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Recent studies of liver stage malaria parasite-host interactions have provided exciting new
insights on the cross-talk between parasite and its mammalian (predominantly rodent)
host. We review the latest state of the art and and zoom in on new technologies that will
provide the tools necessary to investigate host-parasite interactions of relapsing parasites.
Interactions between hypnozoites and hepatocytes are particularly interesting because
the parasite can remain in a quiescent state for prolonged periods of time and triggers for
reactivation have not been irrefutably identified. If we learn more about the cross-talk
between hypnozoite and host we may be able to identify factors that encourage waking
up these dormant parasite reservoirs and help to achieve the total eradication of malaria.
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INTRODUCTION

Malaria, caused by Plasmodium parasites, remains a very serious infectious disease, killing over
400,000 people per year (WHO, 2019). With a complex life-cycle in mosquito and vertebrate hosts,
the parasite has to interact with its hosts to be able to survive and multiply. In the vertebrate host,
the parasite has life-cycle stages initially in the liver and subsequently in the blood. Five malaria
species can infect humans, Plasmodium 8falciparum, vivax, ovale, malariae (Hay et al., 2004), and
the recently added zoonotic parasite P. knowlesi (Yegneswaran et al., 2009). Most of the fatal malaria
infections are caused by P. falciparum, but also infection with P. vivax, the second most important
human malaria parasite, can result in death (Price et al., 2007). P vivax, as well as a few other
primate malarias form dormant stages called hypnozoites in the liver, that after months or even
years can re-activate to yield new malaria episodes, without new infections through mosquito bites.
This hidden reservoir of parasites complicates future malaria eradication. Liver stage biology, and
Abbreviations: P., plasmodium; FACS, fluorescence-activated cell sorting; FASII, fatty acid synthesis (in apicoplast); RNAseq,
Ribonucleic acid sequencing; PVM, parasitophorous vacuolar membrane; UIS3, Up-regulated in sporozoites; huHep, human
hepatocytes; 3D, three dimensional.
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especially hypnozoite biology, remains obscure as the liver stages
are relatively inaccessible. Here we review recent progress in
studies on liver stage parasite-host interactions in general and
zoom in on new technologies that will allow detailed biological
studies on dormant liver stages and their interaction with
the host.
PARASITE-HOST INTERACTIONS INSIDE
THE LIVER; THE RODENT MODELS

The rodent malarias Plasmodium berghei, Plasmodium yoelii,
Plasmodium chabaudi, and Plasmodium vinckei have played a
pivotal role in understanding malaria biology [reviewed in (De
Niz and Heussler, 2018)]. In the absence of prolonged blood
stage cultures, these systems are almost exclusively in vivo based.
Different mouse strains each have their own characteristics and
the creation of transgenic mice has enabled studies that pinpoint
specific parasite-host interactions (Liehl et al., 2014). The
combination with highly efficient transfection systems for these
parasite species (Mikolajczak et al., 2008; Matz and Kooij, 2015)
renders the rodent malarias invaluable for studying parasite-host
interactions in vivo.

Particularly liver stage research has greatly benefitted from
the rodent models. Once sporozoites have switched from
traversal to invasion (Coppi et al., 2007), the rodent malaria
parasites show unprecedented multiplication inside hepatocytes.
Within about 2 days, liver stage development is completed and
thousands of merozoites are formed. Characterization of the liver
stage parasites has been technically challenging due to their
inaccessible location for experimentation. With robust in vitro
parasite liver stage cultures established in many labs, more
information has become available as to how the parasite
manages to perform this daunting task.

The first comprehensive transcriptomic analysis for liver stages,
which was combined with a proteomic survey, was described for P.
yoelii (Tarun et al., 2008). The development of genetically
engineered parasites allowed FACS isolation of liver stage infected
hepatocytes. This revealed that liver stage schizonts express a wide
range of metabolic pathways, including the liver stage-specific FASII
pathway. Further in-depth RNAseq analyses performed at different
timepoints during P. berghei liver stage development identified
genes predominantly expressed in liver stages and showed that
liver stage development was accompanied by differential expression
of hundreds of parasite genes whichmay be regulated by a variety of
posttranscriptional and posttranslational mechanisms (Caldelari
et al., 2019; Shears et al., 2019).

