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Abstract

Alu elements are one of the most successful groups of RNA retrotransposons and make up 11% of the human genome with over 1 million
individual loci. They are linked to genetic defects, increases in sequence diversity, and influence transcriptional activity. Still, their RNA me-
tabolism is poorly understood yet. It is even unclear whether Alu elements are mostly transcribed by RNA Polymerase II or III. We have con-
ducted a transcription shutoff experiment by a-amanitin and metabolic RNA labeling by 4-thiouridine combined with RNA fragmentation
(TT-seq) and RNA-seq to shed further light on the origin and life cycle of Alu transcripts. We find that Alu RNAs are more stable than previ-
ously thought and seem to originate in part from RNA Polymerase II activity, as previous reports suggest. Their expression however seems
to be independent of the transcriptional activity of adjacent genes. Furthermore, we have developed a novel statistical test for detecting
the expression of quantitative trait loci in Alu elements that relies on the de Bruijn graph representation of all Alu sequences. It controls for
both statistical significance and biological relevance using a tuned k-mer representation, discovering influential sequence features missed
by regular motif search. In addition, we discover several point mutations using a generalized linear model, and motifs of interest, which
also match transcription factor-binding motifs.
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Introduction
Alu elements are around 300-bp-long RNA retrotransposons

(Lander et al. 2001, for review, see Deininger et al. 2011). They are

classified as short interspersed nuclear elements (SINEs) and are

highly abundant in the genome of higher primates (Gentles et al.

2005). Over 1 million Alu loci are currently annotated in the hu-

man genome. This means that 11% of the whole genome consists

of just Alu sequences (Lander et al. 2001), making them one of the

most successful groups of mobile elements.
Alu elements were discovered using a restriction endonucle-

ase of Athrobacter luteus, which gave them their name (Schmid

and Deininger 1975). They are RNA retrotransposons, also called

class I transposable elements, and as such are capable of copying

themselves into new positions in the genome.
As shown schematically in Fig. 1a, once an Alu element is tran-

scribed, its RNA attaches itself to the exit tunnel of the ribosome,

using a sequence homolog to the signal recognition particle (SRP), a

ribonucleoprotein part of the eukaryotic ribosome (Conti et al. 2015;

Tisdale and Pellizzoni 2017). As Alu elements are nonautonomous

retrotransposons, they lack their own retrotransposase domain.

Instead, they rely on autonomous long interspersed nuclear ele-
ments (LINE)-1 elements, another class of retrotransposon belong-
ing to the LINEs that cover up to 17% of the genome (Boeke 1997;
Dewannieux et al. 2003). Thus, the Alu RNA lies in wait at the ribo-
some’s exit tunnel until a LINE-1 element is translated. It then uses
the LINE-1 retrotransposase to reinsert itself into a new position in
the genome (Häsler and Strub 2006).

The Alu life cycle carries with it certain risks for the host or-
ganism, as Alu element insertion into genes or other functional
genomic regions can disrupt them (Deininger and Batzer 1999).
As such, Alus have also been linked to increases in sequence di-
versity (Kazazian 2004; Ade et al. 2013), as well as influencing
transcriptional activity in general (Chen and Yang 2017; Zhang
et al. 2019), and under heat shock conditions, in particular
(Mariner et al. 2008). While generally lowly abundant, Alu ele-
ments are expressed and do successfully reinsert themselves
into the human genome, with an estimated new Alu insertion
for every 20 children born (Han et al. 2007; Xing et al. 2009; Conti
et al. 2015).

While the exact evolutionary origin of Alu elements is un-
known, they are assumed to be derived from the 7SL RNA, which
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is itself a component of the SRP (Ullu and Tschudi 1984; Kriegs
et al. 2007). They possess a dimeric structure with a left arm and
a right arm, separated by a variable A-rich region, as is also
shown later in Fig. 5 (Evgen’ev 2007). In addition, they possess 2
sequence features of note, the first being a bipartite RNA poly-
merase III (Pol-III) promoter located in the left arm, which is split
into A box and B box (Paolella et al. 1983; Orioli et al. 2012). The
second is the UGU(NR)-binding motif required for attachment to
the ribosome exit tunnel (DagAn et al. 2004).

While only present in higher primates, Alu elements most
likely evolved from B1 repeats in rodents, which became the free
left and right Alu monomers (FLAM and FRAM) in primates,
which lastly fused to form the Alu elements (Quentin 1992;
Kriegs et al. 2007). However, Alu evolution through error-prone
retrotransposition continues and has given rise to many Alu fam-
ilies (Richard Shen et al. 1991; Deininger et al. 1992). The evolu-
tionary oldest is AluJ, followed by AluS, and finally, AluY, which
shows the most transposition activity in humans (Batzer et al.
1996). An Alu family tree is shown in Fig. 1b (.json encoding in
Supplementary material S1).

Despite the presence of a Pol-III promoter in their sequence,
Alu elements are expected to be transcribed not only by Pol-III

but also by RNA polymerase II (Pol-II) (Conti et al. 2015; Zhang
et al. 2019). In this study, we investigate different hypotheses re-
garding Alu transcript origins further, using metabolic RNA la-
beling by 4-thiouridine [dynamic transcriptome analysis (DTA),
Schwalb et al. 2012] coupled with the inhibition of Pol-II (see
Methods, Alu RNA used interchangeably with Alu transcripts).
This is of particular interest regarding past experiments that
utilized Pol-II inhibition, as it is common practice to rely on
SINEs as a non-Pol-II-dependent negative control group in such
cases.

We also explore the half-life of Alu RNA in the cell, which is
expected to be low, as the transcripts are presumed to be unsta-
ble (An et al. 2004). Finally, we also analyze the totality of anno-
tated Alu loci to detect sequence features that influence Alu
transcription. While standard motif search has been applied to
this problem with limited success in previous studies (Zhang et al.
2019), we use a base-level generalized linear model (Nelder and
Wedderburn 1972), and alternatively a colored and compacted de
Bruijn graph (Idury and Waterman 1995; Pevzner et al. 2001; Iqbal
et al. 2012), which lead to the de novo discovery of highly signifi-
cant motifs that can partly be assigned to known transcription
factors.

(a)

(b) (c)

Fig. 1. Alu evolution and retrotransposition. a) Schematic representation of the Alu element reinsertion process (left to right). The Alu element is
transcribed. The Alu RNA attaches itself to the exit tunnel of the ribosome through its SRP sequence homolog. A LINE-1 RNA arrives at the ribosome and
its retrotransposase is translated. The Alu RNA hijacks the LINE-1 retrotransposase. The LINE-1 retrotransposase reinserts the Alu element into the
genome at a new position. b) Human Alu family tree without designation of approximate evolutionary age (Price et al. 2004). Members of AluY are shown
to the right. Alternative family naming conventions are denoted in brackets. The color scheme is reused in subsequent figures. c) Individual Alu
Elements per family in the human genome (UCSC Genome Browser Annotation).
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Methods
Data sets
The sequencing data used in this investigation are described in
detail in our previous publication Schwalb et al. (2016), exception
for the sequencing data relating to the inhibition of RNA Pol-II by
a-amanitin, which was newly generated. Both data sets are avail-
able in NCBI’s Gene Expression Omnibus, as described in Data
Availability, including a table containing the positions, counts,
and differential expression analysis results for the examined
RNAs. The data set from Schwalb et al. (2016) is used throughout
this investigation, except where a-amanitin inhibition is con-
cerned.

