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Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a vari-
ety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro
activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and
moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing,
China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distri-
butions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005).
Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than
OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this
study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for
LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was
recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-
type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX
is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective.

In 2009, the Chinese State Food and Drug Administration
granted marketing approval for the new fluoroquinolone anto-

floxacin hydrochloride (here referred to as antofloxacin [AFX]), a
derivative of levofloxacin (LFX) (1, 2). Its intended uses are for the
treatment of (i) acute bacterial exacerbations of chronic bronchi-
tis due to Klebsiella pneumoniae, (ii) acute pyelonephritis and cys-
titis due to Escherichia coli, and (iii) wound infection and multiple
epifolliculitis due to Staphylococcus aureus or coagulase-negative
staphylococci (1). However, given that AFX has activity against a
wider array of bacterial pathogens and other fluoroquinolones are
used for treatment of tuberculosis, we wanted to investigate its
in vitro activity against Mycobacterium tuberculosis strains from
China (1). Moreover, we studied the degree of cross-resistance to
fluoroquinolones that are already being used to treat tuberculosis
(i.e., ofloxacin [OFX], LFX, and moxifloxacin [MFX]) on a phe-
notypic as well as a genotypic level to assess whether current ge-
notypic drug susceptibility testing (DST) assays could be used to
detect resistance to AFX and whether AFX might be an option for
the treatment of infections caused by strains that are resistant to
these existing fluoroquinolones.

MATERIALS AND METHODS
Study setting and bacterial strains. We studied 126 M. tuberculosis com-
plex strains that were collected from the National Clinical Laboratory on
Tuberculosis, Beijing Chest Hospital, between January and March 2014
from retreatment patients with presumed multidrug-resistant (MDR) tu-
berculosis (i.e., resistance to rifampin and isoniazid), which included 45
pansusceptible M. tuberculosis strains, 49 MDR M. tuberculosis strains,
and 17 extensively drug-resistant M. tuberculosis strains (i.e., MDR M.
tuberculosis strains with additional resistance to OFX and amikacin or

capreomycin), as well as 3 strains that were monoresistant to OFX (Sigma-
Aldrich, St. Louis, MO, USA), as determined using the absolute concen-
tration method on Löwenstein-Jensen medium (LJ) with 2 �g/ml as the
critical concentration (CC). The M. tuberculosis laboratory strain H37Rv
(ATCC 27294) served as a negative control.

MIC testing. We determined the MICs for OFX, LFX (Sigma-Aldrich,
St. Louis, MO, USA), MFX (Bayer Pharmaceutical Corporation, Le-
verkusen, Germany), and AFX (Anhui Huanqiu Pharmaceutical Co., He-
fei, China) using the microplate alamarBlue assay (MABA) in 2-fold di-
lutions ranging from 16 to 0.032 �g/ml (3, 4). Drug powder was dissolved
in 1% NaOH at a concentration of 10 mg/ml, and different aliquots were
prepared and stored at �70°C. All the working solutions were freshly
prepared before use. All the strains were subcultured onto LJ slopes for 3
weeks. Bacterial suspensions were prepared using 5% (vol/vol) Tween 80
in 0.9% NaCl, and the turbidity was adjusted to a 1 McFarland turbidity
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standard. Suspensions were further diluted (1:25) with 7H9 broth. H37Rv
was used as a control.

Genotypic analyses. We sequenced the quinolone resistance-deter-
mining regions (QRDRs) of gyrA (Rv0006) and gyrB (Rv0005) and called
mutations relative to the sequence of the H37Rv reference genome
(GenBank accession number AL123456.3) using the 2002 numbering for
gyrB (5–7). We usually sequenced isolates recovered from the drug-free LJ
slopes, but where no resistance mutations were found in phenotypically
resistant strains, sequencing was repeated with isolates recovered from the
OFX-containing LJ slope to detect low-frequency mutations (8, 9). Strains
belonging to the East Asian lineage were identified on the basis of RD105
(10).

RESULTS

A total of 92.9% (117/126) of the strains in this study belonged to
the East Asian lineage (see Table S1 in the supplemental material)
(11). We found that the MIC distributions for all four fluoro-
quinolones were bimodal (Fig. 1A to D), where the more suscep-
tible of the two distributions represented the phenotypically wild-
type distributions, whereas the remaining strains were, by
definition, phenotypically non-wild type. Based on visual inspec-
tion, we therefore set tentative epidemiological cutoff values
(ECOFFs) for MIC determination using the MABA method at 2,
1, 0.5, and 0.25 �g/ml for OFX, AFX, LFX, and MFX, respectively
(12). Not all phenotypically wild-type strains were identical geno-
typically (i.e., all 126 Chinese strains harbored the known gyrA
S95T mutation that does not correlate with resistance [7, 13]), but
after the exclusion of this polymorphism, we found a nearly per-
fect correlation between the tentative ECOFFs and nonsynony-
mous mutations in the two subunits of DNA gyrase, encoded by
gyrA and gyrB.

