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Abstract

Background: Several authors suggested that gravitational forces are centrally represented in the brain for planning, control
and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the
inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal
forward model).

Methodology/Principal Findings: This study proposes a model of cerebellar pathways deduced from both biological and
physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its
sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model
learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved
by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of
the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar
cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions,
amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The
results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing
movements.

Conclusions/Significance: This is consistent with the proposal that the cerebellar cortex contains an internal representation
of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum
performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of
sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field.
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Introduction

How the mechanical effects of gravity (gravitational torques),

exerted on a stationary or a moving limb are processed by the

Central Nervous System (CNS) is an important question in motor

control. In particular, it has been suggested that such mechanical

effects on the sensorimotor system are centrally represented in the

brain in internal models [1,2]. One proposal was that the brain

uses internal models incorporating the dynamics of the gravita-

tional field acting on moving objects [2]. Particularly, it has been

suggested that the CNS uses an internal model of gravity to predict

gravitational acceleration allowing the subjects to intercept falling

objects in the gravitational field [3]. Another research line

analyzed kinematics and dynamics of vertical arm movements

performed under normal or altered gravity conditions to examine

how the brain deals with gravity during motor planning and

control. Specifically, some authors proposed that the interaction of

the gravitational field with the motor system is centrally integrated

by the CNS and used during motor planning to take advantage of

the gravity force to decelerate upward and accelerate downward

arm movements [4,5]. Similarly, there is evidence of a common

coordinated strategy involving a muscular deactivation/activation

set during rapid leg flexion suggesting that the brain uses

gravitational effects to initiate and brake leg motion [6].

In computational motor control several studies have investigat-

ed internal models (inverse, forward) by manipulating mechanical

constraints. The internal forward model predicts the future states

of the limb by using an efferent copy of the neural command
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whereas the inverse model inverts the causal flow by computing

the neural command from a desired movement. Thus, the inertia

would be integrated into internal models of limb biomechanics

and therefore accurately predicted during arm movements [7,8].

Although many investigations focused on these internal models,

some questions remain such as which type of internal model might

be implemented in a particular neural structure. Some authors

proposed that the cerebellum implements an inverse model,

performing therefore the dynamic inverse computations [9,10]

whereas others investigations argued that the cerebellum generates

sensorimotor predictions through an internal forward model

[11,12]. Interestingly, adaptation studies of arm movements

showed that the cerebellum takes into account the dynamics and

kinematics of motion [13,14]. However, no theoretical or

experimental investigation examined whether the cerebellum

incorporates a neural network able to encode the interactions of

the limbs with the gravitational field, namely an internal model of

gravitational torques. If such an internal model exists, is it based

on inverse computations or, alternatively, on sensorimotor

predictions? The aim of this study was to propose a model of

cerebellar pathways that performs the dynamic inverse computa-

tion of the gravitational effects from its sensorimotor predictions,

and to assess whether it allows controlling an artificial anthropo-

morphic robot arm performing pointing movements in the sagittal

plane.

Materials and Methods

The model of the cerebellar pathway presented here is derived

from that previously proposed [15,16]. These authors have

exclusively considered horizontal pointing movements executed

by a robotic arm. The present study considers the situation where

the robotic limb was subjected to various gravitational effects

resulting from specific combinations of movement directions,

initial positions and amplitudes during pointing movements in the

sagittal plane. Indeed, such combinations impose important

quantitative and qualitative differences in the gravitational torques

exerted on the arm [5].

The model
From a computational point of view, the calculation of a motor

signal, such that the executed movement equals the desired one,

requires the biophysical features of the limb to be integrated into

the pre-motor circuits. Not only the biological properties of the

muscles (e.g. stiffness, viscosity) must be considered, but also the

inertial properties of each limb, the reciprocal interaction forces

between segments and their interactions with external forces such

as gravity.

This could be achieved by means of internal inverse models of

the biophysics of the moving limbs, embedded in neural networks

[16–18] (Figure 1A). Such an inverse computation can be

performed by a neural circuit (Figure 1B) composed of two

parallel, closed, internal feedback loops: a positive one (with a gain

close to, but smaller, than one to insure stability) and a negative

one containing an internal forward model of the direct biophysical

function of the limb (denoted H* in Figure 1B), that processes

motor commands and computes predictive signals anticipating

sensorimotor signals [15,16,19].

This circuit, by means of its structure formed of two short and

parallel feedback loops, one of which containing a predictor,

computes an approximate internal inverse model of the direct

biophysical function of the limb. This is nevertheless achieved

without performing an explicit inverse calculation. Together, these

two loops provide a feed-forward control. From an anatomical

viewpoint, the internal forward model H* is thought to correspond

to the cerebellar cortex, which receives sensory signals (Figure 1B,

C) as well as efferent copies of motor commands (u) through the

mossy fibers. The resulting Purkinje cell activity represents the

simple-spike inhibitory signal that is sent to the cerebellar nuclei,

and is thought to predict torque based on the motor command.

This inhibitory signal, together with the efferent copy of the neural

command (u), is then fed to a summing element which would

represent the cerebellar nuclei (labeled CN in Figure 1B,C). The

efferent copy loops through a second (downstream) summing

element (labelled RN in Figure 1B–C) which represents the

magno-cellular part of the red nucleus. This last summing element

adds the output signal issued from the summing element

representing the cerebellar nuclei to the signal coding the desired

movement. It is noticeable that the motor command (u) reaches

both the predictor and this summing element, similar to the

messages conveyed by the excitatory mossy fibers that reach both

the cerebellar cortex and the cerebellar nuclei.

