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ABSTRACT
Background. Birth delivery method and breastfeeding practices contribute to micro-
biota colonization. Other factors including diet and demographic factors structure
the gut microbiome assembly and diversity through childhood development. The
exploration of these factors, especially in Southeast Asian children, remains limited.
Methods. We investigated the fecal microbiota of 127 school-aged children in Thailand
using quantitative PCR (qPCR) to assess the influence of diet and demographic factors
on the gut microbiota. Multivariate analysis (multiple factor analysis (MFA) and
Partial Least Squares Discriminant Analysis (PLS-DA)) were used to link particular
gut microbes to diet and demographic factors.
Results. Diet and demographic factors were associated with variation among gut mi-
crobiota. The abundance ofGammaproteobacteria increased in childrenwith infrequent
intake of high fat foods. Obese children possessed a lower level of Firmicutes and
Ruminococcus. Bifidobacterium was enriched in pre-teen aged children and detected at
lower levels among formula-fed children.Prevotellawasmore abundant in childrenwho
were delivered vaginally. While ethnicity explained a small amount of variation in the
gutmicrobiota, it nonetheless was found to be significantly associated withmicrobiome
composition.
Conclusions. Exogenous and demographic factors associate with, and possibly drive,
the assembly of the gut microbiome of an understudied population of school-aged
children in Thailand.

Subjects Microbiology, Molecular Biology, Gastroenterology and Hepatology, Nutrition,
Pediatrics
Keywords School-aged children, Fecal microbiota, Quantitative PCR, Thai, Dietary behaviors

INTRODUCTION
Microbial colonization of the gut starts upon birth, and the composition of the microbiota
community diversifies throughout childhood. Proteobacteria and Actinobacteria dominate
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the gut microbiome early in life (Zhuang et al., 2019). As infants develop, their gut
microbiota community becomes more complex and, at two to three years of age, its
structure and composition begins to more closely resemble that of adults (Rodríguez et al.,
2019). Shifts in the microbiota composition occur during this process and are influenced by
mode of delivery, feeding type, and diet (Martin et al., 2016; Rutayisire et al., 2016; Iddrisu
et al., 2021).

Early in life, the assembly of the gut microbiome highly depends on delivery mode and
feeding practices (Li et al., 2020;Mitchell et al., 2020;Coker et al., 2021). Themicrobiome of
infants born vaginally are more enriched in Bifidobacterium and/or Bacteroides compared
with those infants delivered by cesarean section (Yang et al., 2019; Reyman et al., 2019;
Niu et al., 2020). Over time, the association between gut microbiota and mode of delivery
weakens (Rutayisire et al., 2016). Nonetheless, differences in the abundance of microbiota
between children of differentmodes of delivery persists in school-aged children (Salminen et
al., 2004). Bifidobacterium dominates the gut of infants receiving breast milk as compared
to formula fed children (Van den Elsen et al., 2019; Lawson et al., 2020). The impact of
breastfeeding duration persists later in life (Zhong et al., 2019). This suggests that delivery
mode and feeding type could have a long-term impact on the diversity of one’s gut
microbiome.

Additional host-related factors such as ethnicity, age, and body mass index (BMI)
contribute to alterations of gut microbiota. Geographical factors and ethnicity significantly
affect gut microbiota profiles of school-aged children at the genus level (Liu et al.,
2020). Although many studies have already monitored compositional changes in the gut
microbiota depending on one’s age (e.g., comparing between childhood and adulthood)
(Derrien, Alvarez & De Vos, 2019), data onmicrobiota profiles among school-aged children
remains limited (Odamaki et al., 2016). Variation in the microbiome among children has
also been linked to BMI (Bervoets et al., 2013; Da Silva, Monteil & Davis, 2020; Shin & Cho,
2020). These changes have been associated with diets which are precursors to weight gain
and shape the gut microbiome (Voreades, Kozil & Weir, 2014; Cho, 2021).

Diet can shape the human gut microbiota (Singh et al., 2017; Zmora, Suez & Elinav,
2019). In children, diet explains most of the variation in gut microbiota profiles between
countries or continents (De Filippo et al., 2010; Nakayama et al., 2015) as already observed
in adults (Yasir et al., 2015; Escobar et al., 2015; Ghosh et al., 2020). Moving away from
traditional diets with a high concentration of fiber, fruits and vegetables towards a Western
diet rich in animal protein, fat and sugar is a cause of concern as high fat diets have
been shown to disrupt the balance of gut microbiota in animal models (Kim et al., 2012).
This effect has also been observed in humans where a decrease in the abundance of
butyrate-producing bacteria has been noted in populations consuming higher-fat diets
(Wan et al., 2019). Recently, Southeast Asian populations have begun to adopt theWestern
diet (Ooraikul, Sirichote & Siripongvutikorn, 2008). However, only a few studies have
investigated the effects of this dietary pattern on the gut microbiota of young Southeast
Asians (Nakayama et al., 2017; Golloso-Gubat et al., 2020).

This study is the first to examine the impact of diet and demographic factors (gender,
age, BMI z-score, birth records, feeding type, and ethnicity) on the gut microbiota of
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school-aged children in Thailand. Multivariate analyses were implemented to determine
the potential contribution of multiple factors on variations of microbiota profiles as well
as identifying most relevant features (microbiota taxa) for each host variable. Our results
provide a preliminary overview of the associations observed between the abundance of gut
microbiota and investigated factors in school-aged children from Thailand.

