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As part of the National Institutes of HealthToolbox initiative, a computerized test of dynamic
visual acuity (cDVA) was developed and validated as an easy-to-administer, cost- and time-
efficient test of vestibular and visual function. To establish normative reference values,
3,992 individuals, aged 3–85 years, without vestibular pathology underwent cDVA testing
at multiple clinical research testing facilities across the United States. Test scores were
stratified by sociodemographic characteristics. cDVA was worse in males (p < 0.001) and
those subjects 50 years or older, while there was no difference in dynamic visual acuity
across age groups binned from 3 to 49 years. Furthermore, we used these normative cDVA
data as a criterion reference to compare both the long (validated) and short versions of the
test. Both versions can distinguish between those with and without vestibular pathology
(p=0.0002 long; p=0.0025 short). The intraclass correlation coefficient between long-
and short-cDVA tests was 0.86.

Keywords: dynamic visual acuity, gaze stability, NIHToolbox, vestibular hypofunction, vestibular test

INTRODUCTION
The vestibulo-ocular reflex (VOR) prevents retinal slip during
head motion by moving the eyes contrary to the head. This gaze
stabilization occurs for both linear and angular head motion, and
pathology of the VOR leads to poor visual acuity during head
motion. The dynamic visual acuity (DVA) test, in which scores
reflect the difference in visual acuity between stationary and head
rotation, measures the individual’s ability to maintain gaze during
head rotation. As part of the National Institutes of Health Tool-
box for the Assessment of Neurological and Behavioral Function
(NIH Toolbox) initiative (1), a computerized dynamic visual acu-
ity (cDVA) test was developed for examination of the VOR. The
NIH Toolbox cDVA test was validated in 318 individuals, aged 3–
85 years. Bithermal caloric, rotational chair testing, and light box
testing were completed to confirm vestibular and visual function
status and shown to be reliable for static visual acuity (SVA) and
DVA (2, 3).

The cDVA test has been shown to effectively evaluate the ability
to see clearly during head rotation (4–6); however, many studies
are limited to the adult population. While few studies have investi-
gated the utility of the DVA test in children, the reported sensitivity
(88–100%) and specificity (68–100%) is very good for identify-
ing vestibular hypofunction (VH) (7–9). Although the evidence
for implementation of the DVA test to screen for and diagnose
vestibular pathology in the pediatric population is promising, the
existing literature necessitates reference DVA scores derived from
large, diverse populations with a wide age range.

In this study, we report the normative scoring of the NIH
Toolbox cDVA from 3,992 individuals, aged 3–85 years, captured

from various regions of the United States. Additionally, long and
short versions of the NIH Toolbox cDVA test were compared and
validated. We anticipate these data will assist the assessment of
vestibular function, the interpretation of cDVA scores, and be use-
ful for researchers interested in using the NIH Toolbox cDVA test
for population-based epidemiological studies.

MATERIALS AND METHODS
SUBJECTS
To obtain normative values, 4,859 subjects were recruited from
databases assembled through online self-enrollment, enrollment
events, and random telephone calls by market research companies,
Delve, LaVerdad, and Facts‘n Figures. A stratified recruitment plan
by the NIH Toolbox outlining the overall norming plans for the
NIH Toolbox is available (10). Individuals included community-
dwelling children and adults, English and Spanish speakers, who
were capable of following test instructions (English or Spanish)
and able to provide informed consent or, in the case of children
8 years and older, give assent with accompanying informed consent
by the parent or guardian. Individuals were excluded if they could
not participate due to blindness or reading impairment. In addi-
tion to cDVA testing, sociodemographic characteristics such as age,
gender, ethnicity, dominant language, and education level were
collected. A total of 3,992 of the overall norming study participants
completed the cDVA testing.

