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Spectral phase transitions in optical parametric
oscillators
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Driven nonlinear resonators provide a fertile ground for phenomena related to phase tran-

sitions far from equilibrium, which can open opportunities unattainable in their linear coun-

terparts. Here, we show that optical parametric oscillators (OPOs) can undergo second-order

phase transitions in the spectral domain between degenerate and non-degenerate regimes.

This abrupt change in the spectral response follows a square-root dependence around the

critical point, exhibiting high sensitivity to parameter variation akin to systems around an

exceptional point. We experimentally demonstrate such a phase transition in a quadratic

OPO. We show that the divergent susceptibility of the critical point is accompanied by

spontaneous symmetry breaking and distinct phase noise properties in the two regimes,

indicating the importance of a beyond nonlinear bifurcation interpretation. We also predict

the occurrence of first-order spectral phase transitions in coupled OPOs. Our results on non-

equilibrium spectral behaviors can be utilized for enhanced sensing, advanced computing,

and quantum information processing.
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Photonic resonators appearing in myriad forms ranging from
macro-scale to nano-scale have been the mainstay of light-
based fundamental studies and applications1. The ability to

engineer the resonant spectral features of these cavities unveil
tremendous possibilities in sensing and light–matter interactions.
The interplay of gain/loss and coupling in coupled linear pho-
tonic resonators can lead to the occurrence of a multitude of
intriguing phenomena ranging from Fano resonance, electro-
magnetically induced transparency,2 and exceptional point asso-
ciated with parity-time symmetry breaking3,4.

Strong nonlinearities in photonic resonators can lead to a
variety of rich phenomena. Nonlinear driven dissipative systems
existing in non-equilibrium steady states exhibit self-
organization5, pattern formation6–10, and emergent phase and
dynamical phase transitions11. Other salient examples include
behaviors in laser systems12–14 at threshold15 and around mode-
locking transitions16–18, soliton-steps in Kerr microresonators19,
and in polaritonic quantum fluids20. Similar phenomena are also
explored outside photonics for instance in the form of
Rayleigh–Benard convection and Faraday waves21,22. Specific to
the parametric oscillation regime, a variety of nonlinear dyna-
mical behaviors has been predicted and demonstrated, such as bi-
stability, self-pulsation, limit-cycles23, pattern formation6–10 and
phase transitions24,25, albeit not explicitly in the spectral domain.

Phase transition marks a universal qualitative regime change in
system properties as the control parameter is varied around a
critical/transition point26. The behavior of the system around the
critical point is characterized by the order parameter (OP).
Second-order phase transition displays continuity in the OP while
exhibiting a discontinuity in the derivative of the OP. On the
other hand, first-order transition is known to possess a dis-
continuous OP around the transition point.

Realizing phase transitions based on the optical parametric
processes can provide unique opportunities for sensing. For
instance, in phase transition-based detectors and transition-
edge sensors27, the reset time (return time to the critical bias
point) can be significantly reduced using an ultrafast nonlinear
process compared to thermodynamic transitions. Moreover,
similar to the exceptional points in optical systems3,4, an
enhanced sensitivity28,29 can be realized using a driven
dissipative-based phase transition. However, in contrast to
exceptional points in PT-symmetric systems, this enhancement
is not accompanied by eigenvectors non-orthogonality and can
potentially provide high sensitivity combined with high
precision30,31. The noiseless nature of parametric amplifica-
tion32 can be another unique resource for enhancing the
signal-to-noise ratio; a property that is not readily available in
current implementations of exceptional points. Divergent
susceptibility of the critical point supported by the parametric
gain in a driven-dissipative setting can open unexplored ave-
nues in the context of non-Hermitian sensing.

In this work, we exploit the rich dynamics of nonlinear
driven dissipative systems in OPOs to formulate and engineer
their spectral behaviors as phase transitions. We demonstrate
second-order spectral phase transition in quadratic OPOs
and identify the critical point demarcating the degenerate and
non-degenerate oscillation regimes and the associated spon-
taneous symmetry breaking. We map the OPO dynamics to
the universal Swift–Hohenberg equation33,34 and extend it to
Kerr OPOs. We predict the occurrence of complex collective
behavior like first-order phase transitions in coupled OPOs.
Our results on non-equilibrium spectral behaviors can be uti-
lized for enhanced sensing that leverages the diverging sus-
ceptibility of the critical point, and advanced computing
paradigms exploiting the criticality of the spectral phase
transition.

