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Abstract: Itch or pruritus is the hallmark of atopic dermatitis and is defined as an unpleasant
sensation that evokes the desire to scratch. It is also believed that itch is a signal of danger from
various environmental factors or physiological abnormalities. Because histamine is a well-known
substance inducing itch, H1-antihistamines are the most frequently used drugs to treat pruritus.
However, H1-antihistamines are not fully effective against intractable itch in patients with atopic
dermatitis. Given that intractable itch is a clinical problem that markedly decreases quality of life, its
treatment in atopic dermatitis is of high importance. Histamine-independent itch may be elicited by
various pruritogens, including proteases, cytokines, neuropeptides, lipids, and opioids, and their
cognate receptors, such as protease-activated receptors, cytokine receptors, Mas-related G protein-
coupled receptors, opioid receptors, and transient receptor potential channels. In addition, cutaneous
hyperinnervation is partly involved in itch sensitization in the periphery. It is believed that dry skin
is a key feature of intractable itch in atopic dermatitis. Treatment of the underlying conditions that
cause itch is necessary to improve the quality of life of patients with atopic dermatitis. This review
describes current insights into the pathophysiology of itch and its treatment in atopic dermatitis.

Keywords: atopic dermatitis; dry skin; intractable itch; itch/pruritus; keratinocyte; sensory nerve fiber

1. Introduction

Patients with atopic dermatitis (AD) suffer from recurrent dermatitis and intractable
itch. The most frequent clinical phenotype of AD is lichenified/exudative flexural dermati-
tis alone or associated with head/neck eczema or hand eczema [1]. Although there is no
mortality directly associated with AD, this condition substantially impacts patients’ quality
of life. In addition to the social stigmatization due to visible skin lesions, severe pruritus can
disrupt sleep in patients with AD, which can lead to psychosocial comorbidities, including
depression, anxiety, and suicidal ideations [2]. The economic burden of AD is attributed to
not only direct medical costs but also to costs through lost work productivity. For instance,
in Europe, the direct annual costs have been estimated to EUR 7000, while the indirect
costs ranged from EUR 7000 to EUR 14,000 per patient with severe AD [2]. Taken together,
patients with AD and society will benefit from the reduction of the burden caused by
economic and psychosocial comorbidities in AD.

Although the pathogenesis of AD has not been fully elucidated, it is influenced
in a complicated manner by genetic factors, immune dysfunction, physical conditions,
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stress and weather [3–5]. Furthermore, the observation that AD prevalence appears to be
increasing in developing countries suggests an important role of environmental factors
in the pathogenic mechanism of AD [6]. Because histamine is a well-known pruritogen
that is involved in itch accompanied by urticaria caused by the degranulation of mast
cells, H1-antihistamines are the most frequently used drugs to treat pruritus. However,
H1-antihistamines, even at high doses, are not fully effective against intractable itch in
patients with AD [7]. Since severe pruritus leads to disturbances in patient sleep and work
that markedly decrease quality of life, H1-antihistamine-resistant itch is a clinical problem
in AD. Thus, understanding the pathogenesis of itch and its treatment is important.

This review highlights recent knowledge regarding the mechanisms of itch in AD and
itch treatment.

2. Methods

For the current review, relevant literature published in English was searched for using
PubMed, Google Scholar and Web of Science to identify systematic articles published prior
to January 2021. The terms used for retrieval were “dry skin”, “intractable itch”, “itch”,
“pruritus”, “keratinocyte”, “sensory nerve fiber” etc. combined with “atopic dermatitis” as
keywords. We screened the articles to select those published in international peer-reviewed
journals or books. Discrepancies in the assessment were resolved through discussion
among the authors.

3. Transduction of Itch

It is believed that itch is a signal of danger from various environmental factors or
physiological abnormalities. Itch initially originates from pruritogens, which are caused by
inflammation, dryness or other skin damage. Pruritogens activate certain receptors on the
free nerve endings of sensory neurons. Itch sensation is mediated by primary (peripheral)
sensory afferents, especially C-fibers, which have cell bodies in the dorsal root ganglia
or trigeminal ganglia [8,9]. Pruritogen receptors are mostly G protein-coupled receptors
(GPCRs) that promote the opening of the ion channel group transient receptor potential
cation channels, especially transient receptor potential vanilloid 1 (TRPV1) and transient
receptor potential ankyrin 1 (TRPA1) [10]. TRPV1 and TRPA1 are activated by diverse
stimuli in addition to GPCR ligands, including extracellular pH, adenosine triphosphate
(ATP), prostaglandins, oxidants, capsaicin, allyl isothiocyanate, heat and cold, and TRPV1
and TRPA1, which are involved in the pathology of AD and pruritus [11,12]. The pruritus
signal of peripheral sensory afferents is transmitted through the spinal cord in the dorsal
root ganglia or trigeminal ganglia to the somatosensory cortex, resulting in recognition of
an itch sensation.

