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Abstract: The resistance prevalence of chemical fungicides has caused increasingly serious agro-
ecological environmental problems. However, there are few previous reports about resistance
to succinate dehydrogenase (SDHI) or sterol demethylation inhibitor (DMI) in Rhizoctonia solani,
one of the main agro-diseases. In this study, the fungicide resistance of 122 R. solani isolates in
Sichuan Province was monitored by the mycelial growth rate method. Results showed that all
isolates were susceptible to hexaconazole and most isolates were susceptible to thifluzamide, except
for the field isolate MSRS-2-7 due to a moderate resistance to thifluzamide (16.43-fold resistance
ratio, RR), compared to the sensitivity baseline of thifluzamide (0.042 µg/mL EC50 values). On the
contrary, many isolates showed moderate or high resistance to tebuconazole (10.59- to 60.78-fold
RR), reaching EC50 values of 0.54~3.10 µg/mL, especially for a highly resistant isolate LZHJ-1-8
displaying moderate resistance to epoxiconazole (35.40-fold RR due to a 3.54 µg/mL EC50 value). The
fitness determination found that the tebuconazole-resistant isolates showed higher fitness cost with
these characteristics, including a lower growth rate, higher relative electric conductivity, an increased
ability to tolerate tebuconazole, and high osmotic pressure. Four new mutations of cytochrome P450
sterol 14α-demethylase (CYP51), namely, S94A, N406S, H793R, and L750P, which is the target for
DMI fungicides, was found in the tebuconazole-resistant isolates. Furthermore, the lowest binding
energy with tebuconazole was also found in the LZHJ-1-8 isolate possessing all the mutations through
analyses with Discovery Studio software. Therefore, these new mutation sites of CYP51 may be
linked to the resistance against tebuconazole, and its application for controlling R. solani should be
restricted in some areas.
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1. Introduction

Rice sheath blight, caused by Rhizoctonia solani Kuhn AG1-1A [teleomorph Thanatepho-
rus cucumeris (A. B. Frank) Donk], is a common disease in rice and mostly occurs under
high temperature and humidity. The disease can produce incomplete grains, more scum,
and even lodging [1]. It can cause a yield loss of 20–50% in susceptible rice cultivation
areas and shows an increasing trend due to the irrational use of nitrogen fertilizer and
change in global climate conditions [2]. The measures to control R. solani mainly include
strengthening management of field fertilizer and water, reduction in bacterial sources, and
cultivation of resistant varieties [3]. However, the application of chemical fungicides is the
most popular and effective control measure [4]. In rice production, the common chemical
fungicides for controlling rice sheath blight consist of succinate dehydrogenase inhibitors
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(SDHIs) or sterol demethylation inhibitors (DMIs), such as thifluzamide, hexaconazole,
tebuconazole, and epoxiconazole [5,6].

However, as a result of their increased usage, the susceptibility of pathogens to these
fungicides is decreasing, and even fungicide-resistant isolates have emerged, leading to
significant difficulties for controlling these diseases. The resistance towards some quinone-
outside inhibitor (QoI) fungicides has been found in R. solani to affect rice and soybean
in the southern United States. Ajayi-Oyetunde et al. [4] reported that resistance against
SDHI and DMI classes of fungicides was not identified for R. solani. Chen et al. [7] and
Mu et al. [8] determined the sensitivity of R. solani isolates towards thifluzamide in China,
and found that all isolates were extremely susceptible to thifluzamide, with an average
EC50 value of 0.05 or 0.0351µg/mL; while Mu et al. [8] obtained nine thifluzamide-resistant
isolates using thifluzamide-amended medium or UV radiation. Ajayi-Oyetunde et al. [9]
found that all isolates of R. solani were susceptible to both SDHI and DMI fungicides, and
more susceptible against SDHI. Two years later, Suemoto et al. [10] reported that DMI
fungicides were losing their efficacy against Zymoseptoria tritici and Pyrenophora teres in the
regions of west Europe, where these cereals were intensively produced. Although there are
relatively few available reports about R. solani resistance to DMI, its resistance for other
diseases have been identified, such as Cercospora beticola [11], Monilinia fructicola [12], and
Colletotrichum gloeosporioides [13].

DMIs are considered as fungicides for controlling R. solani, as they inhibit cytochrome
P450 sterol 14α-demethylase (CYP51), and thus interfere with the biosynthesis of ergosterol,
a primary sterol in fungal membranes [14]. DMI resistance is generally considered to
be associated with point mutations or overexpression of CYP51 and efflux pump over-
expression. Sun et al. [15] found that a new putative sterol in PdCYP51B was involved
in resistance to imazalil and other DMI fungicides; Cools et al. [16] found that MgCYP51
overexpression in Mycosphaerella graminicola isolates conferred a novel azole fungicide
sensitivity; Wei et al. [13] found that not only overexpression, but also mutations, conferred
DMI-resistance in C. gloeosporioides. Other resistance mechanisms include the increased
expression of ATP-binding cassette (ABC) transporters and major facilitator superfamily
(MFS) transporters encoding efflux pumps [17].

To the best of our knowledge, thifluzamide, hexaconazole, tebuconazole, epoxicona-
zole, and their compound fungicides are widely used in the control of R. solani in Sichuan
Province. However, the sensitivity of R. solani to these four fungicides and the potential
resistance mechanism in R. solani to tebuconazole have been little studied. In this paper, the
resistance levels of R. solani isolates, collected from the different rice-cultivating districts,
against hexaconazole, tebuconazole, epoxiconazole, and thifluzamide were determined;
furthermore, their fitness and the resistance mechanism were also analyzed to provide a
theoretical basis for formulating integrated pest management for R. solani.