Both the inverse kinematics and the inverse dynamics problem

need to be solved in order to compute an adequate neural

command. However, since the robotic arm used in our experiment

has only one geometrical degree of freedom (DoF), the inverse

kinematic problem is not of interest here. Nevertheless, the robotic

arm is actuated by a pair of antagonist muscles which requires the

computation of the inverse dynamics at two stages: first, the

inversion of the biophysical characteristics of the muscles

(including viscosity and stiffness) and second the inversion of the

biomechanics of the moving segment, (including the physical

constraints applied to the arm such as the gravitational and inertial

torques). Notably, these inverse computations must deal with a

combination of non-linearities due to the actuators and due to the

different movement directions (up, down) in the gravitational field.

The motor command (denoted ui) computed in this model

(Figure 1A–C) can be compared to the activity of a pool of

motoneurons allowing muscular contractions of the ith muscle,

which produces a force fi, by means of a biophysical process

described by the direct function denoted mi. It must be noted that

here i M{1,2} since we consider two muscles (for the sake of clarity,

in Figure 1 we used simplified notation since only one circuit

command allowing to compute the motor command for one

muscle is illustrated). Then, these forces act on the joint and

produce the resulting torque to accelerate the movable segment.

Here, the torque Ti is related to the force fi with respect to the

rotation centre O, according to the following equation:

Ti~ri|fi ð1Þ

where ‘‘6’’ denotes the cross product (for simplicity arrows above

vectors have been omitted) of two vectors ri, whose origin is the

insertion point of the muscle and whose extremity is the point of

application of the force fi on the moving limb. According to

Newton’s law, the equation expressing the total torque exerted at

the joint by the actuators and the mechanical forces applied to the

one DoF arm moving in the sagittal plane is as follow:

X
T~J:€hhzB: _hhzK:h ð2Þ

Tf1{Tf2~J:€hhzB: _hhzK:hzTg ð3Þ

with Tg~m:g:r:cos hð Þ ð4Þ
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Figure 1. Main principles of the cerebellar architecture of the model. For the sake of clarity, only the command circuit for one muscle is
illustrated. (A) Structure of a command circuit accounting for the physical constraints. hD: desired movement; hP: performed movement; u: neural
command. H: direct function incorporating all biophysical features of the limb. H21: internal inverse model of the direct function. (B) Control scheme
used to compute an approximate inverse function. The two summing elements (positive/negative inputs) represent the cerebellar nuclei (CN) and the
red nucleus (RN). H*: internal forward model of the direct function H. P and Q represent the signals originating from the cerebellar cortex (CC) and CN,
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where Tf1 and Tf2 are the respective torques developed by the

muscle 1 and 2. J is the moment of inertia and h, _hh and €hh, are

respectively the angular position, velocity and acceleration of the

limb. B and K denote respectively the coefficients of viscosity and

stiffness of the joint. Finally, m, g and r denote respectively the mass

of the limb, the gravitational acceleration and the radius drawn from

the axis of rotation to the gravity vector. The direct transfer function

of the dynamic mechanical constraints (e.g. gravity, inertia) applied

to the limb are denoted by P (Figure 1C). It must be noted that the

direct functions m and P act in series, since the first one provides the

force exerted by the muscles (given the neural command), whereas

the second provides the movement caused by the torque resulting

from the various forces applied to the arm (see the right side of

Figure 1C, labeled ‘‘World’’). Elaboration of the motor commands

requires the successive computations, in the reverse order, first of the

approximate inverse function of P (labelled P21), which provides

the desired force from the desired movement, and second of the

approximate inverse function of m, (labelled m21), which provides the

neural command from the desired force (see the left part, labeled

‘‘CNS’’, of Figure 1C).

The inverse computation of these two functions m21 and P21 is

performed by means of the general computational scheme depicted

in Figure 1B. Therefore, the neural control circuit shown in

Figure 1C includes two internal forward models (denoted m* and P*

mimicking respectively the two direct functions m and P in order to

predict the desired movement and force) put in series and embedded

within two distinct cerebellar neural network modules. The

predictors m* and P* were modelled using artificial neural networks

whose architecture was designed by replicating the well-known

connectivity of the cerebellar cortex [15,16] (for reviews see [20,21]).

Connectivity of the neural networks. The three principal

types of cells of the cerebellar cortex, i.e. the granular, Golgi and

Purkinje cells, were modeled by means of formal neurons

(Figure 1C). Convergence of various afferent messages onto

neurons was modeled as a weighted algebraic sum of input signals.

A first order differential equation, described in the Laplace

domain by a low pass filter with a time constant of 5 ms,

representing the recruitment was used for the input function of the

neurons. Granular, Golgi and Purkinje cells were assumed to act

as low-pass filters, with time constants of 10, 5 and 5 ms,

respectively. Their activation functions were modeled by a sigmoid

accounting for saturation of neuronal activity. The proportions of

the various cell types were not respected, since there were very few

granular cells compared to Golgi and Purkinje cells (for each

predictors n = 8, n = 1 and n = 1, respectively). The input to the

two predictors P* and m* (based on an identical internal

architecture) were respectively the desired angular velocity and

the desired force. For instance, for an arm movement of 25u, the

first predictor (P*) received the desired angular velocity for this

movement and then computed the corresponded desired force for

each muscles which represented the output signal of this first

predictor. Then these desired forces were used as inputs for the

second predictor (m*) that computed the corresponding neural

command. These inputs signals were transmitted by the granular

cells and their mossy fibers. These signals, including a feedback via

the Golgi cells, were conveyed to the Purkinje cells via the parallel

fibers. The parallel fiber - Purkinje cell connections, whose weights

were adjusted by means of a learning process, represented the

main learning sites of this neural network. (see Figure 1C, adaptive

elements are shown in gray). A minor difference between these two

predictors was that, upstream, the granular cells, the architecture

of the predictor P* included an additional processing stage

(labeled preprocessing layer) such simple operations could be done

for instance in pre-cerebellar nuclei or in the glomeruli (Figure 1C).