MATERIALS & METHODS
Ethics approval
All participants provided written informed consent (File S1) and the study was approved
by the Ethics committee of Mae Fah Luang University (Ethics Registry: REH-61204). The
study was conducted in accordance with the Declaration of Helsinki.

Study population and group definition
We recruited 127 children from Ban Huai Rai Samakee elementary school in Chiang Rai,
Thailand. The recruitment of subjects was conducted by voluntary participation through
the school’s administration. Parents provided informed consent prior to participation.
Demographic data collection included gender, age, weight, height, ethnicity, history of
birth delivery mode and feeding practice (representing the feeding mode in infancy)
(File S2). The child’s weight and height were measured by class instructors. Information
on birth delivery method and feeding type were collected through child self-report and/or
parental-report surveys. Body mass index (BMI) derived from the weight (kg) and height
(m2) ratio was converted into gender-specific z-scores for BMI-for-age according to BMI
cut-offs for children (5–19 years) set by World Health Organization (De Onis et al., 2007).
Z -scores for BMI-for-age were classified into 5 groups: severe thinness (SVThinness; <−3
SD; n= 1), thinness (≥−3 SD to <−2 SD; n= 5), normal weight (≥−2 SD to + ≤+1.0
SD; n= 83), overweight (OV; >+1SD to ≤+2SD; n= 20), and obese (OB; >+2 SD;
n= 18) (Fig. S1). Age groups were defined according to interquartile range (IQR: 25%,
50%, and 75%): age_A (≤ 8.05 years; n= 32), age_B (8.05 < years < 11.06; n= 61),
and age_C (≥ 11.06 years; n= 34). Five ethnic groups were recorded in this study: Akha
(n= 39), Chinese (n= 34), Lahu (n= 5), Thai (n= 19), and Thai Yai (n= 30). Birth
delivery mode comprised vaginal delivery (n= 85) and cesarean section (n= 42). Feeding
types were categorized into three groups: breastfeeding (n= 98), formula feeding (n= 20),
and mixed feeding (n= 9).

Dietary information
Dietary habits of children were surveyed using a Thai short dietary behaviors screener
developed by Let’s Get Healthy! for use in Thai (‘‘LGH20 Food Behaviors Screener, Thai’’;
OHSU Institutional Review Board protocol #3694). The screener included 20 questions
that grouped participants across five dietary behavior categories: Healthy eating behavior
(HEB), fruits and vegetables (FV), high sugar foods and beverages (HSFB), high salt
foods (HSF), and high fat foods (HFF) (File S3A). Answer options measuring frequency
of consumption were divided into four levels: Frequently (daily), sometimes (weekly),
infrequently (monthly), and never. The scores for HEB and FV were assigned as 3 (daily),
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2 (weekly), 1 (monthly), or 0 (never). The responses for HSFB, HSF, and HFF were
reverse scored. Total component scores (i.e., a sum score for each category) were divided
into quartiles to assign levels of risk (low, low to moderate, moderate to high, and high)
(Files S3B and S3C). Highest frequencies of HEB and FV consumption would be associated
with low risk, while high risk would characterize children eating mostly HSFB, HSF, and
HFF. The instrument screens general dietary behaviors, but does not provide a quantitative
assessment of portion size and frequency to permit quantification of a specific food or
nutrient intake. Instead, intake rankings permit categorization of individuals according to
overall dietary behaviors, such as healthy eating or high consumption of fatty foods.

Sample collection, DNA extraction, and quantitative PCR
Fecal samples were collected from all children in sterilized containers and immediately
frozen at −80 ◦C. Microbiota DNA was extracted from fecal samples using the innuPREP
Stool DNA Kit (Analytik Jena Biometra, Jena, Germany) according to the manufacturer’s
instructions. DNA yield and purity were determined using the Take 3 Micro-Volume Plate
(Biotek, Winooski, VT, USA). Absolute quantification of bacteria was then conducted by
qPCR using Real-Time Thermal Cyclers CFX96 TouchTM (Bio-Rad, Singapore). Primers
targeting microbiota 16s rRNA genes used in this study are summarized in Table S1.
Reactions consisted of template DNA, forward and reverse primers, 1X SYBR green
(2X SensiFASTTM SYBR No-ROX mix, BIOLINE, UK), and nuclease-free water. The
assay conditions and calculations of microbiota copy numbers were performed according
to previously described protocol (Chumponsuk et al., 2021). The average estimates of
microbiota abundance by converting CT values were expressed as logarithmic copy
number per gram of wet weight feces.