2. Materials and Methods
2.1. Isolation of R. solani

Rice leaves or stems with typical symptoms of R. solani infection were collected in
2018–2019 from different rice cultivation regions, namely, Chengdu Chongzhou (CDCZ),
Chengdu Dayi (CDDY), Chengdu Pixian (CDPX), Meishan Renshou (MSRS), Zigong Rongx-
ian (ZGRX), Luzhou Hejiang (LZHJ), and Neijiang Longchang (NJLC) in Sichuan Province,
China (Table S1). The R. solani isolates were separated on the water agar medium following
the description of Chen et al. [7] with some modifications. After the infected rice stems
were cut into 6 mm2 pieces, they were disinfected in 0.5% (v/v) sodium hypochlorite for
1 min and 75% (v/v) ethanol for 30 s, rinsed three times with sterile water, and cultured on
the water agar medium having streptomycin and 1% lactic acid at 28 ◦C under the darkness
condition. After two days, a total of 122 R. solani isolates was separated from the edge of
mycelia, and then transferred to the PSA medium. All isolates were further identified by
mycelia morphology and amplification with primer pairs ITS1/ITS4 [18].
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2.2. Fungicides and Chemicals

Four technical fungicides, namely, thifluzamide (95% available ingredient (a. i.) Zhe-
jiang Yulong Biotechnology Co., Ltd., Jiaxing, China), hexaconazole (95.38% a. i. Yancheng
Yuenong chemical Co., Ltd., Yancheng, China), tebuconazole (95% a. i. Zhejiang Hangzhou
Yulong chemical Co., Ltd., Hangzhou, China), and epoxiconazole (97% a. i. Jiangsu Huifeng
Biological Agriculture Co., Ltd., Yancheng, China), were dissolved in analytical grade ace-
tone (>99.5%) to prepare 1000 µg/mL stock solutions. The physiological biochemical
reagents, including glucose and sodium chloride (NaCl), were purchased from Chengdu
Kelong Chemical Reagent Co., Ltd. (Chengdu, China). The drug-containing medium was
made by mixing 1 mL fungicide stock solution diluted by 0.1% Tween-80 and 9 mL PSA
medium; 1 mL 0.1% Tween-80 consisting of an equal volume of acetone and 9 mL PSA
medium was used as the blank control (drug-free medium).

2.3. Determination of Resistance Frequency of R. solani

The minimum inhibitory concentration (MIC) was used to determine the resistance
frequency of R. solani [19]. The MICs of four fungicides were based on their lowest inhibitory
concentration [20] against an indoor susceptible isolate obtained from Southwest Crop
Genetic Resource Discovery and Utilization Laboratory of Sichuan Agricultural University;
the MICs of thifluzamide, hexaconazole, tebuconazole, and epoxiconazole were 5, 15,
20, and 10 µg/mL, respectively. The 122 isolates were placed on a PSA medium plate,
previously stored in a refrigerator at 4 ◦C, and activated at a constant temperature of 28 ◦C
for 36 h; then, mycelia with a 5 mm diameter were punched out with a hole punch, and
inoculated on PSA medium containing the identified MICs. After culturing in the dark at
28 ◦C for 36 h, those isolates that could not grow normally were identified as susceptible
isolates; on the contrary, the isolates that could grow normally were identified as resistant
isolates, and the mycelia diameter was measured by the cross method [21]. The mycelia
diameter grown on the drug-containing medium was marked A, and that on the drug-free
medium was marked B. The occurrence frequency of susceptible and resistant isolates, and
the mycelial growth inhibition rate, were calculated [22]. Mycelial growth inhibition rate
(%) = [1 − (A − 5 mm)/(B − 5 mm)] × 100%

2.4. Sensitivity Baseline or Resistance Ratio of R. solani to the Tested Fungicides

According to the resistance frequency and mycelial growth inhibition rate results,
some representatives from sensitive and resistant (with a least inhibition rate) isolates of
R. solani to thifluzamide, hexaconazole, tebuconazole, and epoxiconazole were selected, and
their EC50 values against these four fungicides were determined by the mycelial growth
rate method [23]. Each treatment was replicated three times. A mycelium with a diameter
of 5 mm was inoculated into the center of the drug-containing medium, and the drug-
free medium was used as a blank control. After culturing at 28 ◦C for 36 h, the mycelia
diameter was measured by the cross method [21]. A regression equation was derived by
correlating the log10 of inhibitor concentration and the probability value of the mycelial
growth inhibition rate, while effective concentration for 50% inhibition rate (EC50) was
calculated from the regression equation [7]. Resistance ratio (RR) was obtained as the ratio
of EC50 value for resistant isolates to EC50 value for sensitive isolates.

2.5. Fitness Determination of Tebuconazole-Resistant Isolates

Referring to the method reported by Dolores et al. [24], to test the osmotic sensitivity
of the tebuconazole-sensitive or resistant isolates to glucose, mycelium plugs with 5 mm
diameter were punched at the edge of the mycelia, and inoculated onto PDA medium
containing 1%, 2%, 4%, and 8% glucose, after activation at 28 ◦C for 36 h. Then, the mycelia
growth diameter was measured by the cross method, and each treatment was repeated
3 times.
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To test the osmotic sensitivity of these isolates towards NaCl, mycelium plugs with a
5 mm diameter from the edge of 36 h activated mycelia were transferred into PSA medium
containing mass concentration of 0, 1.25, 2.5, 5, 10, 20, 40, and 80 g/L NaCl. Each isolate
was incubated at 28 ◦C for 36 h with three replicates. The growth diameters of mycelia on
medium with different concentrations of NaCl were measured by the cross method [21].