All gyrA mutations detected in this study were classical resis-
tance mutations that fell into the QRDR and resulted in an MIC
increase above the tentative ECOFF for all four fluoroquinolones
(Fig. 1; see also Table S1 in the supplemental material) (7, 14).
This was in line with the fact that all gyrA mutants tested resistant
to OFX on LJ, although retesting of seven strains that were initially
discrepant was required to achieve complete agreement (Table 1).
In line with a recent systematic review, the D94G and A90V mu-
tations were the most frequent and the second most frequent mu-
tations, respectively, whereas other changes (e.g., G88C) occurred
in only a single strain (15). Theoretically, all of these mutations
could have been detected with the genotypic DST assays of Hain
Lifescience, Nipro, and YD Diagnostics, whereas the assays of AID
and Seegene would have missed the two resistant strains with mu-
tations at codon 88 (see Table S1 in the supplemental material)
(16–22). In practice, however, some resistance mutations might
have been missed, given that the detection limits of these assays,
albeit unknown, are almost certainly higher than the critical pro-
portion of 1% (e.g., strain 14140 was heteroresistant, and its D94G
mutation was detectable only using Sanger sequencing of an iso-
late from the drug-containing slope [see Table S1 in the supple-
mental material]) (23–25).

As expected, gyrB mutations were rare and usually coincided
with gyrA mutations (in 5/6 cases); thus, they did not improve
markedly the sensitivity of detecting phenotypically non-wild-
type strains (48/49 strains had a gyrA mutation) (15). Strain 14117
was the sole exception. It harbored only a gyrB mutation (T500N),
was found to be susceptible to OFX on LJ, and had MABA MICs
that corresponded to the aforementioned ECOFFs for the four
respective fluoroquinolones (Table 1). The mutation in question

fell just outside of the gyrB QRDR, as defined by Maruri et al. (7),
which spans codons 461 to 499, but inside the QRDR based on the
findings of Pantel et al. (26), which extends to codon 501. Using
the recently developed version 2 of the Hain Lifescience Genotype
MTBDRsl assay, which covers codons 497 to 502 of gyrB, an isolate
with this mutation would also have been interpreted to be resis-
tant (22). We therefore repeated DST for this strain, whereupon
the MICs for AFX, LFX, and MFX increased by 1 doubling dilu-
tion and the strain consequently became phenotypically non-
wild-type, whereas the OFX MIC and LJ result remained un-
changed (Table 1).

DISCUSSION

The aim of DST is usually to distinguish resistant strains, patients
infected with which are likely to fail treatment, from susceptible
strains, patients infected with which have a high likelihood of clin-
ical success (an intermediate category is sometimes possible) (27).
The clinical breakpoints (known as critical concentrations [CCs]
in the tuberculosis field) employed for this purpose should be
based on clinical, pharmacokinetic/pharmacodynamic, and, ide-
ally, clinical outcome data, which, for a variety of reasons, are
difficult to obtain for tuberculosis drugs (27). As a result, an im-
portant aim of DST for the majority of tuberculosis drugs is to
distinguish wild-type from non-wild-type strains [i.e., strains with
elevated MICs compared with those for strains that (i) have never
been exposed to the agent or class of agent in question and (ii) are
not intrinsically resistant] using the ECOFF, which represents the
highest concentration of the wild-type distribution determined by
modern microbiological principles pioneered by the European
Committee on Antimicrobial Susceptibility Testing (EUCAST)
(12, 23, 27–30). In other words, the ECOFF represents the lowest
possible CC and some non-wild-type strains might remain treat-
able, as proposed for MFX, albeit on the basis of limited evidence
(i.e., the CC of 2 �g/ml set by the World Health Organization
[WHO] is higher than the ECOFF) (9, 29, 31).