While malaria liver stage development is a clinically silent
phase of the life cycle, it has become clear that the hepatocyte does
respond to the presence of the parasite in various ways.
Transcriptional profiling of hepatoma cells early after infection
with P. berghei showed an initial stress response of the cell to the
presence of the parasite, which was followed by altered host cell
metabolic responses to meet the requirements of parasite
multiplication while maintaining parasite survival (Albuquerque
et al., 2009). The parasite appears to prolong survival of the host
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
cell by protecting it against extrinsic apoptosis (van de Sand et al.,
2005; Kaushansky et al., 2013a), for example by suppression of
host cell p53 (Kaushansky et al., 2013b) and by upregulating the
“cellular inhibitor of apoptosis” protein (cIAP) (Ebert et al., 2020).
Furthermore, the parasite has developed mechanisms to protect
itself against elimination by autophagy of the host cell (Prado et al.,
2015; Agop-Nersesian et al., 2017; Real et al., 2018). While
autophagy can have detrimental effects, the liver stage parasite
also appears to benefit from a non-canonical form of autophagy,
termed Plasmodium Associated Autophagic-Response (PAAR)
which was shown to support liver stage development (Agop-
Nersesian et al., 2017; Coppens, 2017; Wacker et al., 2017; Evans
et al., 2018).

That the malaria parasite is sensed by its host has also become
evident by the specific type I interferon response that is triggered
by liver stage malaria parasites following rodent liver infection
(Liehl et al., 2014). In a rodent malaria model, it was shown that
this response could inhibit malaria reinfections (Liehl et al.,
2015). Similarly, host responses elicited during blood stage
infection may impair liver stage infection. This appears to be
mediated by the iron-regulatory hormone hepcidin, which
restricts iron availability in the liver and thereby inhibits liver
stage growth of the parasite (Portugal et al., 2011). This points to
the importance of metal homeostasis during liver stage
development, which is also highlighted by detrimental effects
on liver stage parasites caused by gene knockouts of parasite
metal transporters (Sahu et al., 2014; Kenthirapalan et al., 2016).

The parasite has been shown to recruit various host cell
proteins in order to sustain its development, including GLUT1
(Meireles et al., 2017), aquaporin-3 (Posfai et al., 2018; Posfai
et al., 2020) and protein traffic modulators such as COPB2 and
GGA1 (Raphemot et al., 2019). Many of the host factors involved
are recruited to the host-parasite interface in the liver cell, the
parasitophorous vacuole membrane (PVM). Most interactions
between host cell proteins and parasite proteins located at the
PVM have remained elusive. To date, only a few connections
between parasite antigens and hepatocyte proteins have been
described. “Up-regulated in sporozoites protein” UIS3 has been
shown to interact with liver fatty acid binding protein 1
(LFABP1) (Mueller et al., 2005; Mikolajczak et al., 2007),
suggesting fatty acid scavenging from the host cell.
Furthermore, P. berghei Exported protein 1 (EXP-1) was
shown to interact with host Apolipoprotein H (ApoH) (Sa
et al., 2017). These interactions have only been described for
rodent malaria and possibly different parasite-host combinations
require different interactions. This is highlighted by the finding
that P. falciparum EXP-1 did not appear to interact with human
ApoH (Sa et al., 2017).

Clearly, rodent models have been and will continue to play an
important role in dissecting various aspects of malaria liver stage
biology. However, it will be important to determine how the
findings in these models translate to the human parasites, as has
already been done for only a limited set of proteins, such as
aquaporin-3 (Posfai et al., 2020) and Mucin-13 (LaMonte et al.,
2019). While the rodent malaria studies allow investigations into
the biology of developing liver stages, these parasite species do
January 2021 | Volume 10 | Article 606033
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not develop into hypnozoites and thus do not enable studies on
hypnozoite biology and hypnozoite-hepatocyte interaction.
P. VIVAX PARASITE-HOST INTERACTIONS
INSIDE THE LIVER