2.6. Determination of Cell Membrane Permeability

The cell membrane relative permeability rate for tebuconazole-sensitive or resistant
isolates was evaluated according to the described method [25] with some modifications. The
activated mycelia were respectively inserted into the PDB medium, and shaken (120 r/min)
for 3 d; then, the fresh mycelium was collected, and later washed with double-distilled
sterile water and vacuum filtered. Then, 0.5 g of the fresh weight was put into a conical
triangular flask, consisting of 0, 0.5, 1.0, 5.0, and 25.0 µg/mL tebuconazole diluted with
double distilled sterile water. After shaking (120 r/min) in a constant temperature water
bath at 28 ◦C for 0, 5, 10, 15, 30, 60, 90, 120, 180, 240, 300, 360, 420, and 540 min, the
conductivity was measured using a DDS-11A meter, and the boiled dead mycelium was
treated as a control. Each treatment was repeated 3 times.

2.7. Clone of CYP51 Gene from R. solani Isolates

Genomic DNA from mycelium of R. solani isolates were extracted using the EasyPure
Plant Genomic DNA Kit (TransGen Biotech, Beijing, China) according to the manufacturer’s
recommendations [26]. The PCR primers (Table S2), based on the genome of R. solani, were
used to amplify the CYP51 gene fragment of the tebuconazole-sensitive or resistant isolates.
I-5TM 2 × High Fidelity Master Mix DNA Polymerase (Molecular Cloning Laboratories,
Beijing, China) was used in the PCR. PCR was conducted with a PCR cycle of 98 ◦C
for 3 min, 39 cycles of 98 ◦C for 10 s, 55 ◦C for 15 s, and 72 ◦C for 20 s, ending with an
extension at 72 ◦C for 5 min. PCR products were sequenced (Qingke Biotechnology Co., Ltd.,
Beijing, China), and the gene sequences of the isolates were measured and analyzed with
ClustalX2 software, while the alignment results were visualized with ESPript 3.x software
(https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi, accessed on 7 September 2022).

2.8. Functional Domain and Structural Analysis of CYP51 Gene

The protein sequences of related fungal CYP51 were downloaded from the NCBI (https:
//www.ncbi.nlm.nih.gov/, accessed on 7 September 2022), the conservative functional
domains of CYP51 were retrieved by the motif-search (https://www.genome.jp/tools/
motif/, accessed on 7 September 2022) and MEME (https://meme-suite.org/meme/tools/
meme, accessed on 7 September 2022), while the evolutionary tree was constructed with
MEGA7.0 software by the maximum likelihood (ML) method [27]. The results were
visualized with TBtools software.

Three-dimensional structural modeling of CYP51 from tebuconazole-sensitive isolate
was performed by the I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER, ac-
cessed on 7 September 2022), while the three-dimensional structure model of different
mutants was built though the Swiss-Model software (https://swissmodel.expasy.org/,
accessed on 7 September 2022) with CYP51 model of tebuconazole-sensitive isolate as the
template; the tebuconazole structure was downloaded from the PubChem. The binding
model and affinity between tebuconazole and the different CYP51 proteins was evaluated
using Discovery Studio [28].

2.9. Statistical Analysis

The EC50 values for each isolate, cell membrane relative permeability rate, and
mycelia growth diameter were compared using analysis of variance (ANOVA) followed
by Student’s t-test for multiple comparisons (p < 0.05) with the SPSS version 17.0 software
package (IBM).

https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.genome.jp/tools/motif/
https://www.genome.jp/tools/motif/
https://meme-suite.org/meme/tools/meme
https://meme-suite.org/meme/tools/meme
http://zhanglab.ccmb.med.umich.edu/I-TASSER
https://swissmodel.expasy.org/
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3. Results
3.1. Resistance Frequency of R. solani in Sichuan Province

The results of resistance frequency for all 122 R. solani isolates showed that the re-
sistance frequency to thifluzamide, hexaconazole, tebuconazole, and epoxiconazole was
65.57%, 45.08%, 47.54%, and 36.07%, respectively (Table 1). The resistance frequency of
R. solani in different areas was also different, and the resistance frequency of hexaconazole
reached up to 100% in Chengdu Dayi (Table 1). According to the inhibition rate of different
isolates to different fungicides, the relationship between tebuconazole and epoxiconazole
was higher than that with thifluzamide (Figure 1).

Table 1. The frequency of resistance to R. solani isolates in Sichuan Province.

Sampling
Sites

Thifluzamide Hexaconazole Tebuconazole Epoxiconazole

R S Res-
Frequency R S Res-

Frequency R S Res-
Frequency R S Res-

Frequency

CDCZ 11 8 57.89% 18 1 94.74% 11 8 57.89% 13 6 68.42%
CDDY 2 1 66.67% 3 0 100.00% 1 2 33.33% 1 2 33.33%
CDPX 3 5 37.50% 2 6 25.00% 0 8 0.00% 3 5 37.50%
MSRS 30 10 75.00% 8 32 20.00% 7 33 17.50% 7 33 17.50%
ZGRX 28 11 71.79% 18 21 46.15% 28 11 71.79% 14 25 35.90%
LZHJ 4 4 50.00% 6 2 75.00% 7 1 87.50% 5 3 20.83%
NJLC 2 3 40.00% 0 5 0.00% 4 1 80.00% 1 4 20.00%
Total 80 42 65.57% 55 67 45.08% 58 64 47.54% 44 78 36.07%

R: Resistant isolates; S: Susceptible isolates; Res-frequency: resistance frequency.
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3.2. Sensitivity Baseline of R. solani to Four Test Fungicides

The measurement results of sensitivity to these four test fungicides of 10 repre-
sentative isolates indicated that the EC50 values to thifluzamide ranged from 0.03 to
0.05 µg/mL, and the average EC50 value was 0.042 µg/mL, among which the EC50
values of MSRS-2-17, ZGRX-2-19, CDDY1-2, and ZGRX-3-1 were 0.05 µg/mL, those of
CDPX-1-7, ZGRX-2-13, MSRS-2-3, and ZGRX-1-3 were 0.04 µg/mL, and those of the rest
representative isolates were 0.03 µg/mL. The range of EC50 values to hexaconazole was
from 0.02 to 0.07 µg/mL, their average EC50 value reached 0.051 µg/mL, and the EC50
values of four representative isolates were 0.06 µg/mL; the most susceptible isolate was
MSRS-3-13 with a 0.02 µg/mL EC50. The scope of the EC50 values to tebuconazole was
0.02–0.23 µg/mL, possessing an average EC50 of 0.109 µg/mL, among which the least
susceptible isolate was MSRS-2-13, achieving 11.5-fold that of MSRS-3-16 (0.02 µg/mL
EC50). The range of EC50 to epoxiconazole was 0.03–0.15 µg/mL, and the average EC50
value was 0.100 µg/mL, among which the least susceptible isolate was 5.0 times the
most susceptible isolate (Table 2).