Computations applied to the desired angular velocity signal

allowed computing higher multiplicative orders (e.g. squared

functions) and integral or derivative terms. Granular cells were

thus provided with a variety of signals which contributed to the

signals that they processed and that were encoded in parallel

fibers. Such a variety of dynamic signals allowed representing

accurately, within the neural network, the non-linearities of the

mechanics of the moving segment and of the muscles. Compared

to the previous model [16], the number of the granular cells has

been increased, to permit to take into account the mechanical

effects of the gravity force. The efficiency of this model has been

first tested by simulations and then by robot experiments.

Motor learning. The synapses between parallel fibers and

Purkinje cells are well-known neural sites of plasticity in the

cerebellum, modulated by teaching signals arising from the

Inferior Olive and conveyed via climbing fibers. A supervised

learning procedure schematizing this circuitry was incorporated

into our model. Based on previously results, no other sites of

cerebellar plasticity were introduced [15,18]. Learning was

modeled by modifying progressively the input weights of the

parallel fiber signals, according to the correlation of these signals

with a teaching signal calculated from the quadratic error between

the desired and performed positions and forces (Figure 1C).

Eh~ hP{hD
� �2 ð5Þ

EF ~ FA{FD
� �2 ð6Þ

A teaching signal was sent whenever the difference in position

was superior to 0.5u (simulated) or to 1u (for robot movements,

Figure 2B) and the difference in force .20 g according to the

following learning rules:

DVPj~g1:Eh:GrPj ð7Þ

DVPj~{g2:EF :GrPj ð8Þ

where g1~0:01 and g2~0:002.

respectively. (C) Direct functions P* (representing the mechanical constraints, e.g. gravity, inertia) and m (representing the muscle features) in the
external world, and their counterparts in the CNS labeled P* and m*. These two internal forward models (P* and m*) are embedded through two
internal feedback loops placed in series to calculate their approximate inverse, i.e., P21and m21. The direct pathways convey signals of desired
position hD and forces FD. In the indirect pathways, the negative output of the elements computing P* and m* are comparable to the inhibitory
projections of the Purkinje cells of the cerebellar cortex to the neurones of the cerebellar nuclei. The P signals are comparable to simple spike
activities of Purkinje cells. Dashed lines represent the climbing fibers. SC: spinal cord. Lower scheme: artificial neural networks simulating the CC.
Granular, Golgi and Purkinje cells (respectively 8, 1 and 1 for each predictor) are modelled by formal neurones. s and s21 represent respectively the
derivative and integration in the Laplace domain. a represents multiplicative higher orders of the position. The adaptive elements and connections
are represented in grey, fixed elements in black. For the sake of the clarity only the first neural network is represented.
doi:10.1371/journal.pone.0005176.g001
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Details and demonstrations of the learning rules are given in

[16,18]. Typical learning curves with an asymptotic profile are

shown in Figure 2A.

Experimental design
The robotic limb. The robot used for the experiments

consisted of a single movable segment actuated by two antagonist

pneumatic muscles (for details see [15,16]). Briefly, two similar

artificial McKibben muscles pulled oppositely on the ends of a chain

engaged in a sprocket rotating around the horizontal axis and

integral to one tip of the segment. The lever arm was constant and

equal to the radius of the sprocket. Thus, the angular movement

resulted from the difference between the forces exerted by the two

muscles. The force exerted by the two muscles, depended in turn on

the pressure in the muscle and also on the current muscle length and

elasticity. Pressures in the muscles were independently set by two

servo-valves driven by a computer using a digital analog converter.

Therefore, the overall system can be considered as an approximation

of the human upper limb (the shoulder joint with two muscles:

deltoid anterior and posterior), since it is composed of a pair of

antagonist muscles, although artificial, with a rotating sprocket. This

movable segment had one geometrical DoF and two dynamical

DoF, since the two forces exerted by the muscles were independent

from each other. The segment rotated by an angle h when the two

muscles were inflated at different pressures. Noting respectively p1

and f1 the pressure and force of the agonist muscle, and p2 and f2 for

of the antagonist, r being the sprocket radius, l0 the muscle length at

rest, and e1 and e2 their contraction ratios (depending of the neural

drive ui), the resultant torque T was produced by the muscles

according to the following relationships [22]:

T~r: f1 e1,p1ð Þ{f2 e2,p2ð Þ½ �

with : e1~e0zr:h=l0 and e2~e0{r:h=l0
ð9Þ

The angular position of the segment was measured by means of

a potentiometer having a precision of 1 degree. Muscle tensions

were measured by means of force sensors placed at one end of

each muscle. Noise in the potentiometer and in the force sensors

was filtered out by means of low-pass filters put in series, having

time constants of 0.1 second.

Motor task and gravitational constraints applied to the

robot arm. Specific combinations of movement direction,

initial position and amplitude of limb motion (i.e. joint angle) in

the sagittal plane can lead to important non-linear variations on

the gravitational effects exerted on the limb [5]. Therefore, the

dynamics of the limb cannot be computed with straightforward

classical command methods or by a simple inverse calculus. As a

consequence, in order to test the learning capacities of this

cerebellar model to compute the inverse dynamics of gravity

torques, we manipulated the gravitational effects applied to the

arm through three experimental sessions during which various

initial positions, movement amplitudes and directions were

combined during vertical arm pointing movements. For both the

simulated and the real robotic limb, vertical arm movements were

performed to specific targets (Figure 3): up to 40u, 35u, 30u, 25u,
20u, 15u, 10u, 5u, 0u, and down to 25u, 210u, 215u, 220u, 225u,
230u, 235u, 240u. The origin (0u) of this frame of reference was

located at the axis of rotation of the robotic arm, which

corresponds to the human shoulder joint level. Figure 3

illustrates the three behavioral sessions; each session is

distinguished by a particular variation of the gravitational torques.