In atopic skin, increased penetration of pathogens and antigens and nerve fiber density
with pruritogen receptors elicit severe pruritus following the skin barrier dysfunction or
inflammation (Figure 1). In addition, the reduced itch threshold of atopic skin compared
with that of healthy skin provokes an abnormal itch sensation called “alloknesis” and
“hyperknesis”. Alloknesis is a pathology in which pruritus is elicited by innocuous mechan-
ical stimulation, including contact with fabrics, dressing and undressing [13]. In contrast,
hyperknesis represents increased itch elicited by pruritogens, and the sensation of pruritus
is stronger in patients with AD than in healthy individuals. Moreover, noxious stimuli
evoke pruritus instead of pain in AD patients [14]. Therefore, in AD, itch sensation evokes
the desire to scratch, and scratching induces the production of inflammatory cytokines
by keratinocytes, further exacerbating eczema and inflammation in the skin (itch–scratch
cycle) (Figure 2) [5,13].
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Figure 2. Schematic representation of chronic itch in atopic dermatitis.

In healthy skin, the penetration of pathogens or antigens and excessive water evapora-
tion are prevented by the stratum corneum barrier and tight junction barrier. Furthermore,
the cutaneous nerve fibers terminate in the dermis. In atopic skin, the transepidermal water
loss (water evaporation) is increased and the damaged skin barrier enhances penetration of
pathogens and antigens. Furthermore, recurrent dermatitis is accompanied by intractable
itch, which is induced by inflammation and epidermal hyperinnervation.
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Itch sensation evokes the desire to scratch, and scratching impairs skin barrier function.
The barrier dysfunction leads to the production of inflammatory and itch mediators (cy-
tokines, proteases, neuropeptides, lipids) by cutaneous cells, further exacerbating eczema
and inflammation in the skin. Both barrier dysfunction and inflammation contribute to the
increased number of fibers.

4. Substances and Receptors Inducing Itch in AD
4.1. Histamine

Histamine is involved primarily in acute itch and is a cause of itch in urticaria and
insect bite reactions. Histamine is produced mainly by mast cells, although other cells, in-
cluding basophils, keratinocytes and neurons in the skin, can also release it [15]. Although
four receptors have been identified as histamine receptors, H1, H2, H3 and H4, only the H1
and H4 receptors activate TRPV1 and are considered therapeutic targets for pruritus [16].
However, H1-antihistamines do not improve intractable itch in patients with AD, implying
that chronic itch is largely induced by a histamine-independent pathway [7,8]. The applica-
tion of antihistamines to AD model mice is also known to be ineffective. In NC/Nga mice
(which spontaneously develop AD-like skin lesions when they are raised in conventional
circumstances), long-duration scratching (longer than one second) is not suppressed by the
H1 receptor antagonist chlorpheniramine or the H2 receptor antagonist famotidine and the
H3/4 receptor antagonist thioperamide [17]. Additionally, treatment with the H4 receptor
antagonist JNJ7777120 or JNJ28307474 does not affect the inhibition of scratching behavior
or amelioration of AD in NC/Nga mice [18].

4.2. Proteases

Several proteases produced by cutaneous cells or exogenous biotic factors, including
bacteria, mites and plants, are involved in pruritus in AD. Endogenous proteases include
tryptases, chymases, trypsins, and kallikreins and are produced by keratinocytes, mast
cells, macrophages, dendritic cells, B cells, T cells, and neutrophils [19]. The number of
tryptase-positive mast cells is increased in the upper dermis of the lesional and nonlesional
skin of patients with AD [20]. In addition, various kallikrein proteases are upregulated in
the stratum corneum of patients with AD [21].