In a separate study, 22 subjects were recruited from an out-
patient otolaryngology clinic to validate a shorter version of the
NIH Toolbox cDVA test. Twelve subjects were individuals with
unilateral or bilateral VH, diagnosed by caloric testing and/or

www.frontiersin.org October 2014 | Volume 5 | Article 223 | 1

http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/editorialboard
http://www.frontiersin.org/Neurology/about
http://www.frontiersin.org/Journal/10.3389/fneur.2014.00223/abstract
http://www.frontiersin.org/Journal/10.3389/fneur.2014.00223/abstract
http://www.frontiersin.org/people/u/170938
http://www.frontiersin.org/people/u/189201
http://www.frontiersin.org/people/u/19942
mailto:mschube1@jhmi.edu
http://www.frontiersin.org
http://www.frontiersin.org/Neuro-otology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li et al. NIH dynamic visual acuity

quantitative head-impulse testing. Ten subjects were individuals
with no history of vestibular deficits, confirmed by negative clinical
head-impulse testing. All subjects gave informed consent. cDVA
testing protocols were approved by the institutional review board
at the Johns Hopkins University School of Medicine. Individuals
were excluded if they could not participate due to blindness, ocu-
lomotor impairment, poor neck range of motion, or cervical spine
instability.

NIH Toolbox COMPUTERIZED DYNAMIC VISUAL ACUITY TEST
A cost-effective cDVA test was developed in order to minimize
motor, language, and cultural influences through software writ-
ten in Python and C++ (2). The hardware consisted of a 2-GHz
Intel dual central processing unity laptop with 2 GB of RAM (IBM
Thinkpad; IBM, Armonk, NY, USA), connected to a 1440× 900
resolution monitor for optotype display. A single-axis rate sen-
sor (O-Navi, Vista, CA, USA) attached to a soft bicycle light strap
was used for detecting horizontal head rotation. Delve field tech-
nicians were trained and certified by the NIH Toolbox staff to
administer the cDVA test at various Delve clinical research testing
sites throughout the United States, including Atlanta,Chicago-Oak
Brook, Cincinnati, Columbus, Dallas, Los Angeles, Minneapolis,
Philadelphia, Phoenix, and St. Louis.

Participants were seated 12.5 ft away from the monitor at eye
level. An initial SVA test was completed by presenting a single ran-
dom optotype starting at size 20/80. Subjects were asked to identify
five optotypes per acuity level that reduced in steps of 0.1 logarithm
of the minimum angle of resolution (logMAR). This continued
until either one of two conditions were met: the smallest size acuity
level was reached and all five optotypes were correctly identified
(20/10) or the acuity level where at least three of five optotypes
were correctly identified. For the cDVA test, participants were
asked to move their head side to side as if indicating “no.” When
head velocity met or exceeded 180°/s, the rate sensor triggered the
software to flash an optotype starting at three sizes above their pre-
determined SVA. The optotype remained on the screen for 83 ms
and only at velocities above the threshold of 180°/s. The optotype
did not flash for head velocities below this threshold. Prior to data
collection, practice trials displaying multiple optotypes, size 1.30
and 1.00 logMAR, were conducted to familiarize the participant to
the test and minimize learning effects. For both the SVA and DVA
tests, only the letters H, O, T, and V are used for ages 3–7, while
ages 8+ use the entire early treatment diabetic retinopathy study
(ETDRS) letter set. In the development and validation phases of
the NIH Toolbox DVA test, five letters were administered per line
(optotype size) (2, 3). For this norming study, to make adminis-
tration time more manageable, the number of letters administered
per line was reduced from five to two and an ancillary study was
conducted to compare the long (five optotype) and short (two
optotype) versions of the cDVA test. Detailed test administration
instructions can be found at www.nihtoolbox.org (11).

EVALUATION OF POST-VALIDATION CHANGES TO THE NIH Toolbox
cDVA TEST
Twelve participants with confirmed VH and 10 participants with
no vestibular pathology underwent two versions of the cDVA test
in the same testing session. The long version of the cDVA test

displayed five letters per acuity level and the short version of
the cDVA test displayed two letters per acuity level. Criteria used
for stopping the short version were identical with the long ver-
sion (11). Diagnostic criteria for VH included unilateral (>25%
weakness) or bilateral reduced responses during bithermal caloric
testing and/or horizontalVOR gain <0.7 during quantitative head-
impulse testing with video-oculography (VOG). The test order,
i.e., which version of the cDVA test was administered first, was ran-
domly assigned. Eleven participants underwent the long version
of the cDVA test first while the other 11 participants underwent
the short version of the cDVA test first.