In the first session, all movements started from the same initial

position, namely at 0u. Eight upward (i.e. 5u, 10u, … 40u) and eight

downward (i.e. 25u, 210u, … 240u) pointing movements towards

targets at multiples of 5u were performed. Under these conditions,

the gravitational torque is a decreasing monotonous function of

movement amplitude, but is independent of movement direction

(Figure 3A, compare red and blue gravitational torques traces).

Thus, the gravitational torque is identical for up and down

movements of similar amplitude, although the arm moves against

gravity (upward movements) and with gravity (downward

movements).

In the second session (Figure 3B), arm movements were

performed from the initial positions of 20u and 220u. From these

Figure 2. Learning curves for robotic experiment. (A) Three learning curves obtained for the three mass conditions M0, M1 and M2. (B) Typical
desired and performed arm displacements from a horizontal position (i.e. 0u) and with an amplitude of 25u. DaD: Desired angular Displacement. PaD:
Performed angular Displacement.
doi:10.1371/journal.pone.0005176.g002
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initial positions, the arm had to perform 20u rotations, i.e. from the

initial position of 20u down to 0u or up to 40u and from the initial

position of 220u up to 0u or down to 240u. Under these

conditions, the gravitational torque is a function of movement

amplitude and direction, as well as of the initial position, and

varies for a given direction in a monotonous fashion. For example,

from the initial position of 20u, a downward displacement implies

an increase in gravitational torque, whereas the same movement

started from the 220u position involves a decrease in gravitational

torque. In addition, the amplitude of these variations is not only

opposite but also differs in magnitude. For instance, from the 20u
initial position, when the arm moves upward and downward, the

gravitational torques decrease and increase, respectively (i.e.

opposite changes); in addition, the amounts of these changes were

different (due to the non linearity of the gravitational torque).

Since the initial arm positions of 20u and 220u are symmetrical

with respect to the horizontal axis, gravitational torque values are

identical at movement onset for movement in session II.

In the third session (Figure 3C), arm pointing movements were

performed from the same initial positions as in session II, however,

movement amplitudes were at least twice as large (i.e. 40u, 60u).
Under these conditions, the gravitational torque varies again as a

function of movement amplitude, direction and initial position, but

now in a non-monotonous fashion since the arm crosses the

horizontal plane. The gravitational torque increases from the

initial position until the horizontal axis is reached and then

decreases towards the target. Furthermore, for all sessions, the

inertia of the arm was systematically varied by applying additional

weights to its extremity. This imposed further changes in the

magnitudes of the gravitational torques. We tested to which extent

the simulated and real robot arm were able to perform accurate

pointing movements under these experimental conditions. Perfor-

mance of the simulated or real robot arm was assessed after

learning.

Simulation and robotic experiments
Note that the learning phase was carried out only during the

session I and for the 3 (i.e. 10u, 20u and 30u) of the 8 amplitudes. In

addition, learning took place under different mass conditions. In

the vertical plane the increase of the inertia of the moveable

segment implies changes in both inertial and gravity torques and

constitutes a good example for testing the capacity of our model to

integrate both intrinsic (inertia) and extrinsic (gravity) parameters.

Therefore, the capacity of generalization of our cerebellar neural

network was tested in two ways: 1/In the first session, the

performance in the other amplitudes than those used for training

were assessed, i.e. interpolations to 15u and 25u and extrapolations

to 5u, 35u and 40u for up and down directions. 2/In the second

and third session, by quantifying (the difference between desired

and performed) movements which differed significantly from those

imposed during the learning procedure in the first session. Note

that while adaptations to changes in gravitational force can be

tested empirically, the initial learning of internal representations of

gravity can (currently) only be studied by means of simulations and

robotic experiments using anthropomorphic limbs.

Simulated task
Simulation 1. Learning took place in the first session under

three mass conditions: no additional mass (this condition was

labeled M0; weight of the movable segment: 0.4 Kg), addition of a

mass at the extremity of the segment corresponding to an increase

of 12.5% of its inertia (labeled M1), and a mass that increased the

inertia of the segment by 25% (labeled M2). A separate training

session was performed for each mass, resulting in three weight

matrices. Then the performance of pointing movements and the

capacity for inter- and extrapolation was tested in session I, II and

III. As a control, performance was also tested in a zero gravity

environment.

Simulation 2. For this second simulation, we tested the

capability of the model to generalize for different masses (i.e. to

generalize for different gravitational torques) not used during the

learning. A first one without any additional mass (labeled M0_T),

and five others with additional masses corresponding respectively

to an increase of 12.5% (M1_T, ‘‘T: Training’’), 25% (M2_T),

30% (M3_T), 40% (M4_T), and 50% (M5_T) with respect to the

M0_T condition. It is important to note that, in contrast to the

simulation 1, motor learning was not performed for each mass

separately, but by interchanging continuously the six masses

throughout the training, which resulted in a single weight matrix.

Then, the performance of pointing movements and the

generalization capacity for inter- and extrapolation was tested in

session I, II and III, under inertial conditions other than those used

during training, i.e. with six different masses than those used

during the training phase representing 5% (labeled M0_Iep,

‘‘Iep’’: Intra-extrapolated positions), 18% (M1_Iep), 27.5% (M2_

Iep), 35% (M3_ Iep), 45% (M4_ Iep), and 60% (M5_ Iep) of the

weight of the arm.

Experimental procedure with the real robotic arm
The robot experiments were strictly identical to those

performed during the ‘‘Simulation 1’’. However, since the mass

at the tip of the segment could not be changed after each trial for

technical reasons, robot experiments similar to those presented

during ‘‘Simulation 2’’ could not be performed.