Studying P. vivax parasite-host interactions in the liver is
hampered by the fact that P. vivax develops only in primates.
P. vivax liver stages were studied in humans, as described by
Shortt and Garnham in 1948 (Shortt et al., 1948), in which liver
biopsies were taken from a volunteer at day 6/7 post infection by
the bites of ~1700 mosquitoes. They demonstrated the existence
of a liver tissue stage in the P. vivax malaria life-cycle, similar to
their observations in monkeys infected with P. cynomolgi
sporozoites that they published shortly prior to the human
experiment (Shortt and Garnham, 1948a). They observed large
liver schizonts responsible for primary disease, but unfortunately
did not find the hypnozoites, which were described only in 1980
by Krotoski (in liver biopsies from P. cynomolgi-infected
monkeys) (Krotoski et al., 1980). A lot of knowledge has been
gained from early experimental human infections regarding
relapse patterns and the clinical profile of P. vivax, but these
types of experiments are nowadays restricted. Although
sporozoite-derived controlled human infections with P. vivax
are allowed (under strict supervision) and can be highly
significant to test new drugs or vaccines, volunteers are usually
cured at low blood stage parasitemia (Herrera et al., 2011;
Arevalo-Herrera et al., 2016). Relapses are not studied in this
model and studying the liver stage parasites by taking liver
biopsies from these volunteers is not performed. The best non-
human model for P. vivax infections used to be the chimpanzee,
and after finding the first hypnozoites in P. cynomolgi-infected
rhesus monkeys, P. vivax hypnozoites were discovered in liver
biopsies taken from P. vivax-infected chimps (Krotoski et al.,
1982a). Nowadays animal experiments on apes are banned, so
this model is no longer available (Hutson, 2010).

Other primate models for P. vivax, like Saimiri or Aotus
monkeys have been primarily used for schizonticidal drugs and
vaccine efficacy studies [reviewed in (Joyner et al., 2015)] but to
be able to detect (low level) blood stage parasites caused by
relapses animals need to be splenectomized, and pattern and
frequency of relapses appear to be difficult to predict in these
animal models (Joyner et al., 2015).

An important step for in vivo P. vivax research was achieved
by the development of the FRG huHep chimeric mouse. This
model is suitable to study the pre-erythrocytic stages of P. vivax,
including hypnozoites, and can be used to test the activity of
potential radical cure drugs that would kill hypnozoites
(Mikolajczak et al., 2015). Blood stage parasites can be
observed when injecting the FRG huHep mice with human
reticulocytes around the time that the merosomes will be
released from the mature liver schizonts, but this becomes very
complicated if one wants to study relapses. Also, these mice are
severely immunocompromised and will not completely reflect
the human response to malaria infection or drug treatment.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Thus, this model may not be suitable to study parasite-host
interactions of relapsing malaria.

Studying parasite-host interactions in vitro may sound a bit
counterintuitive, but some processes can be fairly easily
studied in an in vitro setting, like the hepatocyte’s response
to infection, activity of anti-relapse compounds and
monitoring reactivation of the dormant stages. Primary
human hepatocytes or hepatoma-derived cel l l ines
(Hollingdale et al., 1984; Mazier et al., 1984; Sattabongkot
et al., 2006; Chattopadhyay et al., 2010) are used as
monoculture to study P. vivax liver stages in vitro. Recently,
Roth et al. (Roth et al., 2018) have described a system using
cryopreserved human primary hepatocytes and patient-derived
sporozoites with high infection rates. This system should be
helpful in the identification of new hypnozoite targeting
compounds, as well as studying hypnozoites and reactivation
as well as hepatocyte responses to infection. However, all of
these models are dependent on patient material for the
infection of mosquitoes. This means that there can be large
variation between the different experiments, both in infection
rate as well as in hypnozoite ratios (Roth et al., 2018). The
variation caused by the different lots of hepatocytes is reduced
when using cryopreserved cells, but variation caused by
different patient-derived parasite isolates can’t be tackled.
This can be circumvented by using the P. cynomolgi-monkey
model for relapsing malaria (described below). Additional
advantages for this model are that in vitro and in vivo
experiments can be performed with the same well-
characterized parasite and the availability of a robust
transfection procedure for this parasite. P. cynomolgi can be
genetically modified using episomes, centromere-containing
constructs (for stable retention of the episome) and by single
crossover integration into the genome (Kocken et al., 1999;
Akinyi et al., 2012; Voorberg-van der Wel et al., 2013;
Voorberg-van der Wel et al., 2020). Transfection of P.vivax is
also possible, but is more difficult due to the restrictions (as
described above) when working with small monkeys like Aotus
and Saimiri (Pfahler et al., 2006; Moraes Barros et al., 2015),
and so far the papers describing P. vivax transfection only show
proof of concept.
P. CYNOMOLGI, THE MONKEY SISTER
PARASITE OF P. VIVAX