Statistical analysis
A sum score for dietary behaviors of children was visualized as a bar plot with ggplot2
(Wickham, 2009). Association between dietary behavior was assessed using Spearman’s rank
correlation and visualized with corrplot version 0.84 (Wei & Simko, 2017). Normality and
homogeneity of variance were tested by Shapiro–Wilk test and Levene’s test (stats package
version 4.0.3) (R Core Team, 2020). Differences in the abundance of gutmicrobiota (File S4)
between groups (dietary behaviors and demographic factors) were determined by one-way
ANOVA, Welch’s t -test, and Kruskal-Wallis rank sum test (p< 0.05) followed by multiple
comparisons using Tukey’s HSD test, pairwise t-tests, and Dunn’s test with Benjamini–
Hochberg (BH) p-value correction (hereafter referred to as q-value) (stats package version
4.0.3) (R Core Team, 2020) and FSA package version 0.8.31 (Ogle, Wheeler & Dinno,
2020). Association between birth delivery mode and the abundance of gut microbiota
was determined by permutational multivariate analysis of variance (PERMANOVA) with
adjustment for covariates (age and feeding type). Group dispersions based on a maximum
distance were measured by betadisper with 999 permutations in the R package vegan
(version 2.5-6) (Oksanen et al., 2016). Multiple factor analysis (MFA) was performed to
evaluate the influence of host variables (dietary behaviors and demographic factors) on
variations of gut microbiota using FactorMine R version 2.3 (Lê, Josse & Husson, 2008).
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Contribution of variables to the data set was visualized with Factoextra version 1.0.7
(Kassambara & Mundt, 2020). To investigate the most relevant features (microbiota taxa)
in characterizing each host factor, Partial Least Squares-Discriminant Analysis (PLS-DA)
was carried out by the mixOmics package version 6.12.2 (Rohart et al., 2017). Canonical
mode with 100 iterations was used as a parameter for classifying classes (groups of samples).
Receiver operating characteristic curve (ROC curve) and area under the curve (AUC) were
also calculated to examine the validity of supervised classification results. Predicted scores of
categorical outcomes were compared between one class versus the others by Wilcoxon test
(Rohart et al., 2017). The classification accuracy of PLS-DAmodels is interpreted as follows:
no discrimination (AUC 0.5), low discrimination (AUC 0.6 to 0.7), acceptable (AUC 0.7
to 0.8), excellent (AUC 0.8 to 0.9), and outstanding (AUC > 0.9) (Lobo, Jiménez-valverde
& Real, 2008; Mandrekar, 2010). All analyses were performed in R software version 4.0.3
(R Core Team, 2020). A more detailed explanation of multivariate analyses is described in
File S5.

RESULTS
Dietary behaviors
The frequencies of dietary behaviors of children varied greatly in their score value (Fig. S2).
To determine their relationship between diet behaviors, we performed a correlation
analysis based on Spearman’s rank correlation coefficient. After multiple testing corrections
using the Benjamini–Hochberg method, we found that high sugar foods and beverages
consumption were significantly correlated with high salty foods consumption (rho = 0.39,
q< 0.0001) and high fat foods (rho= 0.25, q= 0.01, Fig. S3). A positive association between
high salt and high fat behaviors was also detected (rho = 0.27, q = 0.01). Moreover, the
fruits and vegetables consumption were negatively correlated with every dietary behavior
except for those associated with healthy eating behaviors (rho= 0.2, q= 0.04). This healthy
eating behavior was negatively correlated with consumption of fatty foods (rho=−0.23, q
= 0.02). Despite the strength of association being considerably weak, the results identified
a trend in children reporting high unhealthy foods consumption (e.g., HSFB, HSF, HFF)
also reporting low healthy foods behaviors (HEB and FV).

Gut microbiota associated with dietary behaviors
MFA constructed by integration of dietary behaviors and abundance of gut microbiota
revealed variation in gut microbiota profiles of children (File S6A). Bacteroides was
highly correlated with dimension 1 (Dim 1; r = 0.91, p < 0.0001), followed by
Gammaproteobacteria (r = 0.90, p< 0.0001) and total bacteria (r = 0.89, p< 0.0001)
(Fig. 1A). Variation in the abundances of these taxa was best explained by HFF behaviors,
with an increasing trend in microbial abundances indicated in HFF-low risk (coordinate
= 1.43, p = 0.02; Fig. 1B). In Dim 2, the clusters were separated according to the number
of individuals distributed in each diet category. Ruminococcus (r = −0.21, p = 0.02) and
Akkermansia (r = −0.26, p< 0.01) described the distribution of HFF-low risk in Dim 3
(coordinate = 1.83, p< 0.0001) and Dim 4 (coordinate = 1.46, p< 0.001), respectively
(Fig. 1C). Both genera were decreased in individuals with low HFF behaviors (Fig. 1D).
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Figure 1 Multiple factor analysis (MFA) of the integration of gut microbiota and dietary behaviors of
school-aged children. The correlation circle plot showing the correlation between quantitative variables
(microbiota taxa at the phylum, class, and genus levels) and dimensions: (A) Dim 1 and 2, (C) Dim 3 and
4). A variable that is close to the circle is highly correlated to the dimension. (B) The factor map of indi-
vidual profiles grouped by high fat foods (HFF) consumption in Dim 1 and 2. (D) The factor map of in-
dividual profiles grouped by high fat foods (HFF) consumption in Dim 3 and 4. The categorical variables
were specified by the 95% confidence ellipses.

Full-size DOI: 10.7717/peerj.13325/fig-1

Other diet behaviors (HEB, FV, HSF, and HSFB), however, had a lower coordinate on the
first, third and fourth axes of the MFA factor map than HFF suggesting less contribution of
these dietary behaviors to the variation in gut microbiota profiles of children in this study.