K562 cells
Human K562 erythroleukemia cells were obtained from DSMZ
(Cat. # ACC-10; RRID: CVCL_0004). K562 cells were cultured in ac-
cordance with the DSMZ Cell Culture standards in RPMI 1640 me-
dium (Thermo Fisher Scientific) containing 10% heat inactivated
fetal bovine serum (Thermo Fisher Scientific), 1% penicillin–
streptomycin, and 1� GlutaMAX supplement (Thermo Fisher
Scientific) at 37�C in a humidified 5% CO2 incubator. K562 cells
used in this study display the phenotypic properties, including
morphology and proliferation rate, that have been described in
the literature. Cells were verified to be free of mycoplasma con-
tamination using the Plasmo Test Mycoplasma Detection Kit
(InvivoGen). Biological replicates were cultured independently.

a-Amanitin treatment
a-Amanitin is a toxic substance from the mushroom Amanita
phalloides and a potent inhibitor of RNA Pol-II (Lindell et al. 1970;
Kedinger et al. 1970; Stirpe and Fiume 1967; Jacob et al. 1970).
Among the RNA polymerases, RNA Pol-II is inhibited at low a-am-
anitin concentrations, RNA Pol-III may be inhibited at high con-
centrations (>250 mg mL�1), while RNA polymerase I (Pol-I) and
mitochondrial RNA polymerases remain unaffected by a-amani-
tin. Treatment conditions were optimized for selective RNA Pol-II
inhibition (see RT-qPCR and Western blotting). For a-amanitin (5
or 15 mg mL�1) treatments of K562 cells, cells were treated for a
time course of 0–9 h at 37�C in a humidified 5% CO2 incubator.
For TT-seq and RNA-seq, K562 cells were treated for 8 h at 37�C in
a humidified 5% CO2 incubator with 5 mg mL�1 a-amanitin or sol-
vent (water).

RT-qPCR
For each condition (5 or 15 mg mL�1 a-amanitin or solvent), 5�
106 cells were harvested at 3,000 � g for 2 min. Total RNA was iso-
lated with QIAzol (QIAGEN) according to manufacturer’s instruc-
tions except for the addition of 10 ng RNA spike-in mix (6 spike-
ins selected from ERCC RNA spike-in mix) (Schwalb et al. 2016) to-
gether with QIAzol. To remove possible genomic DNA contamina-
tion, isolated RNA (10 ng) was treated with TURBO DNase
(Thermo Fisher Scientific) according to manufacturer’s instruc-
tions. For reverse transcription (RT), random hexamer priming
[50-d(NNNNNN)-30, N¼G, A, T, or C] was used according to manu-
facturer’s instructions. Briefly, 1 mg of DNase-treated RNA,
Random Hexamer primers (final concentration of 5 ng mL�1), and
dNTP mix (final concentration of 0.5 mM) were mixed and incu-
bated at 65�C for 5 min. Subsequently, Maxima H Minus Reverse
Transcriptase (RT) (final concentration of 200 U) and 5� Maxima
RT buffer (Thermo Fisher Scientific) were added (þRT reaction).
For DNA contamination control, cDNA synthesis without RT
(�RT reaction) was performed (RT was substituted with water).

The (�/þ) RT reactions were incubated in a PCR cycler at 25�C for
10 min, 50�C for 30 min, and 85�C for 5 min. Primers for quantita-
tive PCR were designed by using the online primer design soft-
ware Primer3 v.0.4.0 (Rozen and Skaletsky 2000). Briefly, the
selection of Pol-II targets was based on half-lives measurements
in K562 cells (Schwalb et al. 2016). Primers were targeted to Pol-II
transcripts (PAIP1, CWC22, EGR1) as a positive control, RNA Pol-I
transcripts (18S rRNA) as a negative control, and RNA Pol-III tran-
scripts (U6 snRNA). Primer specificity (single product peak) was
validated by melting profiles. Primer sequences, length, PCR effi-
ciency values of primers (E) and targets are reported in
Supplementary material S2. cDNAs (50 ng) were amplified with
SYBR Select Master Mix (Thermo Fisher Scientific) according to
the manufacturer’s instruction with a final primer concentration
of 400 nM. PCRs were run in 96-well optical plates sealed with op-
tical adhesive cover on a qTOWER 2.0/2.2 instrument (Analytik
Jena AG). The following thermal cycling conditions were used
(SYBR Select Master Mix reference, standard cycling mode): 50�C
for 2 min, 95�C for 2 min, 40 cycles of 95�C for 15 s, and 60�C for
1 min. Two synthetic RNA spike-ins were used for normalization.
The 2�DD Ct method was applied to calculate the normalized tar-
get gene expression fold change, with the amplification efficiency
(E) for each target gene, slope of standard curve (S), and mean
threshold cycle (Ct) (Livak and Schmittgen 2001).

Western blot
For a-amanitin (5 or 15 mg mL�1) treatments of K562 cells, cells
were treated for 8 h at 37�C in a humidified 5% CO2 incubator.
Water was used as a solvent. After 8 h of treatment, K562 cells
were harvested at 3,000 � g for 2 min and washed twice in
Dulbecco’s phosphate-buffered saline (DPBS). Cells were lysed in
radioimmunoprecipitation assay (RIPA) lysis buffer for 45 min on
ice and centrifuged at 14,000 � g for 15 min at 4�C. Samples were
quantified with the Bradford method. Fifteen micrograms of cell
lysate was denatured in 4� Loading Dye (including 100 mM DTT)
at 70�C for 10 min. PrecisionPlus Protein All Blue Standard (Bio-
Rad, # 161-0373, 10–250 kDa) was used as marker. NuPAGE 4–12%
Bis–Tris Protein Gels and MOPS buffer were used according to
manufacturer’s instructions. Transfer of a single NuPAGE onto
PVDF membrane was performed in transfer buffer at 30 V for 1 h
in a XCell II Blot Module (semiwet transfer unit) according to
manufacturer’s instructions. Membrane blocking was performed
in 5% milk PBS-T on a rocking surface for at least 1 h. Primary an-
tibody was added overnight. The following primary antibodies
were used in this study: N-terminal POLR2A/hRPB1 antibody,
clone F-12 (Santa Cruz Biotechnology, sc-55492, Lot. # E2913;
RRID: AB_630203) and GAPDH antibody, clone C 71.1 (Sigma-
Aldrich, G8795, Lot. # 067M4785V; RRID: AB_1078991) as a loading
control. HRP-coupled secondary antibody targeting mouse IgG
(Abcam, ab5870) was used at a dilution of 1:3,000 and incubated
on a rocking surface for 1 h. Enhanced chemiluminescenc
(ECL) working solution of SuperSignal West Pico PLUS
Chemiluminescent Substrate was prepared according to manu-
facturer’s instructions. Proteins were visualized by chemilumi-
nescence detection on INTAS. POLR2A/hRPB1 (RNA Pol-II)
degradation, which is a-amanitin dose dependent (Nguyen et al.
1996), was monitored by Western blotting.