ANALYSIS
The difference between static and dynamic scores was calculated
separately for leftward and rightward head rotation and repre-
sents the vestibular contribution to gaze stability. Left and right
difference scores were averaged to obtain one DVA score for each
individual.

Descriptive statistics including means, SD, percentiles, and
ranges were calculated for each age group. The effect of age
on DVA scores in the normative population was determined
using regression analysis. Analysis of variance, t -tests, and lin-
ear regression were used to compare DVA scores among other
sociodemographic categories. An alpha of p < 0.01 was considered
statistically significant.

To validate the short version of the cDVA test (two letters per
optotype size), DVA scores for subjects with and without VH, were
compared using a t -test. Within-subject comparisons between the
two test versions were performed using a paired t -test. p < 0.01
was considered statistically significant. Reliability of the shorter
NIH Toolbox cDVA test was assessed using intraclass correlation
coefficients (ICCs). Sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were evaluated using
the following equations:

Sensitivity =
True_Positives

True_Positives+ False_Negatives
× 100%,

Specificity =
True_Negatives

True_Negatives+False_Positives
× 100%,

PPV =
True_Positives

True_Positives+False_Positives
× 100%,

NPV =
True_Negatives

True_Negatives+False _Negatives
× 100%.

Criterion for abnormal scores was derived from the norming
scores in the population of 4,369 participants and was calculated
as the age-matched mean DVA score+2SD.

RESULTS
NIH Toolbox cDVA NORMATIVE DATA
In the normative population, 3,992 participants with cDVA
data were evaluated with mean age 21.0± 18.9 years, range 3–
85 years (Table 1). Forty-six percent were male, 50% were Non-
Hispanic White, 13% were Non-Hispanic Black, and 32% were
Hispanic. Thirty-four percent of the participants reported a less
than high-school education level, 21% reported graduating high
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Table 1 | Normative population characteristics.

No. Percent

Age group

3 54 1.35

4 152 3.81

5 169 4.23

6 177 4.43

7 230 5.76

8 188 4.71

9 195 4.88

10 216 5.41

11 193 4.83

12 200 5.01

13 199 4.98

14 215 5.39

15 208 5.21

16 201 5.04

17 202 5.06

18–29 242 6.06

30–39 275 6.89

40–49 224 5.61

50–59 170 4.26

60–69 126 3.16

70–85 156 3.91

Gender

Male 1821 45.62

Female 2171 54.38

Ethnicity

White 1966 49.78

Black 531 13.45

Hispanic 1282 32.46

Other 170 4.3

Education

<High school 1284 34.22

HS diploma/GED 794 21.16

>High school 1674 44.62

Language

English 3183 79.73

Spanish 433 10.85

English (bilingual) 127 3.18

Spanish (bilingual) 249 6.24

school or passing the GED tests, and 45% reported a higher
than high-school education level. Eighty percent of participants
were English-speaking, 11% were Spanish-speaking, and 9% were
bilingual.

Mean DVA score across all ages in the normative population was
0.116± 0.184 logMAR. Descriptive statistics including means, SD,
percentiles, and ranges by age group are shown in Table 2. We
combined individuals aged 3–17 years into a single age group and
analyzed the effect of age as a categorical variable considering
the 18–29-year group as the reference group. In multiple regres-
sion analysis adjusting for all sociodemographic characteristics, we
found no difference in cDVA between those groups aged 3–49 years

(Table 3). cDVA scores were significantly higher for individu-
als age 50 and older (p < 0.001) (Figure 1). Additionally, cDVA
scores were higher (worse) in males (adjusted analyses p < 0.001).
In multiple regression analysis, cDVA score did not differ among
various ethnicities, education levels, or language groups (Table 3).