Further analysis of the association between gut microbiota and dietary behaviors
using PLS-DA also identified relevant features (i.e., microbiota taxa) in classifying dietary
behaviors based on the level of consumption. Total bacteria and Gammaproteobacteria,
highly contributed to discrimination of samples along component 1 (Dim 1), and
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strongly characterized HFF-low risk (AUC = 0.81, p = 0.04, Fig. 2A, Fig. S4A). The
abundances of total bacteria (p = 0.02, Fig. 2C), Gammaproteobacteria (p < 0.0001,
Fig. 2E), and Lactobacillus (p = 0.01, Fig. 2D) were significantly different among HFF
categories. After adjustment by multiple comparisons using the Benjamini–Hochberg
method, Gammaproteobacteria significantly increased in children with low HFF compared
to those with high HFF (q < 0.001), moderate to high risk HFF (q< 0.001), and the
highest HFF consumption (q = 0.03). In component 2 of PLS-DA for HFF, Lactobacillus
and Ruminococcus were the most discriminative bacteria in children reporting low HFF
consumption (AUC = 0.82, p = 0.03, Fig. 2B, Fig. S4B). However, a significant difference
in the abundance of Lactobacillus was detected between low HFF to moderate and high
HFF consumption after adjustment (q = 0.05, Fig. 2D). Moreover, PLS-DA for fruits
and vegetables (FV) consumption showed that total bacteria, Prevotella, Bacteroides, and
Faecalibacterium were the top three bacteria that separated children with high FV (FV-low
risk) from those with lower FV consumption (low to moderate risk and moderate to
high risk FV consumption) (Fig. S5A; AUC = 0.66, p = 0.01). The abundance of total
bacteria was also significantly higher in those reporting high FV as compared to those
reporting lower FV consumption (q = 0.04, Fig. S5C). Nevertheless, the classification
was better in the second component where Roseburia and Ruminococcus contributed to
high FV consumption (Figs. S5B and S5D; AUC = 0.70, p< 0.001). For high salty foods
(HSF), Faecalibacterium characterized moderate to high HSF consumption followed by
Bifidobacterium and Roseburia on component 2, whereas Lactobacillus was associated with
low HSF consumption (Fig. S6; AUC = 0.70, p< 0.001). When considering healthy eating
behavior (HEB) and consumption of high sugar foods and beverages (HSFB), the supervised
analysis yielded no discrimination between classes (AUC < 0.6, p> 0.05). Regarding the
observed variability of individuals with different levels of dietary consumption, both MFA
and PLS-DA analyses suggested that the consumption of high fat foods had the highest
influence on the gut microbiota abundances in children.

Associations between demographic factors and gut microbiota in
children
Analysis of gut microbiota with integration of six demographic factors (gender, age,
BMI Z -score, ethnicity, birth delivery records, and feeding type) illustrated differences of
association patterns with the gut microbiota among the demographic categories (Fig. 3
and File S7). The MFA explained 18.6% and 8.3% of the variance in Dim 1 and Dim
2, respectively (Fig. S7A). Bacteroides, Gammaproteobacteria, and total bacteria were the
top three variables that described individual variation in Dim 1 (p< 0.0001, Fig. S7B).
Their abundances decreased in underweight (Thinness) and Thai ethnicity children,
while an increasing trend contributed to normal weight (Table 1, Figs. 3A and 3B). In
Dim 2, Lactobacillus mainly described the variation of individual profiles grouped by
delivery mode (R2

= 0.37, p< 0.0001), BMI z-score (R2
= 0.34, p< 0.0001), and age

tertile (R2
= 0.31, p< 0.0001) (Figs. 3C and 3D). Abundance of Lactobacillus decreased

in children delivered vaginally, and in those of normal weight, and oldest age (age_C) but
increased in those delivered by cesarean section, OB (obese), and youngest age (age_A).
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Figure 2 Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged chil-
dren with high fat foods (HFF) consumption.Discriminant analysis demonstrating variable selection
(microbiota taxa) for which the median (method= ‘median’) is maximum in component 1 (A) and com-
ponent 2 (B). Horizontal bars indicate each bacterial taxon assigned to HFF consumption and their length
corresponds to the loading weight. The importance of the bacteria contributing to the dimension runs
from bottom to top. (C–E) Boxplots showing normalized bacterial abundances based on log10 qPCR
16S rRNA copy number per gram of feces. Asterisks indicates a significant difference in bacterial abun-
dance among HFF consumption (***q < 0.001, *q < 0.05, Tukey’s HSD test and pairwise t -tests with
Benjamini-Hochberg p-value correction method).

Full-size DOI: 10.7717/peerj.13325/fig-2

Increased Gammaproteobacteria in middle age students (age_B), underweight (Thinness),
and Thai ethnicity characterized Dim 3 (respectively, Figs. S8A–S8C), while this bacteria
was decreased in Lahu ethnicity and oldest age (age_C). Variation of individuals in Dim 4
was mainly described by Firmicutes and ethnicity (R2

= 0.45, p< 0.0001): the abundance
of these bacteria was increased in children of Lahu and Thai ethnicity, but decreased in
those of Chinese and Akha ethnicity. In Dim 5, OV (increased) had a contrasting profile of
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Figure 3 Multiple factor analysis (MFA) of the integration of gut microbiota in school-aged children
and demographic factors. The factor map of individual profiles grouped by BMI z-score (A), ethnicity
(B), age tertile (corresponding to 25%, 50%, and 75%); age_A ≤ 8.05 years, age_B 8.05 < age < 11.06
years, age_C ≥ 11.06 years (C), and birth delivery mode (D). Individual variables were specified by the
95% confidence ellipses.

Full-size DOI: 10.7717/peerj.13325/fig-3

Ruminococcus to OB (decreased). A similar pattern of this bacterial genus was also described
for mixed feeding (increased) and formula feeding (decreased) (Fig. S8D). Considering
all demographic variables included in the MFA, gender had the least contribution to
the variation in microbial abundances, while other factors were associated with subtle
differences, which may be of relevance to profiling the gut microbiota in children.