Proteases cleave the extracellular domain of protease-activated receptors (PARs), and
then the new amino terminus of the receptor itself acts as a PAR ligand. To date, four
PARs, PAR-1, PAR-2, PAR-3, and PAR-4, have been identified. PAR-1, PAR-2 and PAR-4
are involved in acute itch in mice activated by the specific peptides TFLLR, SLIGRL, and
AYPGKF, respectively [22]. PAR-1, PAR-2, and PAR-4 are expressed in cutaneous nerve
fibers, keratinocytes, mast cells, and macrophages [19]. The number of PAR-2-positive
keratinocytes and the activity of serine proteases are increased in the skin of AD model NC
mice [23]. Plant cysteine proteases, including mucunain (cowhage), bromelain (pineapple
stem), ficin (fig tree latex), and papain (papaya), induce itch via activation of PAR-2 and
PAR-4 [24,25].

H1-antihistamines inhibit itch in mice elicited by agonists of PAR-1 and PAR-4 but
not agonists of PAR-2, suggesting the involvement of PAR-2 in histamine-independent
itch [22]. Given that scratching evoked by trypsin, which acts on PAR-1, PAR-2, and
PAR-4, is suppressed by TRPV1 inhibition or TRPV1 knockout in mice, as well as by the
H1-antihistamine cyproheptadine, trypsin-evoked pruritus is considered to be involved
in histamine-dependent itch [26]. In PAR-2 knockout mice, trypsin- and SLIGRL-evoked
scratching still occur; however, tryptase-evoked scratching is suppressed in these mice
and is also inhibited by an anti-PAR-2 neutralizing antibody and the PAR-2 antagonist
FSLLRY [27]. These findings suggest that different signaling pathways are activated by
different agonists and/or that the roles of PAR-2 in neurons and keratinocytes differ.
The serine protease inhibitor nafamostat mesilate inhibits tryptase-evoked scratching
and spontaneous scratching in AD model NC mice [23,28]. An anti-PAR-2 antibody was
also shown to suppress spontaneous scratching in NC mice [23]. Topical application of
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tacrolimus (the calcineurin inhibitor FK506) inhibits SLIGRL-evoked scratching, suggesting
that its antipruritic effect is due to PAR-2 signaling inhibition [29].

4.3. Cytokines

Some cytokines are responsible not only for inflammation but also for itch sensation.
Interleukin (IL)-31 is a cytokine mainly produced by type 2 helper T cells (Th2 cells)
that exhibits upregulated expression in the lesional skin of patients with skin disease
accompanied by itch, including AD, contact dermatitis and prurigo nodularis [30–32]. In
addition to Th2 cells, mast cells, macrophages, dendritic cells, and eosinophils also produce
IL-31 [33]. It has been reported that IL-31 participates in the itch sensation and promotes
long-lasting scratching behavior in NC/Nga and BALB/c mice [34]. The IL-31 receptor is a
heterodimer that consists of IL-31 receptor A and an oncostatin M receptor. IL-31 evokes
itch directly via IL-31 receptor A expressed in sensory neurons via both TRPV1 and TRPA1
activation [35]. A missense mutation in the oncostatin M-specific receptor subunit β gene
was found in families affected by familial primary localized cutaneous amyloidosis, an
autosomal-dominant skin disease associated with chronic, severe pruritus [36]. It has been
reported that the humanized anti-human IL-31 receptor A monoclonal antibody CIM331
(nemolizumab) reduces the severity and pruritus score of AD [37,38].

A second cytokine contributing to itch is thymic stromal lymphopoietin (TSLP), which
is secreted primarily by keratinocytes, mast cells, and dendritic cells and promotes Th2
immune responses [39,40]. The expression of TSLP is upregulated in the epidermal ker-
atinocytes of AD patients [41,42]. TSLP binds a heterodimeric receptor comprising the
IL-7 receptor α chain and TSLP receptor expressed in dendritic cells, T cells, B cells, mast
cells, basophils, and eosinophils [43,44]. TSLP directly elicits itch via the TSLP receptor
on TRPA1-positive sensory neurons [42]. Interestingly, in return, scratching induces the
production of TSLP by keratinocytes, leading to an itch–scratch cycle [45].

Both IL-4 and IL-13 are well-known Th2 cytokines overexpressed in AD skin. It has
been shown that IL-4 and IL-13 are involved in chronic but not acute itch by directly activat-
ing sensory neurons via the IL-4 receptor α chain [46]. The IL-4 receptor α (IL-4Ra) chain is
shared by IL-4 and IL-13 receptors and activates janus kinase (JAK) 1, suggesting that block-
ade of IL-4Ra or JAK1 signaling in sensory neurons might be a useful treatment for chronic
itch. In fact, the fully human monoclonal antibody dupilumab, which blocks binding to IL-
4Ra, reduces the severity and pruritus score of AD [47,48]. Moreover, baricitinib, a selective
JAK1 and JAK2 inhibitor, reduces pruritus and inflammation in patients with moderate to
severe AD [49]. In addition, IL-13 antibodies, lebrikizumab and tralokinumab, improve
AD symptoms although they do not show strong effect on pruritus [50,51]. Overall, more
biologic drugs blocking IL-4 and IL-13 are under development and will be available in the
future for AD treatment [52–54].