Setting conclusive ECOFFs and validating MABA as a method
for routine DST were beyond the scope of this study, which would
have required a larger number of phylogenetically diverse strains
from multiple laboratories and more extensive reproducibility
testing, as specified by EUCAST and the International Organiza-
tion for Standardization (ISO) (12, 28, 32, 33). Nevertheless, our
MABA results were sufficiently robust compared with those of LJ
DST and the genotypic results to set tentative ECOFFs. Accord-
ingly, AFX had a lower ECOFF than OFX in vitro but an ECOFF
higher than the ECOFFs of LFX and MFX. All gyrA mutations
correlated with non-wild-type MICs for all fluoroquinolones.
Consequently, clinicians should consider the possibility that the
use of AFX to treat infections caused by E. coli, K. pneumoniae, and
staphylococci at the doses currently suggested might result in the
selection of fluoroquinolone resistance in M. tuberculosis in coin-
fected patients.

We had only one strain that had a gyrB mutation without a
mutation in gyrA. The fact that four different amino acid changes
had been observed at the gyrB codon in question (T500A/I/N/P)
constitutes a potential signal for drug selection (7, 34, 35). In line
with this observation, allelic exchange experiments with T500N in
an Erdman background increased the MIC from wild-type levels
to the CC for OFX and LFX and just above the CC for MFX (36).
The results of the equivalent experiment in an H37Rv background
were identical for OFX and LFX, but no increase in MIC was
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observed for MFX (36). In accordance with the results of the
in vitro selection experiments and the aforementioned allelic ex-
change experiments, this suggested that the MIC of the strain with
gyrB T500N was close to the ECOFF, which, due to biological and
technical variability (e.g., for reproducibility, the ISO guidelines

allow �1 dilution of the mode for �95% of the results), would
likely result in a poor reproducibility of DST (32, 37–39). Irrespec-
tive of whether this slightly elevated MIC increases the likelihood
of treatment failure, it is possible that it increases the likelihood of
selecting for higher levels of fluoroquinolone resistance due to a
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FIG 1 Wild-type and non-wild-type MIC distributions for the four fluoroquinolones under investigation relative to their gyrA and gyrB genotypes (see Table S1
in the supplemental material). The tentative ECOFF represents the upper limit of the wild-type distribution. All clinical strains, with the exception of H37Rv,
harbored the gyrA S95T mutation that is known not to confer fluoroquinolone resistance and was consequently excluded from the analysis (13).

Yu et al.

5234 aac.asm.org September 2016 Volume 60 Number 9Antimicrobial Agents and Chemotherapy

http://aac.asm.org


gyrA mutation or a secondary gyrB mutation, as observed for
streptomycin (36, 40, 41). Larger data sets, ideally with longitudi-
nal samples from the same patients, would be required to clarify
this possibility (i.e., to determine in which order gyrA and gyrB
mutations arose in double mutants, such as the five strains ob-
served in this study [Fig. 1; see also Table S1 in the supplemental
material]).

Using the published area under the concentration-time curve
from time zero to 24 h (AUC0 –24) of 47.59 � 7.85 mg · h/liter for
the currently approved dose of AFX (i.e., a 200-mg daily dose
following a 400-mg loading dose) and protein binding of 17.5%,
the unbound fAUC0 –24/MIC ratio for the wild-type MICs of 0.064
to 1 �g/ml would range from 613.46 � 101.19 h to 39.26 � 6.48 h
(42, 43). Although there is no consensus on the precise fAUC0 –24/
MIC ratio that best predicts in vivo efficacy, ratios of �100 at the
upper end of the wild-type distribution are likely required to max-
imize clinical success (44, 45). Given that the currently recom-
mended dose of AFX is unusually low (probably because of a nar-
row clinical indication) compared with the doses of the other
fluoroquinolones used to treat tuberculosis, the target fAUC0 –24/
MIC of �100 at an increased dose is likely achievable, but this
would have to be evaluated in clinical trials, where side effects
would have to be monitored carefully.

Our study also has implications for DST for OFX on LJ. Al-
though the absolute concentration method has not been validated
by the WHO for second-line drugs, it is used clinically with the CC

recommended for the proportion method (29). In our case, we
employed a CC of 2 �g/ml, which corresponded to the old CC for
this drug for the proportion method, which the WHO recently
increased to 4 �g/ml, although the rationale for this change is
unclear (29). In light of the excellent correlation between the LJ
DST results and MABA MICs for all four fluoroquinolones, which
is in line with the findings of previous studies, this suggested that
the revised CC is likely too high for the absolute concentration
method, resulting in non-wild-type strains being misclassified as
wild type (46, 47). This, together with prior studies that raised
doubts regarding the validity of some CCs, underlined the fact
that the WHO should start to apply modern microbiological prin-
ciples and, crucially, to publish the evidence used to set CCs, as has
been the case for EUCAST for many years (12, 27, 39).
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