Correlation between gut microbiota and BMI z-score
Comparisons of gutmicrobiota across BMI z-score groups showed a significant difference in
the abundances of Firmicutes (p< 0.01) and Ruminococcus (p= 0.01) (Figs. 4A–4B). After
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Table 1 Gut microbiota and categorical variables (demographic factors) that most described variation of individuals in each dimension ob-
tained by theMFA.

Dimension Dimension described
by quantitative variable
(bacterial taxon)

Correlation with
the dimension
(r); p-valuea

Dimension
described by
categorical variable

bCoordinate;
p-valuec

0.90; <0.0001 Thinness (BMI z-score) −1.62; <0.01
0.88; <0.0001 Thai ethnicity −1.29; <0.0011

Bacteroides
Gammaproteobacteria
total bacteria 0.85; <0.0001 Normal weight (BMI z-score) 1.19; p<0.001

Vaginal delivery −0.81; p< 0.0001
Normal weight (BMI z-score) −0.77; p< 0.0001
dAge_C −0.76, p< 0.001
Cesarean section 0.81; p< 0.001
OB (BMI z-score) 1.29; p< 0.0001

2 Lactobacillus 0.26; <0.01

dAge_A 1.06; p< 0.0001
dAge_B 1.00; p< 0.0001
Thinness (BMI z-score) 2.03; p< 0.0001
Thai ethnicity 1.58; p< 0.0001
Lahu ethnicity −2.45; p< 0.0001

3 Gammaproteobacteria 0.21; 0.02

dAge_C −0.92; p< 0.0001
Lahu ethnicity 1.59; p< 0.0001
Thai ethnicity 0.85; p< 0.0001
Chinese ethnicity −1.08; p< 0.001

4 Firmicutes 0.29; 0.01

Akha ethnicity −0.97; p< 0.01
OV (BMI z-score) 1.16; p< 0.0001
OB (BMI z-score) −1.07; p< 0.01
Mixed feeding 1.02, p< 0.01

5 Ruminococcus 0.29; <0.0001

Formula feeding −1.21; p< 0.0001

Notes.
aAn F-test was used to assess whether the variable had a significant influence on the dimension.
bA positive value indicates an increasing trend, while a negative value represents a decreasing trend.
cA t -test was done to see whether the coordinates of the individuals in one category are significantly different from others.
dAge tertile (corresponding to 25%, 50%, and 75%); age_A ≤ 8.05 years, age_B 8.05 < age < 11.06 years, age_C ≥ 11.06 years.

adjustment by multiple comparisons, the abundance of Firmicutes and Ruminococcus were
significantly higher in students of normal weight (q< 0.01) and OV (q< 0.05) compared
to obese. The supervised analysis also indicated discriminations of these microbiota taxa
between BMI z-score groups (Fig. 4C). Normal BMI was highly associated with increased
abundance of Ruminococcus (component 1: AUC = 0.63, p = 0.02, Fig. 4D, Fig. S9), while
low abundance of Firmicutes and Ruminococcus in OB discriminated them from those in
other groups (component 1: AUC = 0.68, p = 0.02, Fig. 4D, Fig. S9). A decreasing trend
in the abundance of Gammaproteobacteria and Bacteroides contributed to thinness (AUC
= 0.76, p = 0.04, Fig. 4E), however, their association was less important.

Relation between gut microbiota abundance with age group
Differences in the abundance of Firmicutes (p= 0.05) and Bifidobacterium (p= 0.02) were
detected at different age tertiles of school-aged children (Fig. S10). Significant increase in
Firmicutes (q= 0.04) was found in oldest children over 11 years of age (age_C) compared to
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Figure 4 Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged chil-
dren with different BMI z-score groups. (A–B) Boxplots showing normalized bacterial abundances based
on log10 qPCR 16S rRNA copy number per gram of feces. Significant differences in the abundance of Fir-
micutes and Ruminococcus were found between BMI z-score groups after adjusting p-values for multiple
comparisons (q < 0.05, Tukey’s HSD test and Dunn’s test with Benjamini-Hochberg p-value correction
method). (C) The sample plot represents variations in gut bacterial profiles of school-aged children with
different BMI z-score groups (95% confidence ellipses). An explained variance was based on X-variate
(normalized bacterial abundances). (D–E) Discriminant analysis demonstrating variable selection (mi-
crobiota taxa) for which the median (method= ‘median’) is maximum in component 1 and 2 of the sam-
ple plot. Horizontal bars indicate each bacterial taxon assigned to BMI z-score levels and their length cor-
responds to the loading weight. The importance of the bacteria contributing to the dimension runs from
the bottom to the top of the figure. OV= overweight, OB= obese. BMI z-score cut-off points were based
on WHOMulticentre Growth Reference Study Group (2006); SVThinness (severe thinness) <−3SD,
Thinness ≥−3SD to <−2SD, Normal ≥−2SD to ≤+1SD, OV (overweight) >+1SD to ≤+2SD, OB
(obese) >+2SD.

Full-size DOI: 10.7717/peerj.13325/fig-4
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those in age_B (8.05 < age < 11.06 years) (Fig. 5A). Age_C also showed greater abundance
of Bifidobacterium than age_A (q = 0.02) and age_B (q = 0.04) groups (Fig. 5B). Further
evaluation of age-associated differences in the gut microbiota of children by PLS-DA
revealed certain microbiota taxa contributing to the discrimination. The PLS-DA plot
displayed variations in microbiota profiles according to age tertile (Fig. 5C). Feature
classification indicated Firmicutes, Bacteroides, Roseburia, Prevotella, and Ruminococcus as
the top five more abundant microbiota taxa in the oldest school children (age_C) (Fig. 5D).
Of these, Firmicutes had the highest contribution to age_C in component 1 (AUC = 0.62,
p = 0.03, Fig. S11). The model supports that children over 11 years of age have a higher
abundance of this microbiota phylum.