Results
We consider a doubly resonant OPO35,36 as a driven-dissipative
system in a non-equilibrium steady state. The OPO driving is
accomplished by the synchronous pulsed pump centered around
the frequency 2ω0, while the resonant signal and the idler con-
stitute the longitudinal modes of the resonator centered around
the half-harmonic frequency (ω0). The interaction among the
modes is engendered by the quadratic nonlinearity (Fig. 1a). The
inherent coupled nature of the signal and idler in a doubly
resonant OPO gives rise to rich nonlinear dynamics including the
appearance of bi-phase states around degeneracy37. The mutual
interplay between the cavity detuning and the temporal group-
velocity dispersion (GVD) provides another degree of freedom,
which governs the dynamics of signal/idler in synchronously
pumped doubly resonant OPOs. This leads to discontinuities
typical of a second-order phase transition around the critical
cavity detuning (Fig. 1b, c). This spectral phase transition
demarcates a sharp boundary between the degenerate and non-
degenerate parametric oscillation.

In the Continuous Wave (CW)-driven high-finesse limit, the
OPO is governed by the mean-field evolution equation:

∂a
∂ξ

¼ ð�α þ iΔϕÞa þ ga� � i
β2
2
∂2a
∂t2

� ϵ2

2u2

Z Lu

0
ðLu � τÞaðt � τÞ2dτ

� �
a�;

ð1Þ

where, a describes the signal envelope under the slowly varying
envelope approximation limit. Here ξ, t refers to the slow time
and the fast time, respectively38. α, Δϕ, β2, and g denote the loss,
detuning, GVD, and the phase-sensitive parametric gain,
respectively. g in the CW-limit is expressed as ϵbL, where b is the
pump amplitude. L refers to the cavity round trip length where
the nonlinear interaction is encountered, ϵ includes the strength
of the nonlinear interaction and u is the walk-off parameter.
The last term on the right hand side of the equation is responsible
for the gain saturation. Each of these terms is normalized by
suitable normalization factors (see Supplementary Information,
Section 3).

We assume a perturbation in the field (signal/idler) around the
half-harmonic frequency (ω0) to be of the form: a= a+eiδωt+
a−e−iδωt. We perform linear stability analysis (neglecting gain
saturation) to determine the most unstable longitudinal mode,
which is given as:

d
dξ

aþ
a��

� �
¼ �α þ iΓ g

g� �α� iΓ

� �
aþ
a��

� �
ð2aÞ

λ± ¼ �α±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgj2 � Γ2

q
ð2bÞ

where Γ ¼ Δϕ þ β2
2 ðδωÞ2. Analyzing the eigenvalue (growth

rate) (Eq. (2b)) of the linear stability matrix we arrive at two
scenarios. First, when sgn(Δϕ)= sgn(β2), we find that the most
unstable frequency of oscillation is δω= 0, and the corresponding
threshold (i.e., when λ+= 0) is jgjth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 þðΔϕÞ2

p
, leaving the OPO

in the degenerate phase. However, when sgn(Δϕ)=−sgn(β2), the
most unstable frequency of oscillation is given by δω ¼ j 2Δϕβ2 j12,
and the associated threshold is ∣g∣th= α, leaving the OPO in
the non-degenerate phase. This can be understood as cavity
detuning (Δϕ) counterbalancing the GVD induced detuning in
the non-degenerate regime. This can happen for positive cavity
detuning in the anomalous regime, where GVD induced detuning
is negative and they cancel exactly at ω0 ± δω, thereby experien-
cing higher gain in the non-degenerate phase resulting in
OPO selecting non-degeneracy over degenerate oscillation. This
proves the existence of the spectral phase transition which is
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demonstrated in Fig. 2. The spectral phase transition takes place
around the detuning, Δϕ= 0. The behavior in the normal GVD
regime (Fig. 2d) is reversed as compared to the anomalous GVD
scenario (Fig. 2b). Results obtained experimentally (Fig. 2c, e)
agree well with the simulations.