Table 2. Determination of sensitivity baseline of R. solani isolates to four tested fungicides.

Test Fungicides No. of Isolates Regression Equation EC50
(µg/mL)

95% Confidence
Interval Correlation Index

Thifluzamide

CDPX-1-7 Y = 5.8483 + 0.6012 X 0.04 (0.02–0.09) 0.9656
ZGRX-2-13 Y = 6.0421 + 0.7504 X 0.04 (0.02–0.07) 0.9877
MSRS-2-17 Y = 5.8319 + 0.6303 X 0.05 (0.03–0.09) 0.9625
CDPX-1-3 Y = 5.9502 + 0.6050 X 0.03 (0.01–0.07) 0.9583

ZGRX-2-19 Y = 6.2788 + 0.8061 X 0.05 (0.01–0.06) 0.9665
CDPX-1-7 Y = 6.4815 + 0.9369 X 0.03 (0.01–0.05) 0.9715
CDDY1-2 Y = 6.2350 + 0.9628 X 0.05 (0.03–0.08) 0.9844
MSRS-2-3 Y = 5.8892 + 0.6085 X 0.04 (0.02–0.09) 0.9825
ZGRX-3-1 Y = 5.8052 + 0.6085 X 0.05 (0.02–0.09) 0.9706
ZGRX-1-3 Y = 6.5188 + 1.0734 X 0.04 (0.03–0.06) 0.9370

Hexaconazole

ZGRX-3-1 Y = 5.9980 + 0.8225 X 0.06 (0.04–0.09) 0.9998
ZGRX-2-3 Y = 6.7999 + 1.4116 X 0.05 (0.04–0.07) 0.9882
MSRS-3-13 Y = 6.6624 + 1.0217 X 0.02 (0.01–0.04) 0.9876
MSRS-2-12 Y = 6.7086 + 1.1962 X 0.04 (0.03–0.06) 0.9988
MSRS-3-6 Y = 6.6118 + 1.1475 X 0.04 (0.03–0.06) 0.9977

MSRS-3-16 Y = 6.7126 + 1.3524 X 0.05 (0.04–0.08) 0.9517
MSRS-2-6 Y = 6.9664 + 1.7276 X 0.07 (0.05–0.10) 0.9672

MSRS-3-17 Y = 6.7536 + 1.4386 X 0.06 (0.04–0.09) 0.9947
ZGRX-3-2 Y = 5.9080 + 0.7256 X 0.06 (0.03–0.12) 0.9886
ZGRX-2-19 Y = 6.1238 + 0.9151 X 0.06 (0.03–0.11) 0.9926

Tebuconazole

CDCZ-1-15 Y = 5.5328 + 0.6969 X 0.17 (0.12–0.26) 0.9912
ZGRX-2-3 Y = 5.6929 + 0.7746 X 0.13 (0.09–0.19) 0.9878

CDCZ-1-10 Y = 5.5518 + 0.6825 X 0.16 (0.10–0.24) 0.9852
MSRS-3-16 Y = 7.2183 + 1.3364 X 0.02 (0.01–0.06) 0.9739
MSRS-3-10 Y = 7.2672 + 1.8764 X 0.06 (0.05–0.08) 0.9963
CDPX-1-7 Y = 6.5625 + 1.3526 X 0.07 (0.05–0.10) 0.9850
MSRS-3-13 Y = 7.3102 + 1.8224 X 0.05 (0.04–0.08) 0.9684
CDPX-1-6 Y = 6.4646 + 1.4190 X 0.09 (0.07–0.12) 0.9947
CDCZ-1-6 Y = 5.9860 + 0.7552 X 0.05 (0.03–0.09) 0.9683
MSRS-2-13 Y = 5.5530 + 0.8550 X 0.23 (0.16–0.31) 0.9893
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Table 2. Cont.

Test Fungicides No. of Isolates Regression Equation EC50
(µg/mL)

95% Confidence
Interval Correlation Index

Epoxiconazole

MSRS-2-13 Y = 7.0486 + 1.3978 X 0.03 (0.02–0.05) 0.9839
MSRS-2-12 Y = 6.0911 + 0.8262 X 0.05 (0.03–0.08) 0.9725
MSRS-2-6 Y = 5.9836 + 0.8701 X 0.07 (0.05–0.11) 0.9132
MSRS-2-17 Y = 5.9911 + 1.1652 X 0.14 (0.10–0.19) 0.9826
MSRS-3-10 Y = 6.0264 + 0.9587 X 0.08 (0.05–0.13) 0.9878
MSRS-3-13 Y = 6.1238 + 0.8946 X 0.06 (0.04–0.08) 0.9768
ZGRX-1-3 Y = 6.0133 + 1.1836 X 0.14 (0.11–0.18) 0.9971
ZGRX-1-1 Y = 5.9971 + 1.2023 X 0.15 (0.09–0.24) 0.9951
CDCZ-1-9 Y = 5.8796 + 1.0372 X 0.14 (0.09–0.23) 0.9829
CDDY1-2 Y = 5.7995 + 0.9206 X 0.14 (0.08–0.24) 0.9826