Comparison of microbiota abundance in different delivery mode
In this study, we included a record of childbirth to determine its association with the gut
microbiota. A comparison of means between the two birth delivery modes showed no
significant difference in their abundance of microbiota (Fig. S12). When we performed
PERMANOVA with adjustment for covariates (age and feeding type; File S8), the test
indicated that birth delivery mode was significantly associated with the abundance of
Prevotella (p = 0.03, Fig. S13A), while no influence of sample dispersions was detected
(p = 0.08, and Fig. S13B). Further analyses using PLS-DA also revealed variations of
gut microbiota abundance based on birth delivery mode (Fig. S13C). The enrichment of
Prevotella in vaginal delivery was clearly distinguished from that observed in those delivered
by cesarean section (component 1: AUC = 0.69, p< 0.001, Figs. S13D and S13E).

Differences in the abundance of gut microbiota of children associated
with feeding type
The gut microbiota profile of children varied across feeding types (Fig. S14). A comparison
of microbiota abundances among the three feeding types (breastfeeding, formula feeding,
and mixed feeding) showed significant differences in the abundance of Firmicutes and
Bifidobacterium (p< 0.05). Both bacterial taxa were significantly higher in mixed feeding
children than in those receiving formula feeding (q< 0.05, Figs. 6C, 6D). Abundance of
Bifidobacterium was significantly increased in children breastfed as infants compared to
those formula fed as infants (q= 0.01, Fig. 6D). We then analyzed the association between
gut microbiota and feeding type using PLS-DA to identify key-discriminatory microbiota
taxa. Although the PLS-DA components displayed overlapping clusters (Fig. 6A), several
differentially abundant bacteria that contributed to the variation in feeding type were
indicated (Fig. 6B). The classification model suggested that Faecalibacterium (Fig. 6E),
Firmicutes,Roseburia andBifidobacterium increased followingmixed feeding in component
1 (AUC = 0.60, p = 0.31, Fig. S15A). In component 2, a similar pattern was observed for
Firmicutes and Ruminococcus (AUC = 0.71, p = 0.03), whereas Gammaproteobacteria
increased in formula fed children (AUC = 0.79, p< 0.0001) (Figs. S15B and S16A).

The influence of gender towards gut microbiota profile in children
Comparisons of the abundances of gut microbiota found no significant difference between
gender (Fig. S17). This factor, however, accounted for 47% of the variation in microbial
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Figure 5 Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged chil-
dren with different age tertile (corresponding to 25%, 50%, and 75%); age_A≤ 8.05 years, age_B 8.05<

age< 11.06 years, age_C≥ 11.06 years. (A–B) Boxplots showing normalized bacterial abundances based
on log10 qPCR 16S rRNA copy number per gram of feces. An asterisk (*) indicates a significant differ-
ence in microbiota abundance among feeding types (*q < 0.05, Tukey’s HSD test and Dunn’s test with
Benjamini-Hochberg p-value correction method). (C) The sample plot represents variations in gut micro-
biota profiles of children with different age tertile (95% confidence ellipses). An explained variance was
based on X-variate (normalized bacterial abundances). (D) Discriminant analysis demonstrating variable
selection (microbiota taxa) for which the median (method= ‘median’) is maximum in component 1 of
the sample plot. Horizontal bars indicate each bacterial taxon assigned to age tertile and their length corre-
sponds to the loading weight. The importance of the bacteria contributing to the dimension runs from the
bottom to the top of the figure.

Full-size DOI: 10.7717/peerj.13325/fig-5

abundances observed in component 1 of PLS-DA plots of gender (Fig. S18A). Classification
models further demonstrated that Lactobacillus, Gammaproteobacteria, and Bacteroides
were the top three microbiota taxa associated with girls (Fig. S18B). Based on assessing the
discriminative ability of these microbiota taxa for each class (categorical variables), the test

Gruneck et al. (2022), PeerJ, DOI 10.7717/peerj.13325 13/26

https://peerj.com
https://doi.org/10.7717/peerj.13325/fig-5
http://dx.doi.org/10.7717/peerj.13325#supp-26
http://dx.doi.org/10.7717/peerj.13325#supp-26
http://dx.doi.org/10.7717/peerj.13325


Figure 6 Partial least squares discriminant analysis (PLS-DA) of gut microbiota in school-aged chil-
dren with different feeding types (representing the feeding mode in infancy). (A) The sample plot repre-
sents variations in gut microbiota profiles of school-aged children with different feeding types (95% confi-
dence ellipses). An explained variance was based on X-variate (normalized bacterial abundances). (B) Dis-
criminant analysis demonstrating variable selection (bacterial taxa) for which the median (method= ‘me-
dian’) is maximum in component 1 of the sample plot. Horizontal bars indicate each bacterial taxon as-
signed to feeding type and their length corresponds to the loading weight. The importance of the bacte-
ria contributing to the dimension runs from the bottom to the top of the figure. (C–E) Boxplots showing
normalized bacterial abundances based on log10 qPCR 16S rRNA copy number per gram of feces. Aster-
isks indicate a significant difference in bacterial abundance among feeding types (**q < 0.01, *q < 0.05,
Tukey’s HSD test and Dunn’s test with Benjamini-Hochberg p-value correction method).