The spectral transition can be interpreted as an order-disorder
transition whereby the OPO transits from an ordered bi-phase
state in the degenerate regime, to a disordered phase state in the
non-degenerate regime with the signal assuming random phases
and the idler following it (see Supplementary Information, Sec-
tion 15). Thus the critical point marks the onset of the sponta-
neous U(1) symmetry breaking. In our context, we define OP as,
OP ¼ dλmax

dΔϕ , which represents the derivative of the gain with
respect to the detuning. The gain (λmax =maxδω λþ) i.e., the
maximum eigenvalue is obtained using Eq. (S8) (see Supple-
mentary Information, Section 4). The phase-dependent para-
metric gain is sensitive to detuning induced phase accumulation
more acutely in the degenerate regime as opposed to the non-
degenerate regime where it varies slowly with detuning. The
order-disorder transition has important implications in the phase
noise and coherence properties of the OPO. While the phase
noise of OPO operating at degeneracy is dominated by the
driving pump, in the non-degenerate regime phase diffusion leads
to the Schawlow-Townes limit for each of the signal and the
idler39, albeit with anti-correlation in their phases and potential
phase-sum quadrature squeezing40. The phase transition
description reveals interesting correlation properties in the dis-
ordered regime i.e., the non-degenerate regime. The phase dif-
ference diffusion follows a power-law dependence as a function of
the detuning (i.e., distance from the critical point) which mimics
the behavior of correlation functions in continuous phase tran-
sitions (see Supplementary Information, Section 9).

We further characterize the quadratic OPO around the phase
transition point (Fig. 3). The critical point coincides with the
maximum output power of the OPO as observed numerically and
experimentally (Fig. 3a, b). This behavior can be explained by the
gain calculations (inset of Fig. 3c). The threshold is a function of
the detuning and the dispersion (see Supplementary Information,
Section 4). The OP displays characteristics (Fig. 3c) typical of
second-order phase transitions or soft transitions41. In addition,
in the pulsed regime as the OPO undergoes the phase transition,
the signal and idler combs split and interfere with each other with
a beat frequency equal to the difference of their respective carrier-
envelope offset frequencies. This leads to the spontaneous
emergence of beat notes as shown in the measurement results of
Fig. 3d. This is a manifestation of a critical slowing down phe-
nomenon, where the time period of the beat-note tends to infinity
as we approach the critical point from the non-degenerate regime.
Note that, the detuning range of the parametric oscillation, as well
as the ratio of degenerate and non-degenerate regimes above the
threshold, is determined by the gain, which is a function of the
pump power and the cavity dispersion (see Supplementary
Information, Section 11).

When two OPOs are coupled, the transition from degenerate to
non-degenerate operation can occur as a first-order phase tran-
sition. Figure 4a depicts a schematic representation of the coupled
OPO configuration. In the presence of the coupling, the compe-
tition between the two second-order phase transitions (as shown
by the gain curve in Fig. 4d) results in the emergence of a first-
order spectral phase transition (Fig. 4e). This first-order transi-
tion point causes a sudden discontinuity/hard transition in the
spectrum (Fig. 4b, c) as the coupled OPO transits from the non-
degenerate to the degenerate spectral regime (Fig. 4e). The cou-
pling in the linear regime induces a mode splitting which is

Fig. 1 Spectral phase transition in nonlinear photonic resonators. a OPO with the resonant signal and idler in the cavity with variable detuning (Δϕ) and
second-order group-velocity dispersion (β2). The nonlinearity can be provided by a quadratic ðχ 2ð ÞÞ or a Kerr ðχ 3ð ÞÞ medium. b A second-order phase
transition occurs at the critical detuning that marks the transition between the degenerate and the non-degenerate spectrum. c This transition is
characterized by a continuous order parameter, but a discontinuous derivative of the order parameter at the critical point (CP).
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expected to introduce a second-order phase transition around the
split resonances as evident from the plot of OP in Fig. 4d. This
can be understood by the argument that a positive cavity
detuning applied to individual cavities can appear both as a
positive or a negative detuning in the coupled basis depending on
the relative magnitude of the cavity detuning and the coupling
strength. Further details regarding the modeling of coupled OPOs
are presented in the supplementary information (see Supple-
mentary Information, Section 6, 7).