3.3. Resistance Levels of R. solani Isolates to Four Fungicides

The results of resistance levels of four fungicides showed that the EC50 values of
R. solani isolates against thifluzamide were distributed between 0.15 and 0.69 µg/mL, and
their resistance ratio (RR) reached 1.43–16.43-fold compared with its sensitive baseline.
Most reached sensitive or low resistant levels, apart from MSRS-2-7 with a moderate
resistance to thifluzamide isolates (16.43-fold RR); and based on the sensitive baseline
of hexaconazole, all isolates showed sensitivity levels with RR values of 2.0- to 4.5-fold,
whose EC50 values ranged from 0.12 to 0.18 µg/mL. According to the sensitive baseline
of tebuconazole, whereas many isolates having moderate or high-level resistance were
observed (10.59- to 60.78-fold RR), and their EC50 values ranged from 0.54 and 3.1 µg/mL,
in which the highest resistance levels were for MSRS-1-3 and LZHJ-1-8, reaching 52.16- and
60.78-fold, respectively. Furthermore, compared to the sensitivity baseline of epoxiconazole,
the RR values of the representative resistant isolates were 1.90- to 35.40-fold, and their EC50
values were distributed in the range 0.14–3.54 µg/mL. Most retained a sensitive level, in
addition to the moderate resistance LZHJ-1-8, which also displayed high level resistance to
tebuconazole, of 35.40-fold (Table 3).

Table 3. Determination of resistance levels of R. solani isolates to four tested fungicides.

Test
Fungicides

No. of
Isolates

Regression
Equation

EC50
(µg/mL)

95% Confidence
Interval

Correlation
Index

Resistance
Fold

Thifluzamide

MSRS-2-7 Y = 5.1309 + 0.8174 X 0.69 (0.30–1.59) 0.9825 16.43
CDCZ-1-7 Y = 5.5432 + 1.0143 X 0.29 (0.16–0.53) 0.9783 6.90
CDPX-1-3 Y = 5.6393 + 0.7784 X 0.15 (0.09–0.25) 0.9493 3.57
ZGRX-2-1 Y = 6.1624 + 1.1256 X 0.09 (0.07–0.12) 0.9557 2.14
MSRS-3-6 Y = 5.6066 + 0.5882 X 0.09 (0.05–0.18) 0.8505 2.14
MSRS-3-13 Y = 6.7033 + 1.5839 X 0.08 (0.05–0.13) 0.9441 1.90
ZGRX-2-20 Y = 6.3143 + 1.1751 X 0.08 (0.05–0.12) 0.9937 1.90
ZGRX-2-4 Y = 5.7924 + 0.6502 X 0.06 (0.03–0.11) 0.9330 1.43
ZGRX-3-4 Y = 5.1309 + 0.8714 X 0.07 (0.30–1.59) 0.9825 1.67
LZHJ-1-3 Y = 7.9279 + 2.4365 X 0.06 (0.05–0.08) 0.8846 1.43
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Table 3. Cont.

Test
Fungicides

No. of
Isolates

Regression
Equation

EC50
(µg/mL)

95% Confidence
Interval

Correlation
Index

Resistance
Fold

Hexaconazole

CDPX-1-5 Y = 5.9542 + 1.2631 X 0.18 (0.11–0.28) 0.9333 4.50
MSRS-2-8 Y = 6.0407 + 1.1371 X 0.12 (0.08–0.18) 0.9880 3.00

CDCZ-1-16 Y = 6.2837 + 1.7042 X 0.18 (0.14–0.22) 0.9693 4.50
CDPX-1-3 Y = 6.0707 + 1.2022 X 0.13 (0.09–0.18) 0.9847 3.25
MSRS-2-20 Y = 5.7696 + 0.9057 X 0.14 (0.09–0.22) 0.9877 3.50
CDCZ-1-19 Y = 6.2636 + 1.6420 X 0.17 (0.13–0.22) 0.9783 4.25
ZGRX-1-1 Y = 6.2531 + 1.5260 X 0.15 (0.11–0.21) 0.9709 3.75

CDCZ-1-18 Y = 6.5664 + 1.8577 X 0.14 (0.11–0.19) 0.9893 3.50
CDPX-1-4 Y = 5.8777 + 0.8436 X 0.09 (0.05–0.16) 0.9277 2.25
MSRS-2-11 Y = 5.8841 + 0.8176 X 0.08 (0.04–0.16) 0.9984 2.00

Tebuconazole

LZHJ-1-4 Y = 5.1587 + 1.1307 X 0.72 (0.54–0.97) 0.9715 14.12
ZGRX-3-4 Y = 4.8774 + 0.9424 X 1.35 (0.96–1.90) 0.9563 26.47
MSRS-1-3 Y = 4.5709 + 1.0107 X 2.66 (1.64–4.30) 0.9679 52.16
LZHJ-1-2 Y = 5.2758 + 1.1849 X 0.59 (0.43–0.80) 0.9887 11.57

MSRS-2-11 Y = 4.9065 + 1.1902 X 1.20 (0.89–1.61) 0.9717 23.53
CDCZ-1-19 Y = 5.2303 + 0.9686 X 0.58 (0.38–0.87) 0.9811 11.37
CDCZ-1-9 Y = 4.9063 + 0.9036 X 1.27 (0.88–1.83) 0.9795 24.90
CDCZ-1-7 Y = 5.1560 + 0.5903 X 0.54 (0.28–1.05) 0.9798 10.59
MSRS-2-17 Y = 4.7848 + 1.3253 X 1.45 (1.09–1.94) 0.9878 28.43
LZHJ-1-8 Y = 4.2535 + 1.5181 X 3.10 (1.99–4.84) 0.9996 60.78