The monkey malaria parasite P. cynomolgi is considered to be an
important model for the relapsing human malaria P. vivax, as it
is phylogenetically closely related (Tachibana et al., 2012) and
shares many biological characteristics (Table 1). Not only liver
stage parasites, but also hypnozoites were first identified in the
liver of rhesus monkeys that had been infected with high
numbers of P. cynomolgi sporozoites (Shortt and Garnham,
1948a; Krotoski, 1985).

Monkeys infected with P. cynomolgi sporozoites have shown
similar pathology as P. vivax-infected humans, including anemia
and thrombocytopenia (Joyner et al., 2016; Joyner et al., 2017). In
January 2021 | Volume 10 | Article 606033
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addition, it was shown that P. cynomolgi relapses can be clinically
silent. This is likely to be due to the rapid development of
memory B cell responses that help to clear asexual blood stage
parasites but not gametocytes (Joyner et al., 2019).

Moreover, P. cynomolgi showed drug activity profiles that
were highly similar to P. vivax (Schmidt et al., 1982b). This led to
large scale drug screening studies with P. cynomolgi sporozoite-
induced infections in rhesus monkeys as central step in efforts
[which initially also used patients undergoing P. vivax malaria
therapy as well as prison inmate volunteers (Coatney, 1985)] to
find new hypnozoite-killing drugs (Davidson et al., 1981;
Schmidt et al., 1982b; Schmidt, 1983; Dutta et al., 1989; Deye
et al., 2012).

The in vivo data have been crucial for the discovery of the
liver stages and for assessing the effects of drugs targeting these
stages. However, experimentation and throughput are limited
for ethical and economic reasons and, apart from the 8-
aminoquinolines, other compounds killing hypnozoites have
not been identified. Therefore, higher throughput approaches
in order to find new, more potent and less toxic drugs that cure
relapsing infections are needed (Wells et al., 2010; Campo et al.,
2015). Knowledge of liver stage biology may reveal new targets
for drug development, which may be more efficient than random
screening approaches.

The advent of in vitro culture techniques for malaria liver
stage parasites, including P. cynomolgi, (Millet et al., 1988) has
greatly increased opportunities for the development of drug
screening platforms and to begin to study parasite-host
interactions. For P. cynomolgi, a low-throughput 96-well based
assay system which enabled testing of compounds that are active
against hypnozoites was developed, in which hypnozoites could
be distinguished from developing forms (schizonts) by their size
and differential sensitivity against selected drugs (Dembele
et al., 2011).

Using this assay, a PI4 kinase inhibitor (McNamara et al.,
2013) was identified showing high activity against early
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
hypnozoites (Zeeman et al., 2014). This translated to in vivo
prophylactic, but not radical cure activity (Zeeman et al., 2016),
illustrating that young hypnozoites may be different from
maturing hypnozoites. This is in line with earlier in vivo work
which showed that when P. cynomolgi infected rhesus monkeys
were treated at different timepoints with only 1 or 2 dosages of
primaquine, it appeared that some phases (mainly early stages)
of liver stage development were more vulnerable for the activity
of the drug than others (Schmidt et al., 1982a).

The culture system was further improved through the
addition of a Matrigel cover, which makes it possible to culture
the P. cynomolgi exoerythrocytic forms for prolonged periods of
time, revealing possible events of hypnozoite reactivation
(Dembele et al., 2014). Recently, a 3D spheroid-culture system
was reported that allows long-term cultivation of P. cynomolgi
liver stages including full maturation of liver schizonts and
invasion of red blood cells. While mimicking the in vivo
microenvironment of the liver the 3D-structure of the
spheroids renders it difficult to image and quantitate parasite
load, presenting an obstacle for the use of this technology for
high-throughput screening (Chua et al., 2019a). However, such a
3D-platform may be suitable for studying parasite-host
interactions, with optimal in vitro hepatocyte quality,
mimicking the in vivo situation.