The demonstrated spectral phase transitions can be described
by the universal Swift–Hohenberg equation which is also known
to govern nonlinear pattern formation dynamics33,34. The map-
ping of the OPO dynamics to the Swift–Hohenberg equation is
derived in S8 (see Supplementary Information, Section 8). The
same equation we derived in this context can describe degenerate
four-wave mixing dynamics contingent to certain conditions.

Thus, spectral phase transitions are also expected to occur in Kerr
OPOs (Fig. 5a). For the Kerr OPO, we consider a conservative
system governed by the nonlinear Schroedinger equation.
∂A
∂z ¼ �i β22

∂2A
∂τ2 þ iγjAj2A. γ represents the effective third-order

nonlinear co-efficient and β2 stands for the second-order GVD
co-efficient. Degenerate parametric oscillation can be realized in a
Kerr medium using dual pumps (Fig. 5b, c)42,43. We represent the
dual pumps as having amplitudes A1 and A2 and assume that they
have equal power (P= ∣A1∣2= ∣A2∣2) and possesses a detuning of
Δ from the center of degeneracy. Owing to the symmetry, we
assume the parametrically generated signal (As) and idler (Ai) to
be detuned by δω from the center of degeneracy. We express the
field envelope as given by the following expansion: A(z, τ)=
A1eiΔτ+ A2e−iΔτ+ As(z)eiδωτ+ Ai(z)e−iδωτ. Parametric gain at
the onset of the phase conjugation parametric process can be
determined via a linear stability analysis. The growth rate due to

(a) Schematic

Anomalous Normal

50:50 Splitter

(SP) dB

(SP) dB

Fig. 2 Second-order spectral phase transition in an OPO. a Schematic of the experimental setup, which implements the spectral phase transition in a
guided-wave OPO based on PPLN. BS beam splitter, OC output coupler, SPD slow photo-detector, FPD fast photo-detector, SHG second harmonic
generation. Spectrum (SP) as a function of detuning obtained through numerical simulation b in anomalous dispersion regime (dotted line represents the
theoretically expected spectral splitting, which in the non-degenerate regime is given by: δω ¼

ffiffiffiffiffiffiffiffiffi
�2Δϕ
β2

q
, d in the normal dispersion regime. Experimental

results capturing the second-order critical point c in anomalous dispersion regime, e in normal dispersion regime. It closely follows the square-root
behavior (dotted line) in the non-degenerate regime. Color bar represents power spectral density in dB.
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the phase conjugation parametric process can be expressed as eλz

where λ is given by42:

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6γP � β2ðΔ2 � ðδωÞ2Þ� �

2γP þ β2ðΔ2 � ðδωÞ2Þ� �q
ð3Þ

The spectral phase transition is shown in Fig. 5d. The fact that the
associated critical point is second-order is established by ana-
lyzing the OP as depicted in Fig. 5e.

Discussion
The abrupt frequency splitting around the critical point in these
spectral phase transitions can be utilized for enhanced sensing. A
sensor can be based on the second-order spectral phase transition
biased at the critical point, that will exhibit a scaling of δω � ε

1
2,

where ε is a small perturbation (e.g., in detuning) under con-
sideration, similar to a second-order exceptional point28. However,
if we leverage the first-order spectral phase transition for a critical
detector, we can utilize the discontinuity in the spectrum for highly
enhanced sensitivity27,44. The proportionality constant in the scal-
ing law is a function of the cavity GVD. The smaller the dispersion,
higher is the sensitivity (see Supplementary Information, Section 5).
Spectral phase transitions in OPOs can also open opportunities for
computing and quantum information processing. Phase transition
occurring at the oscillation threshold of OPOs has been utilized as a
promising computing resource in optical Ising machines37,45. Phase
transition occurring in the spectral domain can provide additional
computing capabilities. For example, in the OPO-based Ising

machines, which have been strictly operating at degeneracy so
far37,45, the spectral phase transition can act as an additional search
mechanism leveraging the symmetry breaking and additional phase
noise in the non-degenerate regime. Moreover, our results on
spectral phase transition can extend the foundation for phase
transition-based computing platforms46.