Full-size DOI: 10.7717/peerj.13325/fig-6
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indicated that the outcome had poor discrimination capacity to distinguish between classes
(AUC < 0.6, p> 0.05, Fig. S18C). The model indicated that gender did not influence the
gut microbiota profiles of children in this study.

Correlation between ethnicity and gut microbiota composition
No significant differences in the abundances of gut microbiota were found across ethnicity
(Fig. S19). When we included ethnicity in the PLS-DA, the model demonstrated the
association of this variable with the gut microbiota of children. While Bacteroides was the
discriminative bacteria in Lahu ethnicity,Gammaproteobacteriawas enriched in individuals
of Akha ethnicity (component 1; AUC < 0.6, p> 0.05, Figs. S20A and S20B). However, a
higher AUC value was obtained in component 2, where Akkermansia discriminated Thai
Yai from others (AUC = 0.68, p< 0.01), while Faecalibacterium and Roseburia were the
most discriminative bacteria in Akha ethnicity (AUC = 0.67, p< 0.01, Figs. S20C and
S20D). These models implied that ethnicity had a slight influence on the gut microbiota of
school-aged children.

DISCUSSION
Our qPCR study of eleven microbiota taxa and total bacteria in the stool of 127 school-
aged children revealed associations with dietary behaviors and demographic factors.
Supervised analyses suggested that the gut microbiota profile was influenced by high
fat foods consumption and the demographic factors of BMI z-score, age, mode of birth
delivery, method of milk delivery, and ethnicity. Gender was not linked to variation in the
gut microbiome in this study.

The human diet has a significant impact on the gut microbiota, as changes in the
composition in response to food consumption have been extensively documented (David et
al., 2014; Zmora, Suez & Elinav, 2019; Leeming et al., 2019). Here, we observed a significant
increase in the abundance of Gammaproteobacteria in children who scored lower on high
fat foods behaviors (characterized by the frequency of eating high fat foods, fried foods as
well as food or dessert which was cooked with coconutmilk, butter, ormargarine). Previous
studies in animals, and an in vitromodel of the human gut using 16S rRNA gene sequencing,
also showed that the abundance of bacteria belonging to the Gammaproteobacteria class
increased following a high-fat diet consumption (Lecomte et al., 2015; Agans et al., 2018).
To the best of our knowledge, a similar finding has not been previously reported based
on qPCR. Whether decrease in abundance of Gammaproteobacteria is indeed associated
with high fat diets in this population would require additional validation using larger
sized cohorts, and ideally combination of both high throughput sequencing and qPCR for
comparability across studies. An increased abundance of Lactobacillus and Ruminococcus
were also associated with lower HFF consumption. The abundances of these bacteria
are disturbed in animal models fed a high-fat diet (Daniel et al., 2014; Resch et al., 2021),
which indicates that these taxa may not grow well in the gut in the presence of high-fat
foods. Hence, in this study, lower reporting of HFF dietary behaviors among children
perhaps favors the growth of these bacteria. Furthermore, reporting of high fruits and
vegetables consumption appeared to be associated with total bacteria and Prevotella
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levels. These results are consistent with previous studies of the influence of shifting
from traditional to Western diets (high-fat/low-fiber) on the gut microbiota of Asian
populations. Prevotella-type taxa were overrepresented in the gut of school-aged children
in rural Thailand when compared with children in urban areas, who harbored more
Bacteroides-type bacteria. Frequency of fruit and vegetable intake may therefore support
different enterotypes, as was already reported for Filipino children from rural Baybay as
well as for Thai vegetarians (Ruengsomwong et al., 2014; Nakayama et al., 2015; Nakayama
et al., 2017). Outside of Asia, Prevotella dominates the microbiota communities of rural
African children consuming diets high in fiber compared to those of European children (De
Filippo et al., 2010). These converging findings emphasize the importance of a fiber-rich
food diet to colonize the gut with Prevotella (Kisuse et al., 2018). High salty foods (HSF)
intake affected the abundances of gut microbiota. Specifically, the butyrate producer
Faecalibacterium and Lactobacillus were differentially associated with reported moderate
to high salty foods and low salty foods consumption, respectively. A similar contrasting
profile between Roseburia (another butyrate-producing bacterium) and Lactobacillus was
previously shown in mice fed high- and low-salt diets. The former was enriched in mice
fed high-salt diet (Wang et al., 2017), while the proportion of the latter was significantly
reduced (Wang et al., 2017; Miranda et al., 2018). A similar finding has also been noted
in humans (Wilck et al., 2017). These findings suggest that high salt food consumption
impacts the abundance of specific gut microbiota members.

Changes in the gut microbiota profile of children have been associated with BMI status
classified based on both centiles (Bervoets et al., 2013) and z-scores (Golloso-Gubat et al.,
2020; Shin & Cho, 2020). In this study, a low abundance of Firmicutes and Ruminococcus
was associated with obesity, while normal and overweight children had a high abundance
of these bacteria. These findings are in contrast to previous studies based on 16S rRNA
sequencing, whereby obese children had a high abundance of Firmicutes (Da Silva,
Monteil & Davis, 2020), while Ruminococcus was nearly depleted in overweight/obese
when compared to normal-weight children (Karvonen et al., 2019). A longitudinal study
conducted in school-aged children with dietary records also highlighted a decrease of
Ruminococcaceae in children who developed obesity and had a high calorie intake (high
carbohydrate/high fat and high protein/high fat) associated with the obese status, (Rampelli
et al., 2018). These findings suggest food intake and weight gain could contribute to
variability in the gut microbiome (Rampelli et al., 2018). Despite unequal sample sizes and
a different dietary assessment method herein, most obese children (72%) consumed high
fat foods quite frequently (moderate to high risk) (Fig. S21), while only 33% ate fruits and
vegetables (Fig. S22). Thus, the observed differences in microbiota abundance in our study
were likely influenced by high-calorie diets, although further study with more participants,
longer follow-up periods, and more extensive microbiome profiling is needed to verify this
hypothesis.