Data analysis
Motor performance was assessed by taking into account both

the dynamic and static components of the movement. The static

component was defined as the period when the displacement

reached and remained within 65% of its final value. The dynamic

component was defined as the transient displacement from the

movement onset up to the beginning of the static component. For

the dynamic and static components, the performance was

quantitatively assessed by the RMSE (Root Mean Square Error)

between the desired and performed displacement according to the

following formula:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

MD

ðMD

0

hD{hP
� �2

dt

vuuut

Figure 3. Schematic explanation of the setup and the three simulated tasks. Representation of the simulated arm and its two antagonist
muscles. F1: force developed by muscle 1. F2: force developed by muscle 2. R: radius of the sprocket. Black arrow: gravitational torque (GT) exerted on
the segment. First row: Session I. Initial position (green circle) at 0u; Required movements: upward (red arrow), downward (blue arrow). Traces to the
right: gravitational torque over time as a function of target movement amplitude and direction (upward: red, downward: blue). For all movements of
session I, the gravitational torque varies monotonically and is independent of movement direction. Second row: Session II. Initial positions at 20u and
220u. The gravitational torque varies monotonically but depends on movement direction. Third row: Session III. Initial positions at 20u and 220u. For
each movement (amplitudes: 40u and 60u) the gravitational torque varies non-monotonically.
doi:10.1371/journal.pone.0005176.g003
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where MD is the movement duration, hD and hP represent the

desired and performed angular displacement, respectively. The

RMSE corresponding to the dynamic component of the

displacement provided by the model was labeled RMSED, the

static component was labeled RMSES. Whereas the RMSED can

be considered as transient and related to the dynamics of the

system (e.g. delays, stiffness), the RMSES is observed once the

system reached its steady state and is similar to the constant errors

analyzed in studies investigating arm pointing movements in

humans (for a review see [23]).

In order to compare the effect of the experimental conditions

(mass, amplitude, direction and initial position) on RMSED and

RMSES, a statistical analysis has been conducted. According to the

normality of the distribution of the data (tested using a Lillefort’s test)

we used either parametric (e.g. t-test, ANOVA) or non-parametric

(e.g. Wilcoxon, Kruskall-Wallis tests) statistical methods.

Results

Simulation 1
The goal of the first simulation was to establish the performance

of the proposed model after learning one specific weight matrix for

each of the three mass conditions. Figure 4 (first column) shows

performed (dashed trace) and desired (continuous trace) movement

amplitudes over time for all movements and sessions under the

mass condition M0. Figure 4A depicts the upward (red) and

downward (blue) movements for the session I (first row) for the

session II (second row) and for the session III (third row). Clearly,

the network successfully learned to control movements against and

with gravity.

Motor performance after learning (under training

conditions). Table 1 (column ‘Training’) shows that after

learning the overall performance of our model was good; the

average RMSED and RMSES between the desired and performed

movement ranged between 0.04u and 0.08u. Statistical analysis did

not reveal any significant effect (t-tests p.0.05). Notably, there was

no significant difference between RMSED and RMSES errors.

Interestingly, values of RMSED and RMSES were similar for the

three weight conditions (matrixes). Furthermore, movement

direction had no significant impact on the RMSED (up:

0.0760.02u; down: 0.0660.02u) and RMSES (up: 0.0560.02u;
down: 0.0760.02u) values.

Motor performance for novel movements (intra- and

extrapolation). Table 1 (column ‘Average Iep’) shows that

Figure 4. Performance of the model (M0 condition) for simulation 1 and the robotic experiment. Left column: arm movements performed
during simulation 1 in the sagittal plane with no additional mass (M0) during the first (first row), second (second row) and third session (third row).
Performed (dashed trace) and desired (continued trace) angular displacement. Red and blue traces: up and down movements respectively. Second
column: Arm movements under zero gravity conditions after learning under normal gravity condition, Session I, II and III, no additional mass (M0). Third
column: Robot arm movements in the sagittal plane with no additional mass (M0) during the first, second and third session.
doi:10.1371/journal.pone.0005176.g004
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novel movements were less precise than those included in the

sample used for training. This poorer motor performance was

reflected by the RMSES (t-test, p,0.001) which increased by a

factor of three (to about 0.15u) over the three sessions, while the

RMSED values remained at those obtained for the training set

(about 0.06u, (t-test, p.0.45)). However, the difference between

RMSED and RMSES was not statistically significant (Wilcoxon

test, p.0.26), likely due to the large variability between pointing

conditions. As in the training condition, there was no difference

between movements with the three masses (i.e. between the three

matrices of weights) (Wilcoxon test, p.0.13). However, the

RMSES clearly varied between the three sessions: the

performance of intra- and extrapolation within session I was

similar to the performance in the training set (on average

0.0760.03u), but increased to 0.1460.02u in session II and

increased even more in session III (0.3760.20u). Note that this was

not the case for RMSED (0.0760.03u; 0.0260.01u; 0.0960.04u).
Motor performance under 0 g. The integration of

gravitational effects by the network after the learning phase was

assessed by examining RMSED and RMSES values when exposing

the model to a 0-gravity environment. Figure 4 (second column)

depicts movement traces in 0 g after the model had been trained

to control the arm in 1 g. In 0 g the RMSED and RMSES values

were about 38 and 22 times higher than their counterparts

obtained under normal gravity conditions (Wilcoxon test, p,0.001

all conditions considered). They ranged, depending on the sessions

and weight conditions, between 1.54u and 5.64u for RMSES and

between 1.17u and 6.30u for RMSED.

Simulation 2
The goal of Simulation 2 was to examine motor performance

after having learned a single weight matrix, which had, in

addition, to cover a wider range of mass conditions (6 different

masses up to a 50% increase). The generalization over these

different mass conditions was tested.

