added. Finally, 500 nL of the
diluted DNA solution was added. The sample was left to incubate for several minutes
to let the DNA adhere to the Mica. Afterwards the scan head with a hanging droplet
of 10 mM HEPES supplemented with 2 mM NiCl, was added on top of the scanner
for imaging. Images were recorded using Bruker FastScan-D probes at 30 kHz PORT
rate and at 10 lines/s.

Electrical recording. Current-voltage, IV, characteristic and DNA translocation
were recorded on an Axopatch 200B patch clamp amplifier (Molecular Devices,
Inc. Sunnyvale, CA). We use a NI PXI-4461 card for data digitalization and
custom-made LabView software for data acquisition using Axopatch 200B. The
sampling rate is 100 kHz and a built-in low-pass filter at 10 kHz is used. Data
analysis enabling event detection is performed offline using a custom open
source Matlab code, named OpenNanopore®” (http://Iben.epfl.ch/page-79460-
en.html).

For ECR nanopore making, a pair of chlorinated Ag/AgCl electrodes was
employed to apply the transmembrane voltage and the current between the two
electrodes was measured by a FEMTO DLPCA-200 amplifier (FEMTO®
Messtechnik GmbH). A low voltage (100 mV) was applied to check the current
leakage of the membrane. Details are published previously37.

Code availability. All code used in this analysis is available in the Supplementary
Software file.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and/or analyzed during the current study are available from
the corresponding authors on reasonable request.
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