VALIDATION OF THE NIH Toolbox SHORT-cDVA TEST
We evaluated twelve individuals (42% female,mean 51.9± 10.4 years)
with VH, confirmed by caloric testing and/or quantitative head-
impulse testing, along with ten individuals (30% female, mean
42.4± 17.3 years) without a history of vestibular disease. There
were no significant differences in demographic characteristics
between those with and without VH.

There was no difference between the short-cDVA test, dis-
playing two letters per optotype size, and the long-cDVA test,
displaying five letters per optotype size (p= 0.993). The agree-
ment between the short-cDVA test and the previously validated
long-cDVA test was excellent (ICC= 0.857, p < 0.001). Scores
achieved by those with and without VH were significantly differ-
ent on both long and short versions of the cDVA test (p= 0.0002
and p= 0.0025, respectively) (Figure 2). We examined sensitiv-
ity, specificity, and predictive value for individuals with vestibular
deficits compared with healthy individuals using a criterion based
on age-matched mean DVA score in the normative population
+2SD. Results were comparable between the long- and short-
cDVA tests, respectively (sensitivity 50 vs. 58%, specificity 100 vs.
100%, PPV 100 vs. 100%, NPV 63 vs. 67%).

The effect of test order was evaluated by comparing the 11 indi-
viduals who underwent the long-cDVA test first with the 11 indi-
viduals who underwent the short-cDVA test first. We calculated
the difference in DVA scores between the two tests and examined
the effect of test order with a t -test. We observed a significant
effect of test order on the difference in scores (p= 0.001). When
the long-cDVA test was administered first, individuals scored 0.08
logMAR higher (worse) compared to the short-cDVA test. When
the test order was reversed and the short-cDVA test was admin-
istered first, individuals scored 0.08 logMAR higher compared to
the long-cDVA test (Figure 3). Regardless of test version, the DVA
score obtained on the first test was found to be worse compared to
the DVA score obtained on the second test.

DISCUSSION
The NIH Toolbox cDVA test is an easy-to-administer, valid, and
reliable measure of peripheral vestibular function. In this study,
we report normative scores in a large and diverse population of
3,992 individuals, aged 3–85 years. These scores can be utilized
in conjunction with the NIH Toolbox test battery, available at
www.nihtoolbox.org (11), in a variety of clinical and academic set-
tings to measure outcomes in longitudinal epidemiologic studies
and trials.

The effect of age and other sociodemographic characteristics
on DVA scores was examined. In multiple regression analysis, we
found an age-related decline in DVA. These results are corrobo-
rated by smaller studies that report age-related effects on DVA (4,
12, 13) and VOR function, particularly for higher velocities of head
rotation (12, 14–18). In patients age 18–89, Paige et al. demon-
strated age-related changes in VOR phase (timing relationship
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Table 2 | Normative values of the NIHToolbox DVA test by age group.

Participant N Mean SD Minimum 25th Percentile Median 75th Percentile Maximum

Age (years)