RNA spike-ins
Synthetic RNA spike-in controls are derived from selected RNAs
of the ERCC RNA Spike-in Mix (Ambion) as described in Gressel
et al. (2019b) and Schwalb et al. (2016). Briefly, spike-ins (3 unla-
beled and 3 4sU labeled) are in vitro transcribed using the
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MEGAscript T7 kit (Ambion). In vitro transcription (IVT) of unla-
beled spike-ins was performed following the manufacturer’s in-
struction. For IVT of 4sU-labeled spike-ins, 10% of UTP was
substituted with 4-thio-UTP (Jena Bioscience). RNA spike-ins
were purified with RNAClean XP beads (Beckman Coulter) follow-
ing manufacturer’s instructions. The final RNA spike-in pool con-
tained equal amounts of all RNA spike-ins.

TT-seq and RNA-seq
A detailed step-by-step protocol has been deposited in the proto-
cols.io repository (Gressel et al. 2019a). TT-seq and RNA-seq were
performed in 2 biological replicates including RNA spike-ins.
Briefly, experiments were performed using 5� 107 K562 cells per
biological replicate. Cells were kept at optimal growth conditions
and supplemented with 5 mg mL�1 of a-amanitin or solvent (wa-
ter) for 8 h. After 7 h 55 min, a 4-thiouridine (4sU) labeling pulse
(Sigma-Aldrich, T4509) was applied for 5 min using 500 mM (see
Supplementary material S3). Total RNA was isolated with the
QIAzol reagent (# 79306) according to manufacturer’s instruc-
tions except for the addition of 150 ng of RNA spike-in pool with
QIAzol reagent as previously described (Schwalb et al. 2016;
Gressel et al. 2019a). The Ovation Universal RNA-Seq System
(NuGEN) was used for strand-specific library preparation as de-
scribed (Gressel et al. 2019b). Purified cDNA libraries were ana-
lyzed by Fragment Analyzer prior to Illumina sequencing.
Sequencing was performed on a HiSeq 2500 (Illumina) in paired-
end mode with 50-bp read length.

TT-seq/RNA-seq prepossessing and
normalization parameters
TT-seq and RNA-seq prepossessing and normalization were per-
formed as detailed in Schwalb et al. (2016), with an alternative
normalization applied as described under Differential Expression
Analysis. Reads were mapped with STAR v2.7.3a (Dobin et al.
2016), allowing a maximum of 10 mismatches and minimal
uniqueness filtering with an MAPQ value cutoff of 255. The gen-
eral error rate per library ranged between 0.6% and 0.9%. As Alu
sequences are notoriously difficult to map (Sexton and Han
2019), we performed a mappability analysis (see Supplementary
material S4) to make certain that our read alignment does not in-
troduce biases. We simulated a homogeneous coverage of the ge-
nome and mapped the simulated reads using the same aligner
settings. Our analysis shows that there is no bias caused by Alu
mappability, which is also corroborated by the findings of Sexton
and Han (2019), who show that the mappability of transposable
elements can be improved through the use of paired-end read li-
braries to the point where a majority of elements are uniquely
mappable. Association of the sequencing data with specific Alu
elements or protein-coding genes used the GRCh37/hg19 repeat
annotation or respectively the canonical gene annotation of the
UCSC Table Browser (Karolchik et al. 2004), in addition to the
RepeatMasker human Alu subfamily re-analysis (Price et al.
2004). We also tested using the transcription unit annotation
from Gressel et al. (2019b) based on the GenoSTAN segmentation
algorithm as an alternative to the UCSC canonical gene annota-
tion, which leads to a similar mRNA read count distribution
(Zacher et al. 2017, data not shown).

RNA half-life estimation
To estimate the half-life of expressed Alu elements and coding
transcripts, we used MLE, described in detail in Supplementary
material S5. Our estimation makes use of the labeled and total
RNA sequencing fractions obtained through TT-seq and 4sU-seq,

as detailed above. TT-seq and 4sU-seq data were used for the es-
timation, as the correlation between the 2 methods is suitably
strong (r > 0:80 between replicates and r > 0:85 between sequenc-
ing methods). While 4sU-seq was designed to estimate half-lives,
TT-seq was primarily designed to measure the polymerase proc-
essivity during transcription. Since Alu elements are short, TT-
seq essentially measures the synthesis rate of Alu transcripts
and can thus be applied for half-life estimation (see
Supplementary material S6).

We assume that the total amount of transcripts in a cell
remains constant and that transcript degradation follows expo-
nential decay, meaning that the ratio of labeled to total tran-
scripts L/T increases exponentially to 1 over time. We further
assume that the distribution of labeled and total counts follow a
Poisson distribution. This allows us to formulate the likelihood
function L of observing a specific number of labeled counts La

and total counts Ta for any given Alu element or coding transcript
a, as a parametrized combination of the underlying Poisson dis-
tribution:

LðLa;Ta; ra; q; Lspk;TspkÞ ¼ PoisðTa; ktot ¼ ctot � r�1
a Þ�

PoisðLa; klab ¼ clab � r�1
a Þ

Here, ra is the ratio between labeled and total molecules for any
given Alu element or coding transcript a; q is the ratio between la-
beled and total spike-in molecules that were added; Lspk and Tspk

are the number of labeled and total spike-in counts respectively;
and clab and ctot are given as:

ctot :¼ La

Lspk
� Tspk � q and clab :¼ Lspk �

Ta

Tspk
� 1
q

This estimation does not depend on feature length, as we use the
ratio between labeled and total counts. To find the optimal esti-
mate of ra, we maximize the log likelihood function:

‘ ra; La;Ta; q; Lspk;Tspk
� �

¼ La lnðraÞ �
Tspk

Lspk

q
ra

 !

þTa �
Lspk

Tspk

ra

q
� lnðraÞ

 !

From ra when then obtain the degradation rate da by use of
ra ¼ 1� expð�daDtÞ, where Dt is the labeling pulse’s duration.
This allows us to calculate the half-life as t1=2 ¼ lnð2Þ=da.

As the used DTA methods rely on the labeling of U as 4sU, the
percentage of U in an Alu sequence could potentially bias its
half-life estimate. However, we can exclude this possibility, as no
correlation exists between Alu half-life and U ratio (r < 0:01).

Differential expression analysis
Differential expression analysis of the a-amanitin Pol-II inhibition
experiment was performed using the DESeq2 package for R (Love
et al. 2014), using un-normalized counts as required by the statis-
tical model. The standard normalization strategy employed by
DESeq2 internally relies on the assumption that there are no sub-
stantial, systematic global changes in (mRNA) expression be-
tween samples. Since this is most likely not given in the a-
amanitin sample, we used a set of bona fide housekeeping tran-
scripts. As it is known that the activity of mitochondrial polymer-
ase is unaffected by a-amanitin (Menon 1971; Reid and Parsons
1971; Saccone et al. 1971), we chose mtRNAs for normalization.
Alternatively, to check the robustness of our choice, we also
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performed normalization based on a set of spike-in RNAs that
had been added during sequencing library preparation (see RNA
Spike-Ins). Similar results were obtained when spike-in RNAs were
taken as reference as compared to mtRNAs (Supplementary ma-
terial S7c). The normalization constants obtained differ by a
mean factor of 1.10, and consequently the results of our analysis
hold under both regiments.