In an attempt to characterize hypnozoites at the transcript
level, P. cynomolgi day 7 hypnozoites and schizonts were
collected by Laser Capture Microdissection (LCM) (Cubi et al.,
2017). Two hypnozoite samples were obtained, containing a total
of 45 and 59 hypnozoites, respectively (Cubi et al., 2017). Given
the low levels of hypnozoite RNA in these small-sized samples,
low read counts were obtained. Some ApiAP2 transcription
factors were identified that were upregulated in hypnozoites.
Further functional studies are needed to confirm the roles of
these proteins.

P. cynomolgi has the advantage that it can be genetically
manipulated (Kocken et al., 1999; Akinyi et al., 2012). By
TABLE 1 | Comparison of biological characteristics of P. vivax and P. cynomolgi.

P. vivax P. cynomolgi

Characteristics life cycle
Asexual blood stage cycle 48 h (Garnham, 1966) 48 h (Garnham, 1966)

Schüffners dots (Garnham, 1966) Schüffners dots (Garnham, 1966)
Early development gametocytes
(time to maturation)

Yes, 2–3 days (Bousema and Drakeley, 2011; Ngotho et al., 2019) Yes, 58 h (Hawking et al., 1968)

Invasion Reticulocytes (Noulin et al., 2013) Reticulocytes (in humans; in monkeys also normocytes)
(Kosaisavee et al., 2017)

Pre-erythrocytic stage 8 days (Fairley, 1946) 8–10 days (Shortt and Garnham, 1948b)
Hypnozoites Yes (Krotoski et al., 1982a) Yes (Krotoski et al., 1982b)
Relapse pattern Short latency and long latency (White, 2011) Short latency (Schmidt, 1986)
Research tools
In vitro blood stage culture No Yes (but no transmission yet) (Chua et al., 2019b)
In vitro liver stage culture Yes (Gural et al., 2018b; Roth et al., 2018) Yes (Dembele et al., 2011)
In vivo drug screening model Limited (Mikolajczak et al., 2015) Yes (Schmidt, 1983)
In vivo relapse model Anecdotal (Joyner et al., 2015) Yes (Schmidt, 1986)
Transfection technology Proof of concept (Pfahler et al., 2006; Moraes Barros et al., 2015) Episomes; centromeres; single crossover (Kocken et al., 1999;

Akinyi et al., 2012; Voorberg-van der Wel et al., 2013;
Voorberg-van der Wel et al., 2020)

Genome sequenced Yes (Carlton et al., 2008) Yes (Tachibana et al., 2012; Pasini et al., 2017)
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including a centromere (Iwanaga et al., 2010) in the construct,
reporter lines have been developed which enable live visualization
and purification of hypnozoites and liver stage schizonts
(Voorberg-van der Wel et al., 2013). This has allowed a
comprehensive transcriptomics analysis of day 6/7 and day 9
hypnozoites and schizonts (Voorberg-van der Wel et al., 2017;
Bertschi et al., 2018). This revealed that developing schizonts are
metabolically highly active, while hypnozoites continue to shut
down transcription, except for pathways involved in the
maintenance of genome stability, glycolysis and the pentose
phosphate pathway. A marker for hypnozoites was not identified
butLiverStageProtein-2was found tobe schizont-specific and tobe
expressed very early on during schizogeny (Gupta et al., 2019).
Rhesushost responses toP. cynomolgi infectionanddevelopment in
cultured hepatocytes have not yet been reported.

Using a P. cynomolgi reporter line that constitutively expresses
GFP and shows mCherry expression when schizogony occurs,
reactivation of hypnozoites in vitro was observed (Voorberg-van
der Wel et al, 2020). This provides strong proof for the hypnozoite
theory of relapse and allows screening of compounds that induce
activation. If such compounds can be identified, “wake-and-kill”
strategies can be envisaged in which hypnozoite activation is
evoked, followed by killing of developing forms by currently
available drugs.