4.4. Neuropeptides

Neuropeptides play key roles in modulating neuronal activity. Substance P is a
tachykinin neuropeptide that is involved in AD itch [55]. Substance P is secreted by
sensory neurons and keratinocytes and elicits itch by histamine-dependent and histamine-
independent mechanisms. A relatively high density of substance-P-containing nerve
fibers has been observed in AD skin [56]. Neurokinin 1 receptor (NK1R) is a substance P
receptor involved in itch and is expressed in sensory neurons, mast cells, keratinocytes,
and fibroblasts. These cells release additional mediators inducing pruritus following
stimulation with substance P. Although some patients did not respond, a study showed
that the oral neurokinin 1 receptor antagonist aprepitant demonstrated efficacy in the
treatment of intractable pruritus in AD and prurigo nodularis [57].

Substance P and calcitonin-gene-related peptide (CGRP) have roles in itch sensation
hypersensitivity and neurogenic inflammation [58]. The release of both substance P and
CGRP from sensory neurons excited by histamine leads to local vasodilation, plasma ex-
travasation, and mast cell degranulation, whose response is neurogenic inflammation [59,60].
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These findings indicate that neuropeptides play important roles in chronic itch under the
pathological conditions of AD.

4.5. Lipids

Lipid mediators are produced by various pathophysiological stimuli that contribute
to the pathogenesis of various inflammatory skin diseases. The roles of lipid mediators in
the pathogenesis of AD and intractable pruritus remain largely unknown. Arachidonic
acid released from membrane phospholipids is converted by each synthase into lipid medi-
ators, including prostanoids, leukotrienes (LTs), and hydroxy-eicosatetraenoic acids [61].
Prostanoids, encompassing prostaglandin (PG) and thromboxane (TX), are synthesized by
cyclooxygenase. Finally, arachidonic acid is metabolized to PGD2, PGE2, PGF2α, PGI2, and
TXA2 by their specific synthesis pathways. Prostanoids are released from cells immediately
after synthesis and are chemically and metabolically unstable. These lipids thereby act on
target cells only locally via GPCRs [61]. The concentrations of PGE2 and LTB4 are elevated
in the lesional skin of patients with AD, suggesting that these mediators are involved in
biochemical processes leading to AD through cutaneous inflammation [62]. It has been
demonstrated that PGE2 acts as a weak pruritogen and potent vasodilator in normal skin
as well as in the skin of patients with AD without induction of protein extravasation [63].
Furthermore, an antagonist of LTB4 receptor, ONO-4057, has been shown to inhibit spon-
taneous scratching of NC mice with chronic dermatitis [64]. A stable analog of TXA2,
U-46619, has been shown to elicit itch in mice through thromboxane prostanoid receptors
expressed in cutaneous nerve fibers and keratinocytes [65]. This TXA2-induced scratching
behavior is inhibited by the thromboxane prostanoid receptor antagonist ONO-3708 and
thromboxane prostanoid receptor deficiency in mice [65].

On the other hand, topical application of PGD2, PGI1, PGE1, PGE2 or arachidonic acid
was shown to suppress scratching in NC/Nga mice with AD, while the cyclooxygenase
inhibitor indomethacin enhanced scratching [66]. Among the above lipid mediators, PGD2
is the most effective mediator, and its inhibition depends on the prostanoid DP1 receptor
but not on the DP2 receptor, indicating the therapeutic potential of prostanoid DP1 receptor
agonists [66].