3 54 0.258 0.251 −0.275 0.065 0.240 0.405 0.950

4 152 0.157 0.233 −0.250 0.015 0.115 0.240 1.260

5 169 0.105 0.174 −0.390 −0.005 0.095 0.175 1.075

6 177 0.103 0.170 −0.320 −0.015 0.100 0.195 0.730

7 230 0.085 0.166 −0.300 −0.015 0.077 0.155 0.915

8 188 0.148 0.170 −0.270 0.040 0.125 0.235 0.915

9 195 0.118 0.173 −0.335 0.000 0.090 0.215 0.990

10 216 0.109 0.159 −0.410 0.000 0.097 0.210 0.695

11 193 0.122 0.173 −0.210 0.015 0.095 0.190 0.850

12 200 0.090 0.169 −0.280 −0.025 0.070 0.175 0.945

13 199 0.091 0.174 −0.360 −0.005 0.065 0.160 1.025

14 215 0.106 0.180 −0.200 −0.015 0.080 0.195 1.265

15 208 0.095 0.141 −0.225 −0.005 0.080 0.185 0.740

16 201 0.074 0.176 −0.355 −0.035 0.055 0.145 1.170

17 202 0.090 0.169 −0.190 −0.010 0.065 0.170 1.205

18–29 242 0.084 0.173 −0.295 −0.015 0.067 0.150 1.470

30–39 275 0.084 0.169 −0.300 −0.030 0.065 0.165 0.830

40–49 224 0.108 0.173 −0.605 −0.005 0.080 0.193 0.995

50–59 170 0.180 0.225 −0.250 0.030 0.142 0.265 1.045

60–69 126 0.215 0.222 −0.310 0.080 0.177 0.300 0.970

70–85 156 0.228 0.202 −0.385 0.090 0.215 0.340 0.935

Total 3992 0.116 0.184 −0.605 0.000 0.095 0.200 1.470

between head and eye velocity) and declining VOR responses dur-
ing high-amplitude and high-velocity sinusoidal rotations (19). A
5-year longitudinal study of vestibular function observed a signif-
icant decrease in VOR gain to sinusoidal stimuli, specific to higher
velocities (16). Our findings are also supported by histopathologic
reports showing significant age-related declines in vestibular sen-
sory hair cell populations in human temporal bones (20–22) as
well as age-related neuronal loss in the human vestibular nucleus
complex (23).

In this study, we demonstrated that DVA remains stable in indi-
viduals aged 3–49 years and then starts to decline at age 50 years.
It has been shown that specific vestibular structures differentially
degenerate with age. While sensory hair cell counts decrease by
6% per decade starting from birth (21, 24, 25), primary vestibular
afferent fibers tend to degenerate from middle age on, with 35% of
afferents remaining in individuals age 70–85 years (24, 26). Fur-
ther histopathologic studies show that cells in Scarpa’s ganglion
decline starting at age 30 with a steep decrease after age 60 (25,
27, 28), while vestibular nuclei neurons decrease by 3% per decade
between 40 and 90 years of age (23, 29). It has been demonstrated
that increased sensitivities of afferent nerve fibers and central
mechanisms can compensate for earlier-onset hair cell loss, thus,
maintaining normal function, with degeneration becoming more
evident at older ages, beginning at midlife (30). Therefore, our
observation that DVA remains stable until middle age, after which
scores tend to decline, is supported by these differential age-related
changes in various vestibular sensory components and suggests
that DVA decline is specifically related to reductions in afferent
and/or central vestibular function that start in midlife.

We found that cDVA scores were higher (worse) in males
compared to females on adjusted analyses. Existing evidence
surrounding gender-related functional or anatomic differences
in the vestibular system is scarce. Three-dimensional measure-
ments of the human vestibular apparatus have shown that males
tend to have larger diameter semicircular canals (31), although
these anatomic differences have not been directly correlated with
vestibular testing results. One other epidemiological study of
vestibular function in over 6,000 participants from the national
health and nutrition examination survey (NHANES) evaluated
balance function using modified Romberg testing and demon-
strated no effect of gender on the prevalence of vestibular dys-
function (32). However, the postural tests used in this NHANES
study can also reflect other sensory inputs, central processes,
and motor ability, which may also be influenced by cardiovas-
cular risk factors, while the DVA test targets VOR function. It
is possible that the gender differences we describe are related to
recent evidence suggesting that women are better able to discrim-
inate between colors (i.e., flashing black optotype against a white
background), putatively owed to gender differences in androgen
receptors within visual cortex (33). Future studies are needed to
more firmly establish any sex differences in vestibular function.

To administer the NIH Toolbox DVA test in a large, normative
population, the number of letters administered per line (opto-
type size) was reduced from five to two and an ancillary study
was conducted to compare the long and short versions of the test.
We demonstrated an excellent agreement between long and short
versions of the test. Additionally, DVA scores between individuals
with and without VH were significantly different on both tests.
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Table 3 | Mean DVA score stratified by sociodemographic

characteristics.