Rejection sampling was used to ensure that the obtained l2fc
distributions are comparable (Flury 1990). To avoid biases arising
from the substantially different expression level distribution of
Alus and mRNAs, we compare the Alu l2fc distribution to the l2fc
distribution of a large sample of mRNAs that were picked ran-
domly such that their wild-type expression distribution is identi-
cal to that of the Alu elements. To generate this random sample,
we use rejection sampling: we define expression breakpoints

b0 ¼ �inf < b1 < b2 < � � � < bN�1 < bN ¼ inf

such that each bin ½bn; bnþ1� contains 1,500 Alu elements, exclud-
ing Alu elements with less than 5 reads. Thus, the empirical ex-
pression distribution

f ðnÞ ¼ pðAlu expression in½bn�1; bn�Þ ¼ 1=N; n ¼ 1; . . . ;N

is uniform. The same breakpoints are used to calculate the em-
pirical expression distribution

gðnÞ ¼ pðmRNA expression in½bn�1; bn�Þ; n ¼ 1; . . . ;N

of the mRNAs by calculating the relative abundance of mRNAs
whose expression falls into the interval ½bn�1; bn�. Let k ¼
min

�
gðnÞ; n ¼ 1 . . . ;N

�
and accept an mRNA sample that lies in

the interval m with probability k=gðkÞ. It can then be shown that
the set of accepted samples approaches, for large numbers, the
distribution f ðnÞ.

Generalized linear model
The generalized linear models (GLMs) to analyze the genomic
sequences of all annotated Alu elements on base level were cre-
ated with the glmnet package for R (Friedman et al. 2010). A
Poisson family distribution response type was assumed with ob-
servation standardization, an elastic mixing parameter a of 1 (full
Lasso penalty, no ridge regression penalty), no fitted intercept pa-
rameter, and 1,000� cross-validation. The input matrix for each
model consisted of a binary encoding of the examined point mu-
tation, base exchange, deletion, or insertion, for each position in
the Alu consensus sequence. These matrices were obtained by
aligning each individual Alu sequence against the Alu consensus
sequence. These predictor matrices where then paired with the
expression values as response variable for each individual model.
The resulting effect sizes (b parameters) for the point mutations
were then annotated along the Alu secondary structure accord-
ing to Sinnett et al. (1991) (dot-bracket notation of the secondary
structure in Supplementary material S8) to illustrate their con-
text regarding Alu sequence features. The b parameters are the
estimated regression coefficients of the GLM.

de Bruijn graph
The de Bruijn graph of all Alu sequences, regardless of expres-
sion, was generated using bifrost v1.0.5 (Holley and Melsted
2020), with a k-mer length of 9 and including 100 bp of flanking
regions up- and downstream of each Alu sequence. k¼ 9 was cho-
sen so that the distribution of Alu sequences per node in the

graph was smooth, neither running into the lower nor the upper
range of possible values (Supplementary material S9). Low-cover-
age k-mer connecting tips were kept by using the –keep-mercy (-y)
argument, and the compacted de Bruijn graph was colored using
the –colors (-c) argument.

Our initial intent was to utilize the de Bruijn graph structure
in the downstream analysis, but the compacted de Bruijn graph
for k¼ 9 is almost complete: It contains 131,070 nodes, i.e. k-mers
and 1,048,544 in-edges, resulting in >7.99 edges per node (simi-
larly >7.99 for out-edges). Note that the maximum in-degree and
out-degree in the compacted graph is 8, not only 4, since each
node can be traversed in forward and reverse complement direc-
tion (Holley and Melsted 2020). We, therefore, focused purely on
the k-mers.

The resulting k-mers were then filtered according to 2 aspects.
First, the expression of those Alu elements possessing the k-mer
was compared with those not possessing it. Second, for any given
k-mer, its suffixes and prefixes were generated. Each k-mer pos-
sesses 4 potential pre- and suffixes, as each sequence can be pre-
ceded or succeeded by one of the 4 bases.

When testing a k-mer, say XJY, with X;Y 2 fA;C;T;Gg and J a
fixed 2-mer, for having an effect on Alu transcription, we have to
guard against false positive due to the large number of k-mer
tests. This is done by Bonferroni multiple testing correction for a
family-wise error rate of at most 5%. We further need to filter out
irrelevant findings resulting from the large number of observa-
tions that can render even small differences highly significant.
To ensure that XJY is relevant for Alu transcription, we compare
the group of Alu elements containing XJY to the group of Alu ele-
ments that contain the prefix XJ or the suffix JY, but not the full
k-mer XJY. We compare the 2 groups with respect to their binar-
ized expression (expressed with at least 1 read count/not
expressed) using a Fisher test, and we require an OR of at least 2
or at most 0.5 for being considered a relevant difference.

Results
Alu expression increases with family age
Many Alu families that have emerged in the human genome over
the last 65 million years vary not only in their sequence charac-
teristics (Jurka and Smith 1988, but also in their activity (Bennett
et al. 2008; Oler et al. 2012); active Alu elements being those that
are not only transcribed but are also mobile have the capability
to reinsert themselves into the genome through retrotransposi-
tion.

As was found by Bennett et al. (2008) in vitro, the activity of an
Alu family appears to scale inversely with its age; the older an
Alu element, the less likely it is to be still capable of successful
reinsertion. We examined the transcriptional activity of Alu fami-
lies, using the RNA-seq data from Schwalb et al. (2016) (see
Methods), as well as the stability of Alu transcripts, which is
expected to be low in comparison to regular mRNA (An et al. 2004
and Fig. 2, a–e). We used maximum likelihood estimation (MLE)
based on metabolic RNA labeling to calculate the half-life t1=2 of
Alu RNAs (see Methods), which relates to the degradation rate d by
t1=2 ¼ lnð2Þ=d, as further detailed in Supplementary material S5.

The global expression distribution of Alu transcripts (mean
x � 85, median ~x ¼ 27) is about 2 orders of magnitude lower than
that of mRNAs (x � 4088; ~x ¼ 740), as is to be expected (Fig. 2a,
Paulson and Schmid 1986). We found that members of the youn-
ger Alu families, mostly AluY, but also AluSq10, exhibit overall
less transcriptional activity than older Alus (Fig. 2b). This effect is
most pronounced with the subfamilies of AluY. Since the
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differences between the heavy-tailed read count distributions are
not easy to visualize, we compare the empirical cumulative dis-

tribution functions (ECDF) of the young Alu families with the
ECDF of the old ones (Fig. 2e). All young ones are significantly dif-
ferent from the old ones [P < 0.05 in all comparisons,

Kolmogorov–Smirnov (KS) test or Wilcoxon test, both with
Bonferroni multiple testing correction]. The split can be further
verified by performing average linkage hierarchical clustering

with the KS test statistic as a distance measure between Alu fam-
ilies. This separates the AluY subfamilies clearly from the older
families, except for the aforementioned AluSq10 and AluYc3
(AluYc2) (Supplementary material S7a).