Motor performance after learning (under training

conditions). The grand average RMSES (for various masses

and movement amplitudes) was 0.4860.32u, that is, larger than

for simulation 1 (t-test, p,0.001). Similarly, the grand average of

the RMSED increased to 0.4460.30u compared to simulation 1 (t-

test, p,0.001) but was not significantly different from the RMSES

(Wilcoxon test, p.0.60). However, and in contrast to simulation 1,

the performance depended of the mass. Table 2 (column

‘Training’) shows the average RMSES and RMSED for each

mass condition. Clearly, the best performance (i.e. lowest RMSEs

and RMSED) was found for intermediate masses (M2_T, M3_T),

while the performance for small (M0_T, M1_T) or great masses

(M4_T, M5_T) significantly increased. These differences were

statistically significant (Kruskall-Wallis test, p,0.001).

Motor performance for novel movement (intra- and

extrapolation). Table 2 shows the average RMSED and

RMSES for each mass condition and experimental session. Similar

to the training session, the average performance was better for

intermediate weights and poorer for light and heavy weights. Figure 5

shows the RMSED (left column) and RMSES (right column) for each

of the three sessions. Each graph depicts the RMSE as a function of

mass condition (i.e. for intra- and extrapolated masses) and as a

function of movement amplitude and initial position.

Session I: with values of 0.4460.30u and 0.4560.32u, the grand

averages (i.e. including all experimental conditions) of RMSED

and RMSES were similar to the training condition (Table 2). As in

the training condition, both RMSED and RMSES varied as a

function of mass. This is illustrated in Figure 5 top row, which

shows a V-profile of the RMSE, indicating that the RMSE varied

as a function of mass, but not as a function of movement

amplitude or movement direction. This was statistically confirmed

using a Kruskall-Wallis test coupled with a multiple comparisons

test for each factor (for both type of error; mass: p,0.001,

amplitude and direction: p.0. 95).

Session II: the grand averages of RMSED (0.0660.01u) and

RMSES (0.1560.04u) were smaller than those in session I (t-test,

p,0.001) and smaller than those in the training session (Table 2).

Figure 5 (middle row, note reduced Z-axis scale) shows that the

RMSED varied little (p.0.10 for all comparisons) whereas the

RMSES clearly varied as a function of mass and of movement

direction (p,0.0014) but not of initial position and direction

(p.0.70).

Session III: the grand averages of RMSED (0.1560.05u) and

RMSES (0.3960.24u, Table 2) tended to be smaller than those in

session I (t-test, p,0.01, only for the RMSED) but larger than

those in session II (t-test, p,0.01, for both type of RMSE). Figure 5

(bottom row) shows changes of RMSED and the RMSES as a

function of mass, of movement amplitude and initial position. In

both cases, the largest RMSE was generally found for movements

of large amplitudes and either heavy or light masses. However, no

significant effect of the mass, movement amplitude and initial

Table 1. Pointing errors for simulation 1.

Training Iep Iep Iep Average Iep

SI SI SII SIII

M0 D 0.08+0.02 0.09+0.02 0.02+0.01 0.10+0.05 0.0860.04

M0 S 0.06+0.01 0.08+0.03 0.14+0.02 0.37+0.27 0.1660.17

M1 D 0.0560.01 0.0660.02 0.0260.01 0.0860.05 0.0660.03

M1 S 0.0660.01 0.0760.03 0.1460.02 0.3760.18 0.1560.15

M2 D 0.0460.02 0.0560.03 0.0260.01 0.0860.03 0.0560.03

M2 S 0.0660.02 0.0760.04 0.1460.01 0.3760.11 0.1560.13

Average M0–2 D 0.0660.02 0.0760.03 0.0260.01 0.0960.04

Average M0–2 S 0.0660.02 0.0760.03 0.1460.02 0.3760.20

Average RMSED (D) and RMSES (S) for each mass condition for the session I (SI), II (SII) and III (SIII). Training: Training set. Iep (inter- and extrapolated positions): test set.
Average Iep: RMSE values for the test set averaged across SI, SII and SIII. Average M0–2: RMSED and RMSES values for both the training and test set averaged across the
different mass conditions (M0, M1, M2) for each session (SI, SII, SIII).
doi:10.1371/journal.pone.0005176.t001
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position on both type of error was found (p.0.23 for all

comparisons, except for the case where the RMSED was higher

for a U movement of 60u amplitude than for a D movement of 40u
amplitude (p = 0.009).

Robot experiments
The aim of the robot experiments was to verify whether the

simplified calculations of the gravity torque acting on the segment

would be adequate for controlling an anthropomorphic robot arm.

Only the equivalent of simulation 1 was performed with the robot.

Figure 4 (right column) shows the movement of the robot arm for

all movements and sessions under mass condition M0.

Motor performance after learning (under training

conditions). Table 3 (column ‘Training’) shows that the

overall robot performance was not as accurate as for the

simulated movements. Over all three mass conditions the

average RMSED (1.5160.71u) was higher (t-test, p,0.05) than

the RMSES (1.0861.01u). Table 3 shows that the RMSED and

RMSES did not vary as a function of mass, of amplitude or

movement direction (Kruskall-Wallis test coupled with a multiple

comparison, p.0.14 for all comparisons).

Motor performance for novel movements (intra- and

extrapolation). Table 3 (column ‘Average Iep’) shows that

performance for novel movements were less precise than those

included in the sample used for training. However, the decrease

was not statistically significant (t-test, p.0.10). As in the training

condition, there was no significant difference between the three

mass conditions (i.e. between the three matrixes). Furthermore,

contrary to the simulation results, the RMSED and RMSES did

not vary as function of the session. RMSED (averaged over the

three weight conditions) for session I, II and III were respectively

2.01u60.91, 1.79u60.89 and 3.99u61.34u while for RMSES, they

were respectively 1.25u60.93u, 2.49u61.82 and 3.12u61.94u.
Lastly, motor performance of the robot arm did not vary as a

function of movement direction.