Mean DVA SD Unadjusted p Adjusted p

Age group

3–17 0.108 0.177 0.497 0.137

18–29 0.084 0.173 Reference Reference

30–39 0.084 0.169 0.976 0.909

40–49 0.108 0.173 0.164 0.215

50–59 0.180 0.225 <0.001 <0.001

60–69 0.215 0.222 <0.001 <0.001

70–85 0.228 0.202 <0.001 <0.001

Gender

Male 0.134 0.187 Reference Reference

Female 0.101 0.180 <0.001 <0.001

Ethnicity

White 0.116 0.181 Reference Reference

Black 0.115 0.191 0.923 0.455

Hispanic 0.119 0.188 0.650 0.171

Other 0.097 0.168 0.199 0.470

Education

<High school 0.114 0.181 0.990 0.426

HS diploma/GED 0.114 0.175 Reference Reference

>High school 0.118 0.190 0.657 0.216

Language

English 0.115 0.182 Reference Reference

Spanish 0.133 0.201 0.065 0.955

English (bilingual) 0.112 0.152 0.836 0.681

Spanish (bilingual) 0.098 0.186 0.158 0.026

Unadjusted p-value refers to bivariate analyses. Adjusted p-values refer to multiple

regression analysis including age, gender, ethnicity, education level, and language

data.

Both tests exhibited excellent specificity and PPVs but poor to
fair sensitivity and NPVs. It is important to note, however, that
this ancillary study examined a small number of individuals and
that 50% of those with vestibular pathology suffered from unilat-
eral conditions over varying time courses. Therefore, it is possible
that some individuals with vestibular pathology had compensated,
likely from contralesional VOR gain restoration or reduced latency
of compensatory saccades, and thus, exhibited improved gaze sta-
bility during the testing session (34). Further investigations with
larger populations with more detailed classifications of vestibular
pathology are warranted. However, given the overall results, both
test versions are shown to be easily administered, reliable, and valid
measures of DVA.

Although a short-practice trial was administered prior to data
collection, we observed a significant learning effect in which per-
formance improved on the second test, regardless of which version
(long vs. short) was administered first. Though not explicitly the
same type of DVA testing, these findings are consistent with pre-
vious studies documenting training effects in participants’ ability
to resolve target motion, with wash-out periods ranging from 7 to
36 days (35–37). The learning or training effect should be acknowl-
edged in future studies utilizing this behavioral measure of VOR

FIGURE 1 | Effect of age on mean DVA scores (mean + SD) in the
normative population.

FIGURE 2 | Comparison of mean and standard error cDVA scores
between those with and without vestibular hypofunction (VH) in the
short (2 optotypes) and long (5 optotypes) version of the test.

FIGURE 3 | Comparison of mean and standard error DVA scores based
on test order.

function and more extensive practice trials may be considered to
better familiarize subjects before data collection in future studies.
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Several limitations of this study should be noted. Because this
was a cross-sectional study, causal inferences cannot be made.
Although the norming study was conducted in a diverse popula-
tion from various regions of the United States, the smaller ancillary
study evaluating post-validation changes to the test did not include
children or Spanish speakers, thus, corresponding findings may
not be generalizable to the entire population. Potential method-
ological considerations of DVA testing should also be considered.
Self-generated head movements are associated with enhancements
in gaze stability that may be due to an efference copy that can enable
motor adaptation in successive eye movements (38) and/or cen-
trally preprogramed eye rotations that increase VOR gain, defined
generally as eye velocity/head velocity (39–45). Thus, passive DVA
testing paradigms utilizing transient, unpredictable head thrusts
in the plane of the semicircular canal of interest may better isolate
and quantify peripheral vestibular function compared to active
head rotation paradigms, such as the one used in this study. How-
ever, to comprehensively assess an individual’s gaze stabilization
mechanisms during head movements that reflect daily activities,
DVA testing utilizing active or voluntary head movements may be
more appropriate as both VOR functionality and non-VOR gaze
stabilization mechanisms may be recruited (46).

CONCLUSION
We report normative scores for the previously validated NIH
Toolbox cDVA test in a diverse population composed of nearly
4,000 individuals, aged 3–85 years. These data agree with the body
of literature showing age-related changes in vestibular function
and explores the effect of other sociodemographic characteristics,
including gender, ethnicity, education level, and primary language.
Findings from this study may aid in the interpretation of DVA
scores across a diverse population and serve as a reference for future
epidemiological investigations using the NIH Toolbox DVA test.
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