The use of TT-seq (Schwalb et al. 2016) and 4sU-seq (Miller

et al. 2011) allows for the identification of newly created tran-
scripts, and thereby, the estimation of RNA synthesis and degra-
dation rates, and finally half-lives (see Methods). However, due to

the overall paucity of Alu read counts, our MLE results are rela-
tive and do not represent explicit values (see Discussion). Our half-
life estimates for Alu elements show a dispersion very similar to

that of mRNAs (Fig. 2c). This result is surprising, as the in silico
study by An et al. (2004) suggests that Alu transcripts should be
notably less stable than mRNAs. In addition, the half-life distri-
bution of Alu RNAs remains similar between families, even in the

youngest subfamilies of AluY that have only a few members and
are generally lowly expressed (Fig. 2d).

Alu expression is independent of gene
transcription
Alu elements are often presumed to be Pol-III transcripts, as they
contain a bipartite Pol-III promoter (Orioli et al. 2012). Although
there is experimental evidence for Alu elements being

transcribed by Pol-III (Jagadeeswaran et al. 1981; Panning and
Smiley 1993; Zhang et al. 2019), it has not been ruled out yet that
(some) Alu elements might be transcribed by RNA Pol-II. We have
therefore examined the possibility that Alu transcripts may also
arise as side products of RNA Pol-II gene transcription, as hinted
at by the results of Conti et al. (2015) and suggested by Zhang et al.
(2019).

If Alu elements are also transcribed by Pol-II as side products
of gene transcription, we would expect intragenic Alu elements
to exhibit a higher transcript abundance than intergenic ones.
Furthermore, the transcriptional activity of genes should be cor-
related with that of proximal Alu elements. The expression of
those should be biased toward Alu elements lying in sense direc-
tion with regard to their associated gene.

To investigate this, we defined intragenic Alu elements as
those that either directly overlap a gene or lie within 500-bp up-
or downstream of a gene according to the GRCh37/hg19 canoni-
cal gene annotation of the UCSC Table Browser (Karolchik et al.
2004). All other Alu elements are called intergenic. Over 96% of
intragenic Alu elements overlap intronic regions according to the
latest GENCODE annotation (Frankish et al. 2021). Effects of prox-
imity to Pol-I and Pol-III transcripts have not been detected and
cannot contribute a notable effect, since only a comparably tiny
number of Alu elements would be affected. Of the expressed Alu
elements, 37 loci lie in 500-bp proximity to rRNAs (excluding 5S
rRNA), and 42 in proximity to tRNAs, using the respective UCSC
Table Browser annotation.

We compared the read counts for intragenic and intergenic
Alu transcripts, which show a significantly higher expression for
intragenic Alus compared to intergenic ones (Fig. 3a, x � 110; ~x ¼
49 intragenic, x � 35; ~x ¼ 6 intergenic, P < 10�5, Mann–Whitney

(a) (b)

(c) (d) (e)

Fig. 2. Alu expression and half-life—all subfigures based on data published by Schwalb et al. (2016), using the UCSC Genome Browser Annotation. a)
Histogram of the read counts for both Alu elements and mRNA; Alu elements show less transcriptional activity overall (histogram y-axes: density). b)
Read count distribution for all Alu families as shown in Fig. 1b. The colored bars represent the extent of the 50%, 75%, and 95% median percentile
interval with decreasing opacity. The white dot indicates the arithmetic mean. Zero counts are disregarded in this subfigure. The upper lollipop plot
shows the proportion of Alu elements per family with more than 0 read counts. c) Histogram of the half-life of both Alu elements and mRNA; Alu
elements show stability comparable to regular transcripts. d) Half-life distribution for all Alu families (cf. Fig. 1b), binned by family. e) ECDF of the read
counts of younger Alu families (AluY and subsequent, as well as AluSq10) in contrast to all older families, represented by the gray-shaded area. Younger
Alu families show consistently lower read counts in comparison to the older ones.
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test). We also detected a less pronounced but significant differ-

ence in the expression of intragenic Alu elements lying in sense

respectively in the antisense direction with regard to their associ-

ated gene (Fig. 3b, x � 97; ~x ¼ 44 sense, x � 121; ~x ¼ 54 antisense,

P < 10�5, Mann–Whitney test).
We also correlated the transcript abundance of intragenic Alu

elements and their associated genes for both Alu elements in the

sense and antisense direction to their associated gene. The 2

groups show no difference in correlation strength (Spearman cor-

relation r � 0:71; P < 10�5 rand. test, Fig. 3c).
Lastly, we examined the number of sense and antisense Alu

elements per family. Overall, 46% of all intragenic Alu elements

lie in the sense direction with regard to their associated gene. No

individual family exceeds a ratio of either 38% or 50% (Fig. 3d).
Furthermore, we combined Pol-II and Pol-III occupancy data

drawn from the ENCODE portal (ENCSR000EHL, ENCSR000EHQ,

Dunham et al. 2012; Davis et al. 2018) with our RNA-seq data and

RNA-seq data from ENCODE (ENCSR000COM). While we found a

modest correlation between our own sequencing’s mRNA tran-

script abundance and the data obtained from ENCODE

(Spearman correlation r � 0:65), our analysis did not detect global

correlation between Pol-II or Pol-III occupancy and individual Alu

expression according to our sequencing data (Spearman correla-

tion r � 0:05 for both, Supplementary material S7b).

RNA Pol-II inhibition decreases Alu expression
To further examine the origin of Alu transcripts, we performed a

Pol-II inhibition experiment by incubating K562 cells with a-ama-

nitin at a concentration suited to efficiently inhibit the Pol-II ac-

tivity while leaving the activity of Pol-III and mitochondrial RNA

polymerases unaffected (see Methods). We quantified the degree

of inhibition using mitochondrial RNAs as a negative control

group, which are unaffected by a-amanitin (see Methods). Similar

results were obtained when spike-in RNAs were taken as

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Alu correlation and differential expression. a) Histogram of the read counts for transcribed intragenic (398,660) and intergenic (200,928) Alu
elements. Intragenic Alu elements either directly overlap a gene or lie within 500-bp up- or downstream of a gene. Other Alu elements are intergenic.
Intragenic Alu elements show a significantly higher expression than intergenic ones, which is likely explained by genome accessibility. b) Histogram of
the read counts for transcribed intragenic Alu elements that lie in sense or antisense direction with respect to their associated gene, showing only minor
differences. c) 2D kernel density estimation showing the correlation between the annotated Alu and mRNA read counts for intragenic sense (orange)
and antisense (blue) Alu elements. The 2 groups show no difference in correlation strength. d) Number of sense and antisense Alu elements per family.
No family exceeds a ratio of 38% or 50%. e) 2D density heatmap showing the DESeq2 differential expression of Alu elements, mRNAs, and tRNAs as
control under a-amanitin Pol-II inhibition. Semitransparent areas do not pass the significance threshold. Loci with a normalized mean expression below
0.1 are not shown, with affects 51% of all annotated Alu loci and practically no mRNAs or tRNAs. Both Alu elements and mRNAs show stronger
significant downregulation than upregulation. f) Differential expression of Alu elements under a-amanitin Pol-II inhibition, using family-wise
aggregated read counts. All Alu families show downregulation.
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reference (Supplementary material S7c). The analysis of tRNAs
as an independent negative control group showed barely any dif-
ferential expression, validating that our normalization procedure
did not introduce a bias to putatively unaffected transcripts. As a
natural positive control group, we chose mRNAs that are bona
fide Pol-II transcripts. Figure 3e shows the changes after a-amani-
tin inhibition for Alu elements, mRNAs, and tRNAs.