4.6. Opioids

Opioids are peptides that have pharmacological effects similar to those of morphine.
The endogenous opioids β-endorphin and dynorphins activate the µ-opioid receptor and
κ-opioid receptor, and the balance of this activation plays pivotal roles in the regulation
of pruritus in both the central and peripheral nervous systems [67]. Opioid receptors are
GPCRs that also recognize exogenous opioids, such as opiates and alkaloids. It is thought
that opioid receptors can contribute to cell differentiation, migration, wound healing, and
immunity in human skin [68]. The expression of µ-opioid receptor has been observed in
the epidermal keratinocytes and primary sensory afferents of normal skin [69,70]. The
serum concentration of β-endorphin is increased in patients with AD and is correlated
with both itch intensity and disease severity [71]. Opioid-induced itch is a well-known
side effect of pain treatment with morphine, a µ-opioid receptor agonist. In contrast, the
µ-opioid receptor antagonist naloxone and κ-opioid receptor agonist nalfurafine decrease
pruritus in patients with AD, chronic renal failure or cholestasis [68]. Furthermore, topical
application of the µ-opioid receptor antagonist naltrexone also inhibits pruritus in patients
with AD [72]. Phototherapy, such as ultraviolet A (UVA) treatment, UVA1 treatment,
narrow band (NB)-UVB treatment and excimer lasers or lamps, improves pruritus and
dermatitis [73,74]. It has been reported that dynorphin levels are downregulated in the
epidermis of AD patients and that psoralen-ultraviolet A (PUVA) therapy rescues the
downregulation and visual analog scale (VAS) scores [75]. Thus, some studies suggest that
opioids may be directly associated with modulation of itch.
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5. Cutaneous Nerve Fibers

Various receptors related to itch are expressed on cutaneous nerve fibers that terminate
in the dermis of healthy skin. An increased epidermal nerve fiber density is observed
in patients with AD and animal models of AD, suggesting that a relatively high nerve
fiber density is partly responsible for pruritus in the skin [76,77]. The increased numbers
of nerve fibers in the epidermis are susceptible to eliciting itch in response to exogenous
mechanical, chemical or biological stimuli or endogenous pruritogens [78]. It is believed
that the elongation and high density of cutaneous nerve fibers are caused by an imbalance
among axonal guidance molecules, nerve elongation factors and nerve repulsion factors
produced by epidermal keratinocytes [79]. Nerve growth factor (NGF) is a major nerve
elongation factor involved in nerve growth and repair, and its expression is increased in
keratinocytes, mast cells and the serum in AD [80]. It has been shown that the plasma levels
of substance P and NGF are useful markers of disease activity in AD [80,81]. The local
concentration of NGF is higher in the lesional skin of AD than in healthy skin. Artemin is
another nerve elongation factor that accumulates in the lesional skin of patients with AD,
suggesting its involvement in the pathogenesis of AD. Furthermore, artemin is involved
in epidermal hyperinnervation and hypersensitivity to warm sensations, mimicking the
warmth-induced itch observed in AD [82,83].

Semaphorin 3A is a nerve repulsion factor that is mainly distributed in the basal layer
of normal skin and inhibits aberrant penetration of nerve fibers into the epidermis [84].
However, the expression of semaphorin 3A is decreased in the skin of AD patients com-
pared with that of healthy controls. Notably, the cutaneous nerve density is modulated
by the balance between nerve elongation factor expression and nerve repulsion factor
expression. Similar findings have been reported in the lesional skin of AD model NC/Nga
mice [77]. Therefore, regression of the increased density of nerve fibers is expected to be
effective against itch, and normalization of imbalances in the expression levels of nerve
elongation factors and nerve repulsion factors may be a useful treatment approach.

Cyclosporine A is an immunosuppressant used for the treatment of inflammatory
diseases, preventing rejection of allogeneic transplants and the treatment of severe AD.
Intraperitoneal injection of cyclosporine A was shown to reduce the epidermal nerve
fiber density, scratching numbers and dermatitis scores in NC/Nga mice with AD [85].
Phototherapy, specifically PUVA and NB-UVB irradiation, also cause diminution of the
epidermal nerve density and pruritus by normalizing imbalances in the expression levels of
axon guidance molecules in AD lesional skin [86,87]. Moreover, excimer lamp irradiation
has antipruritic effects induced by causing epidermal nerve fiber degeneration [88].

6. Skin Dryness

Dryness is a common finding in the skin of patients with AD due to defects in barrier
function [89]. Dysfunction of the skin barrier leads to a loss of essential internal water in
the skin, resulting in increased transepidermal water loss (TEWL) and decreased stratum
corneum hydration. In addition, skin dryness causes various physiological responses.
Elevated TEWL and increased TSLP expression in human skin with the barrier function
disrupted by tape stripping have been reported [90]. Furthermore, it has been shown that
hypertrophy and degranulation of dermal mast cells caused by exposure to low humidity
correlate with seasonal exacerbation of itch and dermatitis [91]. Because the granules
of mast cells contain histamine, serotonin, LTB4, proteases, and pruritogens, xerosis is
associated with diverse induction processes of pruritus.