Epoxiconazole

MSRS-2-11 Y = 6.1163 + 1.7336 X 0.23 (0.15–0.34) 0.9971 2.30
MSRS-2-17 Y = 5.9897 + 1.6367 X 0.25 (0.19–0.33) 0.9982 2.50
ZGRX-2-20 Y = 5.6710 + 1.0176 X 0.22 (0.14–0.33) 0.9866 2.20
MSRS-2-8 Y = 5.6199 + 1.4031 X 0.36 (0.28–0.46) 0.9839 3.60
CDPX-1-3 Y = 5.8153 + 1.4081 X 0.26 (0.20–0.34) 0.9954 2.60
LZHJ-1-3 Y = 5.9860 + 1.5160 X 0.22 (0.17–0.30) 0.9821 2.20
ZGRX-3-4 Y = 5.3441 + 0.8510 X 0.39 (0.22–0.72) 0.9431 3.90
MSRS-2-7 Y = 5.5624 + 0.9933 X 0.27 (0.17–0.43) 0.9923 2.70
LZHJ-1-8 Y = 4.4986 + 0.9143 X 3.54 (1.33–9.38) 0.9804 35.40

MSRS-3-16 Y = 5.6143 + 0.8581 X 0.19 (0.12–0.30) 0.9619 1.90

3.4. Fitness of Tebuconazole-Resistant Isolates

On PDA medium with the different concentrations of glucose, the mycelia growth
trend of tebuconazole-sensitive and resistant isolates was basically same, and their
mycelia diameters decreased with the increase in glucose concentration. The mycelia
growth diameters of tebuconazole-resistant isolates (31–69 mm) were always smaller
than those of the tebuconazole-sensitive isolates (39–80 mm). However, when the
glucose concentration was increased from 4% to 8%, the decreased magnitudes of
the tebuconazole-resistant isolates ZGRX-3-4, MSRS-2-17, MSRS-1-3, and LZHJ-1-8
(13.67, 8.17, 5.17, and 12.00 mm, respectively) were significantly lower than those of
tebuconazole-sensitive isolates MSRS-3-16, ZGRX-2-3, CDCZ-1-15, and CDCZ-1-7 (18.67,
17.08, 16.25, and 19.50 mm, respectively), which indicates that the tebuconazole-sensitive
isolates were more sensitive to osmotic stress than those in the tebuconazole-resistant
isolates (Figure 2A).
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At low concentrations of NaCl (0~1.25 g/L), all the mycelia growth diameters of the
tebuconazole-sensitive (84–88 mm) and -resistant isolates (57–72 mm) improved with
the increase in NaCl concentration; and within the concentration range of 1.25–5 g/L,
the mycelia growth diameter of tebuconazole-sensitive isolates (72–85 mm) decreased.
This was not consistent with those of tebuconazole-resistant isolates, for which the
mycelia growth diameter was increased from 62 to 74 mm. At high concentrations of
NaCl that exceeded 5 g/L, all the mycelia growth diameters of tebuconazole-sensitive
(8–68 mm) and -resistant isolates (6–58 mm) decreased with the increase in NaCl con-
centration; until the NaCl concentration was more than 40 g/L, all the isolates could
not grow up (Figure 2B). Although mycelia growth diameters of tebuconazole-resistant
isolates were always smaller than those of the tebuconazole-sensitive isolates when the
NaCl concentration exceeded 1.25 g/L, the reduction magnitudes of the tebuconazole-
resistant isolates (57.83, 66.83, 67.17, and 61.00 mm, respectively) were lower than those
of tebuconazole-sensitive isolates (81.00, 79.17, 83.00, and 82.33 mm, respectively), and
their difference was extremely significant (p = 0.000 < 0.01). This indicates that the
tebuconazole-sensitive isolates were more sensitive to osmotic stress (Figure 2B).
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Figure 2. Fitness determination of tebuconazole-susceptible and -resistant isolates on PDA medium
with different concentrations of glucose (A) or NaCl (B). Red or green indicates high or medium
resistance to tebuconazole, respectively; black or white indicates tebuconazole-susceptible isolates.
The F7,23 values of the colony diameters of the different isolates on the PDA with 1% glucose,
2% glucose, 4% glucose, and 8% glucose were 114.368, 11.767, 1.072, and 32.483; the p values
were = 0.000 < 0.0001, = 0.000 < 0.01, = 0.426 > 0.05, and = 0.000 < 0.01, respectively. The F7,23 values
of the colony diameters of the different isolates on the PDA with 0, 1.25, 2.5, 5, 10, 20, 40, and 80 g/L
NaCl were 83.665, 110.603, 12.916, 37.355, 23.083, 36.933, and 15.752, respectively; the p values all
were = 0.000 < 0.0001.
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3.5. Cell Membrane Permeability

The relative electric conductivity of all isolates gradually increased with the promoted
concentration of tebuconazole (0, 0.5, 1.0, 5.0, 25.0 µg/mL) and treatment time duration.
In addition, the relative electric conductivity of all isolates increased significantly within
60 min, and tended to be stable after 240 min. Even though the relative electric conductivity
values of tebuconazole-resistant isolates ZGRX-3-4, MXRS-1-3, and LZHJ-1-8 (21.32–29.48%)
were generally higher than those of tebuconazole-sensitive isolates (16.62–23.46%) after
240 min of the exposure time under different concentrations of tebuconazole, the change
values of relative conductivity of highly tebuconazole-resistant isolates MXRS-1-3 (24.12% to
29.25%) and LZHJ-1-8 (25.49% to 29.48%) were smaller than those of tebuconazole-sensitive
isolates MSRS-3-16 (15.13% to 23.40%) and ZGRX-2-3 (17.15% to 23.46%); in particular,
LZHJ-1-8 showed a minimal change (3.99%) when the concentration of tebuconazole
increased from 0 to 25 µg/mL (Figure 3).