The trigger for hypnozoite activation has remained enigmatic
(Box 1) and the parasite-host interactions involved are elusive.
Hypnozoite activation may be epigenetically controlled
(Dembele et al., 2014). Furthermore, it has been suggested that
activation may be triggered by mosquito bites (Hulden and
Hulden, 2011), infectious disease (Shanks and White, 2013;
Commons et al., 2019), or blood transfusion (Shanks and
Waller, 2019). The P. cynomolgi fluorescent reporter line now
offers the opportunity to investigate if/which molecules may
stimulate hypnozoite activation. It must be realized, however,
that in the context of the current in vitro platform it may be
difficult to mimic the complex bodily reactions possibly involved
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
in this. Moereover, reactivation events in culture are rare, making
it challenging to isolate reactivating hypnozoites to study parasite
and host transcriptomics.

Another question mark is how the hypnozoite survives for
such a long time in a hepatocyte. Under normal conditions, the
life-span of hepatocytes is estimated to be 6–12 months (Seeger
and Mason, 2000). If the late recurrences [800–1,000 days after
infection; (Schmidt, 1986)] of P. cynomolgi sporozoite induced
infections in rhesus monkeys derive from activated hypnozoites,
then how is this possible? Does the hypnozoite extend the
longevity of the hepatocyte, or does it end up in a new
hepatocyte after cell division?
NEWLY EMERGING TECHNOLOGIES

Liver stage parasites reside inside hepatocytes, located inside the
liver. Given this multilayered, inaccessible location it has proven
difficult to study this stage of the parasite life cycle. Furthermore,
the existence of two forms of the parasite in some primate species,
hypnozoites and schizonts, adds another layer of complexity to
this. Much knowledge of parasite-host interactions of liver stage
parasites has already been gained in the rodent malarias, although
most likely this information represents only the tip of the iceberg.
It will be important to determine whether this information can be
translated to the primate malaria species. On top of this, virtually
nothing is known about the interactions that take place between
the hypnozoite stage of development and its host cell (Figure 1).
Tools to study this are vital and have only recently begun to
emerge, benefitting from technologies that have already been
developed for the rodent malarias.

The development of liver stage cultures has greatly facilitated
liver stage research. Some systems use hepatoma-derived cell
lines (Hollingdale et al., 1984; Mazier et al., 1984; Sattabongkot
et al., 2006; Chattopadhyay et al., 2010). While this provides a
constant source of host cells, these cells differ in a number of
aspects from primary hepatocytes (Tripathi et al., 2020),
including a lower metabolic activity (Castell et al., 2006) and a
high dependence on glucose uptake (Meireles et al., 2017).
Therefore, care should be taken to validate results that mimic
the natural situation. The importance of metabolic activity of
hepatocytes was investigated for P. falciparum (Yang et al.,
2020 BioRXiv, non peer-reviewed paper). This study indicates
that P. falciparum liver stage development is strongly influenced
by the differential metabolic activity of human hepatocytes
derived from different zones of the liver.

The drawback of cultures using primary hepatocytes is that
after about 12 days of culture the hepatocyte quality starts to
deteriorate (Voorberg-van der Wel et al., 2020), which precludes
analyses of hypnozoite activation. Approaches to overcome this
issue include the addition of a Matrigel cover (Dembele et al.,
2014), co-cultivation of human primary hepatocytes with
fibroblasts (March et al., 2013; Gural et al., 2018a) or through
the use of specific 384-well plates coated with collagen (Roth et al.,
2018). Nucleic-acid mediated gene silencing has been successful in
this type of systems, having the potential of exploring functional
parasite-host interactions (Mancio-Silva L et al., 2019).
BOX 1 | Outstanding questions:

Hypnozoite-host interaction
*How do the findings in the rodent liver stage models with respect to

parasite-host interactions relate to the primate malarias?
*Which parasite-host interactions occur in the liver stage development of

primate malarias?
*What are the differences between in vitro and in vivo parasites in terms of

parasite-host interactions?
*How does the hypnozoite hide from the host immune system?

Hypnozoite-dormancy
*Do hypnozoites preferentially develop in a certain type of hepatocyte?
*How can a hypnozoite remain in the liver for prolonged times (longer than

the generally estimated lifespan of hepatocytes)
*When does hypnozoite commitment occur?
*Which parasite/host molecules are involved in maintaining hypnozoite

dormancy?