Repeated application of the surfactant sodium dodecyl sulfate or acetone, diethyl ether
and water (AEW) to mouse skin induces dry skin characterized by increased TEWL and
scratching behavior [92,93]. In AEW-treated dry skin mice, scratching behavior is inhibited
by the opioid antagonists naloxone and naltrexone, but these drugs are not effective in
mast-cell-deficient mice [92]. Moreover, spontaneous scratching can be attenuated with
an anti-PAR-2 antibody in AEW-induced mice [94]. This model mouse exhibits alloknesis
and hyperknesis, suggesting that the abnormal itch sensations in AD are partly caused by
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modulating skin dryness [94–96]. These studies indicate the release of various endogenous
mediators even under only dry skin conditions.

7. Dysregulation of the Expression of Antimicrobial Peptides

Antimicrobial peptides or host defense peptides have the ability to kill or inacti-
vate pathogenic microorganisms. In the skin, these molecules are mainly produced by
keratinocytes as part of innate immune system [97]. A large number of antimicrobial
peptides have been identified in the human skin, and among them the human β-defensins
(hBDs), cathelicidin LL-37, and S100 proteins are well-characterized. These peptides can
be either constitutively expressed or inducible following infection, tissue damage, and
pro-inflammatory cytokines [98]. In addition to their broad-spectrum antimicrobial activ-
ity, the skin-derived antimicrobial peptides control diverse biological functions, such as
inflammatory response regulation, cytokine and chemokine production, cell migration,
proliferation, and promotion of angiogenesis and wound healing [98,99].

The induction of antimicrobial peptides in the epidermal keratinocytes is impaired in
lesional skin in patients with AD compared to patients with psoriasis (which is associated
with a comparable degree of epidermal barrier impairment as in AD), explaining the
frequent bacterial and viral infections, particularly with Staphylococcus aureus, in patients
with AD [100,101]. The reduced expression of antimicrobial peptides in AD is partly due to
the increased production of Th2 cytokines such as IL-4 and IL-13 that inhibit the expression
of antimicrobial peptides [102,103]. In contrast to AD, high levels of antimicrobial peptides
and the low prevalence of infections have been observed in psoriatic lesions [100,102]. The
expression of hBDs, LL-37 and S100A, in psoriatic skin is enhanced by IL-1β, IL-17A, IL-22,
and interferon-γ [98,104]. Therefore, restoration of antimicrobial peptides in the skin of
patients with AD might play a protective role against infections in these patients.

In addition to protecting against infections, antimicrobial peptides are thought to
restore the damaged skin barrier in AD. In fact, hBD-3, LL-37, and S100A7 have been found
to improve the skin barrier function through induction of distribution/localization of tight
junction proteins in human epidermal keratinocytes [105–107]. Furthermore, antimicro-
bial peptides control the skin innervation by regulating the expression of axon guidance
molecules. For example, LL-37 has been shown to upregulate the nerve repulsion factor
semaphorin 3A in keratinocytes [108], while both hBD-3 and LL-37 suppress the production
of the nerve elongation factors artemin and NGF [109]. These findings suggest that an-
timicrobial peptides might be potential therapeutic agents for AD. However, antimicrobial
peptides may also be harmful in AD. For instance, it has been found that hBDs and LL-37
promote the release of inflammatory mediators such as histamine, eicosanoids, and IL-31
from mast cells and increase vascular permeability [110–112]. Moreover, hBDs stimulate T
cells to produce IL-4, IL-13, and IL-31, which are implicated in the pathogenesis of AD [113].
Furthermore, the expression levels of hBD-2 are higher in the lesional skin compared with
nonlesional skin of AD and correlate with the disease severity and TEWL [114]. Taken
together, these studies suggest that antimicrobial peptides could potentially be a double-
edged sword in the pathogenesis of AD through regulation of skin inflammation, barrier
function, and innervation.

8. Conclusions

Intractable and intense itch is a remarkable symptom of AD that markedly affects
patients’ quality of life. Given that itch evokes scratching and worsens inflammatory
eczema in AD skin, its alleviation is important in the treatment of AD. The mechanisms
of pathogenesis and exacerbation of AD are still unclear. Although the number of studies
related to the mechanisms of itch and transduction is increasing rapidly, therapeutic agents
for intractable itch still need to be developed. The development of novel therapeutic
strategies for patients with AD should involve management of pruritus, leading to an
improvement in patient quality of life.
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