The abundance of Bifidobacterium can vary across the stages of life (Arboleya et al.,
2016; Saturio et al., 2021) and this genus is often enriched in the gut microbiota of children
(Derrien, Alvarez & De Vos, 2019). A similar trendwas also detected in our studywith a high
level of Bifidobacterium among school-aged children grouped by age tertile. The abundance
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of Bifidobacteriumwas significantly high in children aged over 11 years. Moreover, children
in previous studies that fell into the same age categories as in this study also had a higher
fecal concentration of Bifidobacterium compared to those that were older aged (Agans
et al., 2011; Hollister et al., 2015; Zhong et al., 2019). Concerning age variables, a gap may
exist with these findings as we stratified individuals by quantile ranges. Whether or not
the presence of this particular bacterium is associated with age, changes in Bifidobacterium
levels from childhood to adolescence using narrow-age ranges may be worth investigating
to better comprehend this relationship.

Both birth delivery method and feeding type appears to have a strong influence on
the early-life gut microbiota (Cukrowska et al., 2020; Mitchell et al., 2020). The impact of
the former has been shown in a large longitudinal analysis of gut microbiota from 600
newborns and 175 mothers, which denoted significant differences in the composition of
gut microbiota between cesarean section born and vaginally delivered infants (Shao et al.,
2019). The latter type of birth was associated with a high abundance of Prevotella, as shown
in newborns and during the first two years of life (Dominguez-Bello et al., 2010; Bokulich
et al., 2016). Although our study was conducted in school-aged children, enrichment of
this genus was still observed in those who were born vaginally. This result implies that the
impact of method of delivery may continue beyond infancy. Furthermore, we found that
the abundance of Bifidobacterium was lowest in children who were formula fed as infants
when compared with children who were either breast fed or mixed fed during infancy.
Bifidobacterium abundance is increased in the gut of breast-fed infants rather than in
those that are formula-fed. It has been speculated that the bacterium utilizes human milk
oligosaccharides (HMO) (Lee et al., 2015; Forbes et al., 2018; Lawson et al., 2020). Our data
suggests that a lack of exposure to breast milk at an early age may reduce abundance of gut
Bifidobacterium, while mixed-feeding may stabilize the abundance close to breastfeeding.
As time progresses, however, many other factors including the influence of one’s diet is
expected to also influence the makeup of one’s gut microbiome.

Ethnicity introduces variations in the gut microbiota profiles through diet (Khine et
al., 2019; Dwiyanto et al., 2021). Considering the small sample size of our study, however,
our findings did not have an adequate power to identify the associations between the
consumption of ethnic-based diets and the abundance of gut microbiota. We did, however,
observe a trend when discriminating between ethnic groups. For instance, two genera
within the phylum Firmicutes (Faecalibacterium and Roseburia) were associated with
children of Akha ethnicity, whereas Akkermansia was mainly found to associate with the
Thai-Yai ethnic group. These results are inconclusive due to a lack of dietary data relating
to ethic cultural practices.

Although our study demonstrated the independent effect of each host factor on
the gut microbiota, our results should be interpreted with caution. Major limitations
include the lack of sample size estimation and data on cultural practices (e.g., traditional
diets, lifestyle, etc.). Since recruitment of subjects was based on voluntary participation,
the number of subcategories was not homogeneous. In this regard, inter-individual
variation was investigated using multivariate statistical analyses with all concerned factors.
The same method has been implemented in our previous works (Gruneck et al., 2020;
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Chumponsuk et al., 2021). Moreover, we were unable to collect data on cultural practices
due to the language barriers, which might link to dietary behaviors of these school-aged
children. Both limitations described above serve to limit our ability to explore correlations
between important risk factors and the gut microbiome of school-aged children. One such
potential confounding factor, physical activity, should also be included with future studies
to better understand the role this plays together with BMI and diet.

CONCLUSIONS
This study highlights how diet influences gut microbiota. A high abundance of
Gammaproteobacteria was noted in children who reported the consumption of fewer
high fat foods. Demographic factors such as BMI z-score, age, and feeding type also
demonstrated their potential associations with gut microbiota. Obese children were
characterized by a low abundance of Ruminococcus. Those over 11 years of age were found
to have a high level of Bifidobacterium, whereas this abundance decreased in children
with a history of formula feeding. Moreover, birth mode and ethnicity displayed a trend
towards the enrichment of gut microbiota. Considering all host variables, gender was not
a determinant of microbiota profiles in this study.

Abbreviations

HEB Healthy eating behavior
FV fruits and vegetables
HSFB high sugar foods and beverages
HSF high salt foods
HFF high fat foods
OV overweight
OB obese
age_A age of children ≤ 8.05 years
age_B age of children between 8.05 and 11.06 years (8.05 <years <11.06)
age_C age of children ≥ 11.06 years
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