Due to the low coverage of individual Alu transcripts, a direct
comparison based on individual expression folds would be mis-
leading. We, therefore, aggregated all read counts mapping to 1
Alu family (or several families in the case of very small families,
Fig. 3f) and calculated the expression fold of each Alu family. All
Alu families show downregulation with an average log2 fold
change (l2fc) of �0.70 (standard deviation r � 0:12; min ¼ �0:88
for AluYr4, max ¼ �0:24 for AluYa). In comparison, individual
mRNAs with at least 10 reads exhibit a downregulation of �0.35
(r � 0:99). Also, Alu elements being intragenic or intergenic show
no influence on their response to a-amanitin (>90% downregu-
lated among significantly differentially expressed transcripts in
both cases); therefore, these 2 groups are treated as 1 in the fol-
lowing.

As the overall mean expression of Alu elements differs
strongly from that of mRNAs (cf. Fig. 2a), we used rejection sam-
pling to obtain comparable l2fc distributions (Fig. 4, Flury 1990).
Alu and mRNA differential expression appears very similar, with
the distribution of Alu l2fc falling even below that of mRNA.
Examining individual l2fc values, we focused on those Alu ele-
ments or mRNAs with significant differential expression
(P � 0:05, Wald test with Benjamini–Hochberg multiple testing
correction). Of all Alu elements, 16,909 (89%) of 19,027 transcripts
show no significant differential expression while 2,118 (11%) do.
A total of 9,818 (53%) of 18,590 mRNAs show no significant differ-
ential expression while 8,772 (47%) do. tRNAs are largely unaf-
fected by a-amanitin, with only 17 of the total 604 (3%) tRNA
transcripts exhibiting significant change, 12 being up- and 5 being
downregulated. This is to be expected, as tRNAs are transcribed
by Pol-III (White 1997).

Alu elements, while expectedly represented with considerably
less read counts than mRNA transcripts, still show downregulation

under a-amanitin treatment, with an average l2fc downregulation
of �3.23 (r � 1:24) for significant transcripts. Accordingly, mRNAs
exhibit an average significant downregulation of�0.99 ðr � 0:43).

However, both Alu elements and mRNAs show a small fraction
of significantly upregulated transcripts under a-amanitin inhibi-
tion of Pol-II. In comparison to the significantly downregulated
fraction though, this fraction is small with 1,002 (5%) significantly
upregulated but 7,770 (42%) significantly downregulated tran-
scripts for mRNAs and 47 (0.2%) significantly upregulated but
2,071 (11%) significantly downregulated transcripts for Alu ele-
ments.

It is remarkable that some Alu elements show significant
downregulation under a-amanitin treatment at all, which sug-
gests that the affected Alu elements could be partly Pol-II tran-
scripts.

Sequence features associated with Alu
expression show signs of evolutionary selection
Evolutionary changes in the Alu sequence could reveal informa-
tive clues on sequence features that influence the mechanism of
Alu transcription and retrotransposition. Obvious, prominent
features of potential impact are the Pol-III promoter split into A
and B box and the SRP-binding motif used for attachment to the
ribosome exit tunnel (see Introduction).

The abundance of Alu sequences in the genome offers the
unique opportunity to use an analysis strategy resembling a
genome-wide association study. We used a GLM to link Alu se-
quence features to their transcript abundance (see Methods). Due
to the encoding of the sequence changes with respect to the Alu
consensus sequence, this results in individual effect sizes (b
parameters) for the 3 types of examined point mutations, base
exchanges, deletions, and insertions, for each position in the Alu
consensus sequence. Figure 5 shows the Alu secondary structure
according to Sinnett et al. (1991) with the Euclidean norm of the
effect sizes represented by base color (dot-bracket notation of the
secondary structure in Supplementary material S8). However, the
large number of available Alu sequences enabling this analysis
also precludes any attempts to test for statistical significance.

Several noteworthy positions show a high correspondence to
Alu transcription (Fig. 5): Position 48 is sensitive to all 3 types of
point mutations, but primarily to insertions. It lies in the left arm
at the juncture between inner loop 7 (I7) and inner loop 9 (I9),
which contains the A box of the Pol-III promoter sequence.
Position 79, also in the left arm in terminal loop 3 (T3), lies di-
rectly within the B box of the Pol-III promoter sequence. Like the
previous position, it is sensitive to all 3 types of mutation, but pri-
marily to insertions, which would bring the Alu consensus se-
quence closer to the consensus sequence of the tRNA promoter:
GWTCRANNC (Paolella et al. 1983). Position 179 lies in the right
arm near terminal loops 4 and 5 (T4, T5) and reacts only to inser-
tions, and position 198, also in the right arm between inner loops
2 and 3 (I2, I3), reacts only to base exchanges.

Due to the large number of samples (i.e. Alu elements), we
could also investigate interactions between paired bases in the
secondary structure (see Methods), which resulted in 2 positions
of interest, all in the vicinity of terminal loops 4 and 5 (T4, T5) of
the right arm, which is also the region containing the SRP 9/14-
binding motif: UGU(NR) (Weichenrieder et al. 2000). The pair of
positions 135 and 180 reacts inversely to insertions in comparison
to base exchanges and deletions. It forms the junction from
which terminal loops 4 and 5 (T4, T5) branch off. The pair of posi-
tions 139 and 156 lies directly adjacent to the SRP-binding motif
and reacts primarily to deletions, as well as to base exchanges.