Tuning the spectrum of parametric oscillation between
degeneracy and non-degeneracy is a well-known concept, and the
same is achieved by manipulating the phase-matching curve via
temperature, voltage control, etc.47. Distinctively, the presented
spectral phase transition occurs as a multimode co-operative
phenomenon14 triggered by cavity phase detuning, where dis-
persion plays a crucial role, while the phase matching enabled by
the periodically poled waveguide remains unaltered.

The presented spectral phase transition is in sharp contrast to
intensity-dependent bifurcation ubiquitous in nonlinear optical
systems. The spectral bifurcation doesn’t arise due to the gain
saturation induced nonlinearity (see Supplementary Information,
Section 9). This is also corroborated by the existence of the
quantum image of this above-threshold phenomenon below
threshold (where gain saturation is absent) (see Supplementary
Information, Section 10) which is consistent with the theoretical
predictions in the spatial domain48.

In summary, we have performed complete characterization of
this second-order phase transition both in the temporal and in
the spectral (optical and radio-frequency) domain. Experimental
results are backed by numerical simulations of the underlying
spatio-temporal phenomena and corroborated using mean-field

(SP) dB

Fig. 3 Characterization of the second-order critical point. OPO average output power as a function of cavity detuning obtained numerically (a) and
experimentally (b) using a slow detector. This demonstrates the maximum conversion efficiency at the critical point. c Continuous order parameter but
discontinuous derivative typical of a second-order phase transition. The inset shows the gain curve as a function of cavity detuning, which has its maximum
at the critical point. d Spontaneous emergence of beat-note around the critical point. Measured RF spectrum (SP) captured using a fast detector in a multi-
heterodyne measurement showing co-existence of the signal and idler combs in the non-degenerate regime and their offset tuning.
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analytical descriptions. We have shown that some of the non-
equilibrium spectral behaviors of OPOs can be formulated as a
universal phase transition.

The semi-classical spectral phase transition considered in this
work can be extended to the quantum regime below threshold
opening a path toward a quantum phase transition in the spectral
domain. The ability to engineer the dispersion of integrated χ 2ð Þ

and χ 3ð Þ devices49 will allow manipulation of the spectral phase
transition behavior. Probing the performance difference of sen-
sors based on second-order phase transitions and those leveraging
second-order exceptional points28,29 is a subject of future work.

Methods
Experimental setup. The experimental schematic is shown in Fig. 2a, a detailed
version of which is presented as Fig. S1 (Supplementary Information, Section 2).
The OPO pump is derived from the mode-locked laser through second harmonic
generation (SHG) in a quasi-phase matched periodically poled lithium niobate
(PPLN) crystal. The pump is centered around 775 nm. The main cavity is com-
posed of a PPLN waveguide (reverse proton exchange, 40 mm long, periodically
poled to phase-match 775–1550 nm interaction)50 with fiber coupled output ports,
fiber phase shifter, free-space section (to adjust the pump repetition rate to be
multiple of the free spectral range of the cavity.), additional fiber segment to
engineer the cavity dispersion, and a beam splitter which provides the output

coupling. All fibers and devices existing in the optical path are single mode,
polarization maintaining and connectors are angle polished. Additional details
pertaining to the experimental setup/methods are provided in the supplementary
information (Supplementary Information, Section 2).