Hypnozoite-reactivation
*What is the mechanism behind hypnozoite activation?
*Is there a trigger involved or is it stochastic, via a biological clock, or a

combination of this?
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The advent of three-dimensional (3D) cell culture methods
has opened up ways to develop cultures that mimic the in vivo
physiological conditions to a greater extent. Proof-of-concept of
this type of technology has already been shown, involving the use
of hepatic spheroids using various hepatoma cell lines for
culturing P. berghei (Arez et al., 2019) and using primary
hepatocytes for P. cynomolgi (Chua et al., 2019a). Full
development was shown for both parasite species, and cultures
could be maintained for prolonged periods of time [up to 60 days
in case of the simian spheroids (Chua et al., 2019a)]. While
further improvements in terms of infection rate and by adding
more cell types to create organoid like features is warranted, this
type of systems provide new opportunities to study hypnozoite
activation in vitro under conditions that are resembling the
vivo situation.

More continuous, stable sources with truly hepatocyte
features may be derived using newly emerging stem cell
technologies. Proof of concept liver stage infections have
already been shown using human induced Pluripotent Stem
Cell (iPSC) derived hepatocyte-like cells (Ng et al., 2015) and
chemically differentiated mouse embryonic stem cell (ESC)-
based cells (Tripathi et al., 2020). These systems are attractive,
since they not only provide a virtually unlimited source of
hepatocytes, but the stem cells are also amenable to genetic
manipulation thus allowing validation of genes important for
parasite-host interactions in liver cells. In this way it was shown
that the host adipose triglyceride lipase gene was dispensable for
P. berghei liver stage development (Tripathi et al., 2020).

Little is known about host molecules involved in hypnozoite/
liver stage development. Given that the first hypnozoite
transcriptomes have become available (Cubi et al., 2017;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Voorberg-van der Wel et al., 2017; Bertschi et al., 2018), a
Dual-RNAseq approach can be envisaged whereby not only the
transcriptome of the parasite, but also that of the host cell can be
determined (LaMonte et al., 2019).

Information about transcriptional profiles of individual
parasites can be obtained by a new technique called single cell
RNA sequencing (scRNA-seq). Although technically
challenging, researchers have accomplished (Poran et al., 2017)
and optimized (Reid et al., 2018) a method for single cell RNA
sequencing of malaria parasites. Using this new technique,
individual parasites of all stages of the P. berghei life cycle were
sorted and a transcriptional profile was generated, including
difficult samples such as rings, which have low levels of RNA, and
ookinetes, which are hard to sort (Howick et al., 2019). When
application of scRNA-seq and other newly emerging “omics”
approaches [e.g. lipidomics, metabolomics, proteomics,
epigenomics (Cowell and Winzeler, 2018)] to relapsing malaria
species (and more specifically to dormant liver stages) becomes
feasible, these studies will likely shed more light onto genes
involved in hypnozoite dormancy/activation.

The capacity to genetically modify parasite genes is key to
study genes that may be involved in parasite host-interactions
essential for hypnozoites. At the moment, such studies can only
realistically be envisaged using the primate malaria P. cynomolgi.
Lines that express reporter genes in P. cynomolgi liver stages have
already been engineered (Voorberg-van der Wel et al., 2020),
opening up studies that investigate phenotypic consequences
of overexpression of gene candidates that may be involved in
hypnozoite development. However, the P. cynomolgi transfection
system is still in its infancy and only limited studies have been
reported. Further development is warranted, because full
FIGURE 1 | Schematic representation of important technologies available for studying relapsing and non-relapsing malaria parasites. Red dots indicate the absence
of tools, green dots show that techniques have been established. The size of the diameter of the dots schematically indicates how widely the technology has been
adopted based on published reports.
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exploitation of the capacity to genetically modify a relapsing
parasite species will be vital for studying parasite-host
interactions of hypnozoites with their host cell. Transfection
systems have already been further optimized in other malaria
species and it is expected that tools successful in these parasites,
such as Crispr/Cas9 gene modification reviewed in (Lee et al.,
2019), conditional (over)expression using DiCre (Jones et al.,
2016) will be applicable to P. cynomolgi as well. Development of
transfection tools may greatly benefit from the recently
developed blood stage culture for this parasite (Chua et al.,
2019b), extending the range of conditions that can be tested
avoiding the use of donor and recipient monkeys.
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