Fig. 4. Rejection sampling—distribution of DESeq2 differential
expression of Alu elements and mRNAs after rejection sampling
according to transcript length corrected Alu normalized mean read
counts (shown in inset). Vertical lines denote median Alu l2fc of �1.15
(blue), and median mRNA l2fc of �0.24 (red). Alu elements exhibit
downregulation comparable to canonical genes under a-amanitin Pol-II
inhibition.
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Fig. 5. GLM and Alu secondary structure—secondary structure of the Alu element consensus sequence according to Sinnett et al. (1991), showing the
left and right arm architecture with the variable region in between. Noteworthy sequence features include the bipartite Pol-III promoter split into A and
B boxes (denoted bysA andsB ), and the SRP-binding motif used for attachment to the ribosome exit tunnel (denoted bysS ). Each base is colored according
to the rescaled Euclidean norm of the 3 GLM effect sizes (b parameters). Several noteworthy positions are annotated with bar graphs detailing the
individual values. In the lower right corner, prominent results from the analysis of interactions between paired bases are shown.
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As the GLM focused on individual bases or base pairs in the
Alu consensus sequence, we also developed our own k-mer-based
method to search for sequence motifs that influence Alu expres-
sion, better suited to the data at hand than regular motif search.
First, to circumvent the problems that arise from the use of a ref-
erence sequence, we constructed a de Bruijn graph from the k-
mers of all Alu sequences (k ¼ 9, for the tuning of k and its justifi-
cation, see Methods). Next, we filtered for k-mers with statistical
significance and biological relevance. Each k-mer splits the group
of all Alu sequences into those containing the k-mer and those
that do not. At the same time, each Alu element can be either
expressed (at least 1 read count) or not. This gives rise to a 2� 2
contingency table, to which we apply a Fisher test and calculate
the odds ratio (OR, see Methods). k-mers with both an OR of less
than 0.5 or greater than 2 and a Bonferroni-corrected Fisher test
P-value less than 0.05 were included in the downstream analysis,
leaving us with 38 k-mers of interest. Finally, we performed an-
other Fisher test comparing expressed and nonexpressed Alu ele-
ments in the group containing a specific k-mer of interest vs the
group of Alu elements containing the k-1 Prefix and suffix of that
k-mer. This resulted in merely 12 remaining k-mers of interest af-
ter applying the same stringency criteria (Table 1). We also en-
sured that the reported k-mers originate from the Alu sequence
itself and not from the 100-bp flanking region (see Methods and
Supplementary material S11).

A comparison of those k-mers with transcription factor-bind-
ing profiles from the JASPAR database reveals that 8 of the 12 k-
mers show similarities to known motifs (Fornes et al. 2020). The

most intriguing findings to us were the k-mers resembling the
binding profiles of ARNT::HIF1A (MA0259.1, which is a master
transcriptional regulator of hypoxia response), NFIX (MA0671.1,
which is involved in the replication of adenovirus 2), and TFE3
(MA0831.2, which plays a role in the general immune response).
Also, all listed transcription factors are Pol-II specific (see
Supplementary material S10 for references and detailed statis-
tics).

Discussion
We presented a multifaceted analysis of the Alu elements found
in the human genome in K562 cells, focusing on their RNA me-
tabolism and sequence features that influence it.

The read count distributions of Alu elements in comparison to
mRNA presented in Fig. 2, a, b, and e correspond well to previous
in vitro findings, corroborating that Alu expression is generally
low in comparison to gene transcription and that the younger
Alu families (AluY and subfamilies) are expressed at even lower
rates than the older Alu families (AluJ and AluS) (Paulson and
Schmid 1986; Bennett et al. 2008).

In contrast, the results of our RNA half-life estimation of Alu
transcripts through the use of TT-seq (Schwalb et al. 2016) and
4sU-seq (Miller et al. 2011) are surprising. Previous studies suggest
that Alu RNAs should be less stable than regular gene transcripts,
as they contain adenine- and uracil-rich element motifs, a se-
quence feature linked to decreased transcript stability with an as
yet unknown mechanism (An et al. 2004). In contrast, our MLE
predicts that Alu transcripts and mRNAs should be of similar sta-
bility (Fig. 2, c and d). However, our MLE can only serve as an as-
sessment to compare the relative half-life distributions; its
predictions do not represent explicit half-life values. First, the
MLE has to contend with the overall paucity of Alu read counts,
which limits its explanatory power, an issue that could only be
remedied by vastly increasing sequencing depths in future
experiments. Second, to not exacerbate the already demanding
estimation, our model contains some simplifications, such as the
assumption of steady-state conditions, using a Poisson distribu-
tion to model read counts instead of a zero-inflated negative bi-
nomial distribution, and neglecting nonconstant labeling
efficiencies for short labeling periods (see Supplementary mate-
rial S5). As such, our half-life estimates point toward a need for
further research regarding the stability of Alu transcripts, as the
subject matter is less straightforward as it appears prima facie.
Also, our data originate from K562 cells and are thus subject to
the peculiarities of that cell line (Li et al. 2000). Nonetheless, tak-
ing into account the nonautonomous life cycle of Alu elements
and their reliance on LINE-1 repeat translation (Boeke 1997;
Dewannieux et al. 2003) in conjunction with their low expression,
transcript persistence in the cell could potentially be instrumen-
tal for successful retrotransposition.

Regarding our noninterventional analysis concerning the ori-
gin of Alu transcripts, we observed a higher expression of intra-
genic Alu elements compared to intergenic ones (Fig. 3a). This on
its own cannot be taken as solid evidence either for or against a
connection between Alu and gene transcription. Genome accessi-
bility is a confounding factor, as intragenic regions are in general
more accessible than intergenic ones (Guo et al. 2017). It should
also be noted that a screening of Alu elements proximal to Pol-I
and Pol-III transcripts, while intriguing, falls outside the scope of
our study, as our approach exploits the large group size of intra-
end intergenic Alu elements to compensate for the low read
counts. The difference in expression between intragenic Alu

Table 1. De Bruijn graph significant k-mers.

k-mer OR JASPAR match Matrix ID

1 AACGCGCCA 2.65 —
2 ATCGCCCGC 2.72 NFIX MA0671.1

NR2C2 (var.2) MA1536.1
3 CGGACTGCT 2.07 MEIS1 MA0498.2

TEAD3 MA0808.1
4 CTCAACGCC 2.40 SOX18 MA1563.1

BARHL1 MA0877.2
ZNF354C MA0130.1
NR2C2 (var.2) MA1536.1
GSX2 MA0893.2

5 GAAACCGTC 2.12 —
6 GACACGCGC 2.27 ARNT::HIF1A MA0259.1

TFE3 MA0831.2
USF1 MA0093.1

7 GATCGCCCG 2.56 GATA2 MA0036.1
8 GGCGGACTG 2.35 MEIS1 MA0498.2
9 GGGCGGACT 2.64 —
10 TAGGCGCGC 2.08 —
11 TCAACGCCT 2.22 TBX4 MA0806.1

TBX5 MA0807.1
NR2C2 (var.2) MA1536.1
GSX2 MA0893.2
MGA MA0801.1

12 TGACACGCG 2.92 FOS::JUN MA0099.2
TFE2 MA0831.2
TBX4 MA0806.1
MGA MA0801.1
TBX5 MA0807.1
USF1 MA0093.1

Shown are the k-mers (k ¼ 9) from the de Bruijn graph created of all Alu
sequences (incl. 100-bp flanking regions) that passed all significance and
relevance thresholds: P � 0:05 (Fisher test with Bonferroni multiple testing
correction) and OR � 0.5 or OR 	 2.0 for both test schemes. Listed are the k-
mer sequence, associated OR (k-mer occurrence vs read counts), JASPAR
match, and associated Matrix ID (see Supplementary material S10 for
expanded statistics). The binding profile matches described in the Results are
marked as bold.
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elements that lie in sense or antisense direction with respect to
their associated gene is so minor that we deem it irrelevant
(Fig. 3b). Therefore, we analyzed the correlation between Alu and
gene transcription (Fig. 3c). A certain level of correlation is to be
expected regardless of Alu transcript origin due to genome acces-
sibility, as mentioned above. However, the lack of a difference in
correlation strength between sense and antisense points toward
Alu transcripts not originating primarily as side products of Pol-II
gene transcription. If that were the case, a stronger correlation
between Alu elements in sense direction with respect to their as-
sociated gene and the expression of that gene should exist. This
is further corroborated by the number of sense and antisense Alu
elements present in each family (Fig. 3d). If Alu transcripts were
primarily side products of Pol-II gene transcription, Alu insertion
should show a bias toward aligning new Alu elements in sense di-
rection with respect to their associated gene. Taken together, we
interpret these findings as weakening the hypothesis that Alu
transcripts are mainly created alongside Pol-II gene transcription.
This does not rule out the possibility for a fraction of Alu ele-
ments being transcribed in this fashion, but it does not appear to
be a major contributor to Alu expression in the cell.