Figure 6 compares the performance of simulated and robot

movements. Figure 6A shows RMSED and RMSES as a function

of mass and movement amplitude conditions in session I (i.e. Inter

and extrapolated position). For session II and III, RMSED and

RMSES are illustrated as a function of initial position, movement

amplitude and mass condition. Figure 6B shows the data for the

corresponding robot movements. As already shown in Figure 4,

the robot experiment produced errors larger than those in the

corresponding simulation 1. Moreover, Figure 6 shows that errors

on the three movement variables (amplitude, initial positions and

directions of the movements) tended to be qualitatively different

between the robot experiment and the simulation. For the

simulation in session 1, maximal dynamic and static errors were

found for the largest movement amplitudes (e.g. 40u up and down),

independently of the mass condition. Although the robot

experiment replicated the independence on the mass condition,

the dependence on amplitude changed: largest and smallest

movement amplitudes provoked maximal errors (e.g. 40u as well as

5u and 10u). For session II, except for the absolute values, no

striking qualitative difference was found between simulation and

robot experiment. In session III, the simulation showed maximal

errors preferentially for large movement amplitudes and specific

mass conditions. In contrast, the robot experiment seemed to be

less sensitive to the mass condition and produced less symmetrical

error surfaces.

Discussion

The aim of this study was to investigate whether a command

circuit, deduced from mathematical calculation and schematically

comparable to the cerebellar pathways would learn the inverse

dynamics of an anthropomorphic robot arm during vertical

pointing movements. For this purpose, we varied arm inertia (by

means of additional masses), arm initial position, movement

amplitude and direction and obtained gravitational and inertial

torques which changed in a highly non-linear and even non-

Table 2. Pointing errors for simulation 2.

Training Iep Iep Iep Average Iep

SI SI SII SIII

M0_T D 0.93+0.01 M0_Iep D 0.9360.01 0.0560.01 0.1360.06 0.5560.42

M0_T S 1.01+0.05 M0_Iep S 0.9860.08 0.1660.03 0.4060.31 0.6760.39

M1_T D 0.53+0.01 M1_Iep D 0.5360.01 0.0560.01 0.1260.05 0.3360.22

M1_T S 0.59+0.04 M1_Iep S 0.5860.06 0.1560.01 0.3960.15 0.4460.19

M2_T D 0.15+0.02 M2_Iep D 0.1460.02 0.0560.01 0.1460.03 0.1260.04

M2_T S 0.17+0.04 M2_Iep S 0.1860.05 0.1560.02 0.3860.09 0.2260.11

M3_T D 0.05+0.02 M3_Iep D 0.0660.03 0.0660.01 0.1560.03 0.0860.05

M3_T S 0.05+0.03 M3_Iep S 0.0560.04 0.1560.03 0.3860.13 0.1560.15

M4_T D 0.35+0.03 M4_Iep D 0.3560.04 0.0760.01 0.1760.03 0.2560.12

M4_T S 0.33+0.05 M4_Iep S 0.3160.08 0.1560.05 0.3860.25 0.2960.16

M5_T D 0.66+0.04 M5_Iep D 0.6660.05 0.0860.01 0.2060.04 0.4360.27

M5_T S 0.67+0.07 M5_Iep S 0.6260.11 0.1660.07 0.4160.35 0.4760.27

Aver M0–5_T D 0.44+0.30 Aver M0–5_Iep D 0.4460.30 0.0660.01 0.1560.05

Aver M0–5_T S 0.48+0.32 Aver M0–5_Iep S 0.4560.32 0.1560.04 0.3960.24

Average RMSED (D) and RMSES (S) for each mass condition for the session I (SI), II (SII) and III (SIII). Training: Training set. Iep (inter- and extrapolated positions): test set.
Mi_T (0#i#5): masses used during the training set. Mi_Iep (0#i#5): masses used during the test set. Average Iep: RMSE values for the test set averaged across SI, SII and
SIII. Aver M0–5_T, Aver M0–5_T; Aver M0–5_Iep: RMSED and RMSES values for the training (_T) and test set (_Iep) averaged across the different mass conditions,
respectively.
doi:10.1371/journal.pone.0005176.t002
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Figure 5. Performance of the model for simulation 2. Pointing error as a function of weight (mass condition M0_Iep, M1_Iep, M2_Iep, M3_Iep,
M4_Iep and M5_Iep) and movement amplitude (and initial position). First column: dynamic error (RMSED). Second column: static error (RMSES). Each
black dot represents an error measure (dynamic or static) obtained for a given experimental condition. IP: initial position.
doi:10.1371/journal.pone.0005176.g005

Table 3. Pointing errors for robot experiments (conditions equivalent to simulation 1).