System modeling. The nonlinear interaction inside the PPLN waveguide is gov-
erned by:

∂a
∂z

¼ � αðaÞ

2
� i

βðaÞ2

2!
∂2

∂t2
þ ¼

" #
a þ ϵa�b ð4aÞ

∂b
∂z

¼ � αðbÞ

2
� u

∂

∂t
� i

βðbÞ2

2!
∂2

∂t2
þ ¼

" #
b � ϵa2

2
ð4bÞ

The evolution of the signal(a) and the pump(b) envelopes in the slowly varying
envelope approximation is dictated by Eqs. (4a) and (4b), respectively35. The effects of
higher-order GVD β2, β3, group-velocity mismatch (GVM) (u), the back-conversion
from the signal to the pump are included. The round-trip feedback is given by:

aðnþ1Þð0; tÞ ¼ F�1 G
�1

2
0 ei

�ϕF aðnÞðL; tÞ
n on o

ð5aÞ

�ϕ ¼ Δϕþ lλðaÞ

2c
ðω � ω0Þ þ ϕ2

2!
ðω � ω0Þ2 þ ¼ ð5bÞ

Equation (5b) takes into consideration the round-trip loss which is lumped into
an aggregated out-coupling loss factor G0, the GVD (ϕ2) of the feedback path and

(a)

(SP) dB

Fig. 4 First-order spectral phase transition in coupled OPOs. a Schematic configuration of a coupled OPO (coupling factor (κ)). Simulated spectrum (SP)
as a function of the cavity detuning b in the normal dispersion regime, c in the anomalous dispersion regime. d Order parameter as a function of detuning
showing the discontinuity at the location of the first-order transition point. The gain curve is also plotted alongside. The OPO selects the gain maximum and
therefore doesn't follow the dashed portion of the gain curve. This gain competition between two second-order critical point gives rise to the first-order
transition point. e The spectrum considering the wavelength experiencing the maximum gain around which the signal/idler is centered. At the first-order
transition, there is a discontinuous jump from the non-degenerate spectrum to the degenerate spectrum.
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the detuning (Δϕ) (Δϕ= πl+ ϕ0, l is the cavity length detuning in units of signal
half-wavelengths in vacuum) of the circulating signal from the exact synchrony
with respect to the pump. The effective second-order nonlinearity co-efficient (ϵ) is
related to the SHG efficiency35. The round-trip number is denoted by n and the
cavity length by L. The equations are numerically solved adopting the split-step
Fourier algorithm.

To explain the spectral phase transition phenomenon numerically and
analytically we adopt a two-pronged approach. First, we develop a mean-field
model in the high finesse, CW driven limit and provide an analytical description
for the occurrence of the spectral phase transition. This model, though does not
inherit all the characteristics of the synchronously pumped optical parametric
oscillator, is able to encapsulate the qualitative nature of the spectral phase
transition. Secondly, we calculate the eigenvalue which is related to the gain of the
signal/idler per roundtrip by assuming the pump in the OPO to be effectively CW
having an average power being equal to the peak power of the pump pulse (see
Supplemental Information, Section 4).

For Kerr OPO, the evolution of the optical fields in the non-resonant Kerr
nonlinear medium is governed by the nonlinear Schrodinger equation. The larger
eigenvalue (λ) of the linear stability matrix of the phase conjugation nonlinear
interaction determines the gain and is obtained in the undepleted pump

approximation (see Supplementary Information, Section 14). However, in a Kerr
nonlinear medium additional nonlinear interactions, namely the modulation
instability and four-wave mixing Bragg scattering accompany the phase
conjugation process responsible for the phase-sensitive degenerate parametric
oscillation. Spectral phase transitions can also be investigated in a driven-
dissipative setting in a Kerr resonator, with the detuning between the pumps and
the cold-cavity resonances being an additional degree of freedom.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding author.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.

Fig. 5 Spectral phase transition in dual-pump four-wave mixing. a Illustration of the two pump fields getting converted to the signal and idler. b The phase
conjugation parametric instability gain (λ) (Eq. (3)) curve in the normal dispersion regime as the pump power is varied. The maximum of the gain where
the signal/idler is supposed to oscillate is marked by the black lines. Degenerate and non-degenerate oscillations are both expected in this case. c The
phase conjugation parametric process gain curve in the anomalous dispersion regime. Only non-degenerate oscillation is expected in this case. d Spectral
phase transition (normal dispersion regime) as the pump separation (Δ) is varied. A degenerate to non-degenerate transition happens across the critical
point. e The critical point is characterized to be a second-order which displays continuous behavior in order parameter but exhibits discontinuity in its
derivative. Parameters used in the simulation are taken from ref. 42.
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