Our analysis of Pol-II and Pol-III occupancy data did not detect
any correlation between Alu expression and polymerase occu-
pancy (Supplementary material S7b), which was a likely outcome
given the nonconformity of the 2 measurements (Ehrensberger
et al. 2013; Gressel et al. 2017). The issue of such a correlation was
also addressed recently by Zhang et al. (2019), who utilized an ex-
tensive collection of data produced as part of the ENCODE project
in conjunction with RAMPAGE (Batut and Gingeras 2013). While
their study covered only 1.5% of all annotated Alu elements in the
human genome due to strict read-mapping and analysis con-
straints, they identified a subset of Alu elements as Pol-III tran-
scribed, also in accordance with chromatin immunoprecipitation-
seq data. This suggests that the detection of correlation between
Alu expression and polymerase occupancy, while possible, neces-
sitates high-resolution data that make a global assessment
demanding and beyond the explanatory power to be found in
our data.

The differential expression analysis under a-amanitin inhibi-
tion of Pol-II suggests that a substantial part of Alu transcription
is Pol-II dependent (Fig. 3, e and f). To the author’s knowledge,
this is the first direct experimental evidence for the origin of Alu
transcripts. If Alu transcripts would originate mainly from the
Pol-III activity, no downregulation should be present. While this
may appear to conflict with our previous findings that Alu ex-
pression is unlikely to be primarily a side product of Pol-II gene
transcription, this leaves the possibility open that Alu transcripts
arise from Pol-II activity independent from gene transcription.
However, it seems more likely that Alu RNAs arise from different
modes of transcription simultaneously, as also suggested by
Conti et al. (2015) and Zhang et al. (2019). This is of particular in-
terest regarding differential expression analyses of the past that
utilized Pol-II inhibition, as it is common practice to rely on SINEs
as a non-Pol-II-dependent negative control group in such experi-
ments. Alus are the most common SINE in the human genome
(Cordaux and Batzer 2009), which may call the results of these
studies into question. Regarding our own results, the small but
not negligible fraction of seemingly upregulated Alu and mRNA
transcripts may be explained by inhibition of nuclear export
(Bahar Halpern et al. 2015; Zander et al. 2016). To achieve notice-
able differential expression of Alu elements under a-amanitin in-
hibition of Pol-II, an incubation time of 8 h was required (see
Methods). This exposes the cells to extreme levels of stress, as

their protein metabolism is breaking down. This, in turn, may
lead to the retention and accumulation of RNAs that are not re-
lated to shock response in the nucleus. As our DTA does not dif-
ferentiate between nuclear and cytoplasmic RNA fractions, this
could appear as apparent upregulation. Alternatively, protein
translation inhibition, especially of proteins related to mRNA
degradation (such as deadenylases or Xrn1), could be involved
(Orban and Izaurralde 2005; Dobin et al. 2016). Changes in protein
level, even after extended exposure, seem to be an uncommon ef-
fect of a-amanitin treatment, according to Fiume and Stirpe
(1966) and Stirpe and Fiume (1967). A reduction in protein abun-
dance or concentration would approximately lead to a propor-
tional decrease in degradation rates. Hence, it would merely lead
to a proportional shift in total expression levels. The reduction in
the protein concentration might therefore lead to compensatory
effects, which would make a quantitative, but not a qualitative
change. Regarding Fig. 3e and f it should also be noted that an av-
erage l2fc of �0.35 (r � 0:99) for mRNAs may appear small when
considered individually, especially in the 2D density heatmap,
where strongly expressed genes do appear to be affected more, as
random measurement noise is visually overrepresented and opti-
cally dominates the plot. However, calculating the overall differ-
ential expression shows a global reduction in mRNA levels by a
factor of 3 (l2fc of �1.64), comparable to, for example, the effect
of heat shock response (Mahat et al. 2016).

One influential position resulting from our GLM analysis of all
Alu sequences is of particular note (see Fig. 5). Position 79 lies
within the B box of the Pol-III promoter sequence and is most
sensitive to insertions, which bring it closer to the consensus se-
quence of the tRNA promoter: GWTCRANNC (Paolella et al. 1983).
This suggests that the promoter plays a role in Alu transcription,
further substantiating the assumption that Alu RNAs arise from
various methods of transcription.

It is remarkable that our new method employing de Bruijn
graph k-mers does detect statistically significant and biologically
relevant sequence motifs when previous attempts using regular
de novo motif search did not (Zhang et al. 2019). We attribute this
to some extent to the tuning of the parameter k (see Methods). We
found that with a k either smaller or larger than 9, the high se-
quence similarity of Alu elements quickly leads to problems.
With a k smaller than 9, many k-mers are possessed by all or al-
most all Alu elements, while with a k larger than 9, a high num-
ber of k-mers are unique to a few or even a single Alu sequence.
In both unfavorable cases, a majority of k-mers are ruled out sim-
ply by the selection of k. This might appear as a limitation of our
method, but in fact, it is an intrinsic limitation shared by all
continuous-motif-based methods. Our method merely makes
this problem noticeable and offers a solution through parameter
tuning. We also see the potential for our approach to be applied
to other data sets in the future.

Taken together, we present a compendium of results regard-
ing the RNA metabolism of Alu elements. Our analyses affirm
that older Alu families are more strongly expressed than younger
Alu families, but the stability of Alu transcripts appears to be
close to that of mRNA. Furthermore, we find evidence for Alu
transcripts originating both from Pol-II and Pol-III activities, but
no evidence for Alu transcripts being side products of Pol-II gene
transcription. Finally, we have identified a list of sequence fea-
tures that influence Alu transcription and are thus targets for
further investigations and developed a novel method to test the
statistical significance and biological relevance of de Bruijn graph
k-mers.
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Data availability
The sequencing data used in this publication have been depos-
ited in NCBI’s Gene Expression Omnibus (Edgar et al. 2002) and
are accessible through GEO Series accession number GSE75792
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75792)
for the data described in Schwalb et al. (2016), and through GEO
Series accession number GSE185485 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE185485) for the data relating to
the inhibition of RNA Pol-II by a-amanitin. GSE75792 was used for
all non-interventional analyses, while GSE185485 was used for
the differential expression analysis.

Supplemental material is available at G3 online.
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