Curr. Issues Mol. Biol. 2022, 2, FOR PEER REVIEW 10 
 

 

electric conductivity values of tebuconazole-resistant isolates ZGRX-3-4, MXRS-1-3, and 

LZHJ-1-8 (21.32–29.48%) were generally higher than those of tebuconazole-sensitive iso-

lates (16.62–23.46%) after 240 min of the exposure time under different concentrations of 

tebuconazole, the change values of relative conductivity of highly tebuconazole-resistant 

isolates MXRS-1-3 (24.12% to 29.25%) and LZHJ-1-8 (25.49% to 29.48%) were smaller than 

those of tebuconazole-sensitive isolates MSRS-3-16 (15.13% to 23.40%) and ZGRX-2-3 

(17.15% to 23.46%); in particular, LZHJ-1-8 showed a minimal change (3.99%) when the 

concentration of tebuconazole increased from 0 to 25 μg/mL (Figure 3). 

 

Figure 3. The relative electric conductivity of tebuconazole-resistant and -susceptible isolates ex-

posed to varying concentrations of tebuconazole. Bars denote the standard deviation of two ex-

periments: (A–C) represent tebuconazole-susceptible isolates MSRS-3-16, ZGRX-2-3, and 

CDCZ-1-15; (D–F) represent tebuconazole-resistant isolates ZGRX-3-4, MXRS-1-3, and LZHJ-1-8. 

3.6. Functional Domain Analysis of Sterol 14α-Demethylase (CYP51) 

The CYP51 of all selected species, except for Coniophora puteana and Stereum hirsu-

tum, contained motif5, motif1, and motif6 domains in series using the Meme-search. 

Furthermore, there was no other domain between motif5 and motif1, which were com-

posed of 50 amino acid residues; motif6 was composed of 36 amino acid residues and 

possessed absolutely conserved amino acid residues (EXLR, a helix K motif); and the 

heme-binding signature motif (PFxxGxxxCxG) was located in motif3 which was behind 

motif6 (Figures 4 and S1). According to the evolutionary tree and gene structure diagram, 

R. solani CYP51 had high homology with Heliocybe sulcate, Gloeophyllum trabeum, Fomiti-

poria mediterranea, and Sanghuangporus baumii, showing a similar gene structure (Figure 

4). 

Figure 3. The relative electric conductivity of tebuconazole-resistant and -susceptible isolates exposed
to varying concentrations of tebuconazole. Bars denote the standard deviation of two experiments:
(A–C) represent tebuconazole-susceptible isolates MSRS-3-16, ZGRX-2-3, and CDCZ-1-15; (D–F)
represent tebuconazole-resistant isolates ZGRX-3-4, MXRS-1-3, and LZHJ-1-8.

3.6. Functional Domain Analysis of Sterol 14α-Demethylase (CYP51)

The CYP51 of all selected species, except for Coniophora puteana and Stereum hir-
sutum, contained motif5, motif1, and motif6 domains in series using the Meme-search.
Furthermore, there was no other domain between motif5 and motif1, which were com-
posed of 50 amino acid residues; motif6 was composed of 36 amino acid residues and
possessed absolutely conserved amino acid residues (EXLR, a helix K motif); and the
heme-binding signature motif (PFxxGxxxCxG) was located in motif3 which was behind
motif6 (Figures 4 and S1). According to the evolutionary tree and gene structure dia-
gram, R. solani CYP51 had high homology with Heliocybe sulcate, Gloeophyllum trabeum,
Fomitiporia mediterranea, and Sanghuangporus baumii, showing a similar gene structure
(Figure 4).
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3.7. Detection of CYP51 Mutation of Tebuconazole-Susceptible and -Resistant Isolates

After sequencing, there were three resistant isolates (ZGRX-3-4, MSRS-2-17, MSRS-1-3)
which had three mutated positions, S94A, N406S, and H793R, respectively. In another
resistant isolate LZHJ-1-8, apart from S (serine) to A (alanine) at position 94, N (aspartic
acid) to S (serine) at position 406, L (leucine) to P (proline) at position 750, and another
mutation, H (histidine) to R (arginine) at position 793 were identified (Table 4 and Figure 5).
All mutations of S94A, N406S, L750P, and H793R were in the irregular coils of the CYP51
protein (Figure 5).

Table 4. Statistics of point mutation information in CYP51 gene.

Isolate Type Code Resistant Type Mutational Type

Susceptible isolate

MSRS-3-16 - -
ZGRX-2-3 - -

CDCZ-1-15 - -
CDCZ-1-7 - -

Resistant isolate

ZGRX-3-4 MR S94A, N406S, H793R
MSRS-2-17 MR S94A, N406S, H793R
MSRS-1-3 HR S94A, N406S, H793R
LZHJ-1-8 HR S94A, N406S, L750P, H793R

3.8. Effects of Mutations on the Affinity of CYP51 Protein and Tebuconazole

In the interaction models of CYP51 and tebuconazole (Figure 6), the binding energy of
CYP51 and tebuconazole in the sensitive isolate (−50.9646 kcal/mol) was significantly less
than that in the CYP51S94A,N406S,H793R (−43.1264 kcal/mol) and CYP51S94A,N406S,L750P,H793R

(−37.5769 kcal/mol). In the interaction models of CYP51 with the sensitive isolate, a total of
11 amino acid residues had van der Waals forces with tebuconazole, such as PHE239, ILE498,
etc. The TYR177, TYR231, TYR245, PHE345, PHE350, and ILE494 of CYP51 formed seven hy-
drophobic bindings of Pi-Alkyl with it. In the interaction models of CYP51S94A,N406S,H793R,
there were eight amino acid residues having van der Waals forces with tebuconazole,
TYR231, LEU234, TYR245, ALA425, ILE494, and ILE497, which produced seven hydropho-
bic bindings of Pi-Alkyl or Alkyl. More amino acid residues (14) had van der Waals forces
with tebuconazole in the interaction models of CYP51S94A,N406S,L750P,H793R, but only HIS640,
ALA644, TYR231, and ILE494 generated five hydrophobic bindings of Pi-Alkyl or Alkyl,
and its PHE345 formed a Pi-Pi T-shaped interaction.
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Figure 6. The interaction models for the CYP51-tebuconazole complex: (A,D) the interac-
tion models of CYP51 and tebuconazole in the susceptible isolates, respectively; (B,E) those of
CYP51S94A,N406S,H793R and tebuconazole, respectively; (C,F) those of CYP51 S94A,N406S,L750P,H793R and
tebuconazole, respectively.

4. Discussion

Fungicide applications have been commonly used for the control of R. solani in China.
However, the irrational and frequent usage of fungicide has caused a more serious problem:
the proliferation of resistance genes [29]. There have been many reports about the resistance
to different types of fungicides in R. solani, such as QoI fungicides [4]; however, little is
known about the resistance to SDHI and DMI fungicides [9]. Our results showed that the
EC50 values of the sensitive isolates were 0.03–0.05 µg/mL, consistent with the findings
of Chen et al. (2012) [7], and the resistance levels of most resistant isolates were less than
5-fold, in addition to MSRS-2-7. At the same time, we also found that almost all the screened
tebuconazole-resistant isolates reached the moderate level of resistance, especially LZHJ-1-8
isolate, which was not only highly resistant to tebuconazole, but also highly resistant to
epoxiconazole. Resistance to DMI fungicide in many plant pathogens is of a quantitative
nature characterized by slow shifts in sensitivity toward resistance [30].

Tebuconazole and epoxiconazole belong to DMI fungicides, which have been proven
to bind with the heme part of CYP51 and inhibit demethylation of 24-methylenedihydro-
lanosterol, a precursor of the cell membrane component ergosterol [31,32]. These are able
to disrupt the cell membranes, causing an increase in relative electric conductivity [33].
Our results found that the relative electric conductivity of both tebuconazole-resistant and
-sensitive isolates showed a significant increase tendency after tebuconazole treatment;
meanwhile, we also found that although the tebuconazole-resistant isolates had an in-
creased ability to tolerate tebuconazole and high osmotic pressure, their growth rate and
relative electric conductivity with low sugar or tebuconazole were inferior to those of the
sensitive strains, showing a fitness cost. Shao et al. (2015) [34] found that the laboratory-
induced fluazinam-resistant mutants of B. cinerea were more sensitive to the osmotic stress
than their fluazinam-sensitive parental isolates. Karaoglanidis et al. (2011) [35] found
that the resistance to tebuconazole isolates had a significant adverse effect on the mycelial
growth rate and pathogenicity.
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We speculated that the resistance to DMI fungicides and its fitness cost is due to the
pleiotropy caused by the mutation of the target CYP51 [36]. Some CYP51 mutations re-
duce the affinity between the target protein and pesticide, which is one of the important
factors leading to the production of resistance [37], and may also affect fungal sterol syn-
thesis and, thus, its fitness [38]. Our CYP51 mutation detection results showed that all the
screened tebuconazole-resistant isolates had site mutations, while CYP51S94A,N406S,H793R

mutations were the main resistant population types. Pereira et al. [39] found that the
resistance to tebuconazole had a significant linear correlation with the G461S mutation
frequency. Stammler et.al (2012) [40] indicated that some mutations in CYP51 (e.g., mu-
tations A379G, I381V), were known to be an adaptive response to DMIs that had already
disappeared in Northern Europe. Other mutations in the CYP51 gene, e.g., G143A in
V136A, A379G, I381V, and mutations or deletions at the amino acid positions 459–462
of CYP51 in M. graminicola [41], Y134F in Puccinia triticina [42], Z. tritici [43], Y137H in
Fusarium graminearum [44] etc., were proven to be related with DMI fungicide resistance.
The K motif and heme-binding motif constituted the conserved domains characteristic
of P450 proteins [45]. Although S94A, N406S, L750P, and H793R were not located in
these motifs, six substrate recognition sites (SRS1-6) have been identified to contain the
amino acid residue S, N, or L [46]. Our results also showed that the binding energy
of CYP51 and tebuconazole in the sensitive isolate was significantly less than that of
CYP51S94A,N406S,H793R and CYP51S94A,N406S,L750P,H793R. Therefore, the point mutation on
the target gene CYP51 of tebuconazole was associated with the resistance of rice bacterial
strain to tebuconazole. In the next step, we will use site-directed mutagenesis to edit
CYP51 of R. solani to verify the relationship between these mutations and resistance,
and to explore the mechanism by which mutations lead to changes in the fitness cost
and resistance.

5. Conclusions

The resistance frequency results of 122 R. solani isolates by MIC showed that the
resistance frequency for several fungicides was different, and the resistance frequency of
tebuconazole reached 47.54%. Furthermore, a moderate resistance to thifluzamide was
identified in isolate MSRS-2-7, whereas most isolates were sensitive to hexaconazole or
epoxiconazole. In addition, a highly tebuconazole-resistant isolate LZHJ-1-8 displayed
a moderate resistance to epoxiconazole, and the screened tebuconazole-resistant isolates
showed a moderate or high resistance to tebuconazole. The tebuconazole-resistant iso-
lates showed higher fitness costs with a lower growth rate and higher relative electric
conductivity, demonstrating an increased ability to tolerate tebuconazole and high osmotic
pressure. CYP51 mutation results showed that the tebuconazole-resistant isolates retained
S94A, N406S, and H793R mutations, while LZHJ-1-8 possessed another mutation, L750P,
which supported the lowest binding energy with tebuconazole. These results suggest
that S94A, N406S, L750P, and H793R mutations of CYP51 may be linked to the resistance
to tebuconazole.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cimb44100330/s1, Figure S1: Meme diagram of sterol sterol
14α-demethylase from different species; Table S1: The source, quantity and number of all R. solani
isolates; Table S2: Primers for CYP51 cloning.
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