Training Iep Iep Iep Average Iep

SI SI SII SIII

M0 D 1.2260.47 1.75+0.55 1.8660.60 4.3461.03 3.3561.27

M0 S 0.8360.79 0.95+0.59 2.6061.34 2.8761.78 1.7561.45

M1 D 1.3660.78 1.9160.89 1.2660.44 3.9161.45 2.2161.36

M1 S 1.0461.21 1.3461.11 1.2560.43 2.5561.92 1.5961.35

M2 D 1.9560.61 2.3761.09 2.2561.15 3.7061.43 2.6461.32

M2 S 1.3760.89 1.4760.95 3.6162.27 3.9361.84 2.4961.93

Average M0–2 D 1.5160.71 2.0160.91 1.7960.89 3.9961.34

Average M0–2 S 1.0861.01 1.2560.93 2.4961.82 3.1261.94

Average RMSED (D) and RMSES (S) for each mass condition for the session I (SI), II (SII) and III (SIII). Training: Training set. Iep (inter- and extrapolated positions): test set.
Average Iep: RMSE values for the test set averaged across SI, SII and SIII. Average M0–2: RMSED and RMSES values for both the training and test set averaged across the
different mass conditions (M0, M1, M2) for each session (SI, SII, SIII).
doi:10.1371/journal.pone.0005176.t003
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monotonic fashion. The results from both simulations and robot

experiments show that this model through learning acquired the

dynamics of the limb, namely an inverse model of the inertial and

gravitational torques.

After learning, sensory and motor signals were processed in a

predictive neural network (embedding the internal model of the

dynamics of the limb), so that adequate neural commands were

computed to perform arm pointing movements in the sagittal

plane. Interestingly, this skill was generalized to movements

different from those previously learned, although movements that

required interpolations and extrapolations from the training set

were in general performed less precisely. Not surprisingly, the

pointing errors were higher for the actual than for the simulated

robotic arm. Nevertheless, the robot experiments showed that the

approximations of the model, in particular the calculation of

gravity torques were adequate and sufficient to control the one

DoF robot arm.

The cerebellum computes both sensorimotor predictions
and dynamic inverse computations

In our model, sensory and motor signals are used to predict the

gravitational torque exerted on the arm and then to compute

inverse dynamics of the arm. This is in agreement with previous

studies which have suggested that the cerebellum implements an

inverse model to perform the dynamic and/or kinematic inverse

computation [9,10,24,25]. Moreover, the proposed model also

reinforces the idea proposed by prior investigations that the

cerebellum computes sensorimotor predictions [11,12,26–28]. For

instance, it has been suggested [29] that the cerebellum

incorporates a forward model that predicts the sensory conse-

quences of movements. The authors concluded that the cerebel-

lum was involved in sensorimotor prediction and was therefore a

plausible neural site to implement a forward model. Our model

also supports the idea that the cerebellum includes both forward

and inverse models [30–32], and it provides an anatomical

plausibility and sensorimotor learning scheme for both internal

models. Indeed, by taking into account the functional and the

anatomical features of the cerebellar pathways, our model

provides a coherent theoretical framework that implements the

coexistence of these two internal models replicating both the

functional role of the cerebellar cortex and its corresponding

anatomical structure. Specifically, it shows that the cerebellar

cortex could possibly implement a predictive neural network,

which is equivalent to a forward model in order to predict the

effects of the gravitational and inertial torques applied to the

segment. In our model, this prediction is propagated through the

cerebellar connectivity via three biologically plausible internal

feedback loops: a first one in the cerebellar cortex and the two

others in the cerebellar pathways. This model suggests that the

cerebellar cortex is primarily responsible of sensorimotor predic-

tions, whereas the entire cerebellum is in charge of the inverse

dynamics computation. Hence, it is compatible with previous

studies that have proposed that the cerebellum integrates an

inverse model, as well as with studies that have suggested a

predominant role of the cerebellum in sensorimotor prediction.

Computing an inverse model from a forward model is a

technique used for industrial plant control [33] and has already

been applied to motor control [12,34], however, the proposed

circuits were hardly biological plausible. On the contrary, the

significance of the present model is that its structure is deduced

from physical constraints, and it is consistent with the cerebellar

connectivity. It controls arm pointing movements in a vertical

plane based on the acquisition of a direct predictive model of the

limb biomechanics, which is sufficient to approximate the inverse

dynamics via multiple looped structures. It must also be noted that

the principle of using such multiple recurrent loops, particularly

through the forward model, makes our cerebellar model somewhat

comparable to recurrent neural networks, reinforcing thus, the

idea that this type of neural network structure is able to correctly

simulate dynamic behavior [35–38]. Indeed, although these

studies developed neural models without specifically addressing

any particular anatomical structures; they revealed that recurrent

neural networks efficiently learned temporal patterns by feeding

back the copies of the current sensorimotor prediction outputs to

the next sensorimotor inputs. Finally, one important theoretical

and computational consequence of the architecture of this model is

that it offers a biologically plausible solution that avoids the well-

known, but artificial two-step sensorimotor learning scheme: most

published models require, first, the learning of the forward model

[34], or the assumption that the forward model is a priori known,

and subsequently the learning of the inverse model [39,40].

The importance of sensorimotor prediction of
gravitational torques in neural control

Our model approximates inverse dynamics by means of

predictions, i.e. by a forward model based on sensory and pre-

motor signals. This internal forward model is acquired through

motor learning and provides a control for vertical arm movements.

Previous studies, using simulation [34] or experimentation [7,8],

have highlighted the importance of internal forward models for

sensorimotor predictions. For instance, using an object manipu-

lation task, it has been shown that subjects learned sensorimotor

predictions prior to the control of objects; the learning of a forward

model precedes that of an inverse model [41]. Similarly, by means

of simulations, it has been shown that even an approximate

internal forward model was able to train an inverse model [34].

Furthermore, other investigations [8,42], using a motor imagery

paradigm, asked subjects to execute or to imagine horizontal and

vertical single-joint arm pointing movements, and showed that

movement durations were very similar for both conditions.

Isochrony between executed and imagined movements is achieved

by well trained internal forward models which precisely predict the

gravito-inertial forces acting on the arm. More recently it has been

shown that subjects improved 3D arm pointing movements during

a speed/accuracy trade-off during mental practice [43]. The

authors suggested that an efferent copy of the neural drive during

motor imagination would be available to the forward model

which, in turn, was thought to train the inverse model. These

studies are in accordance with the present results indicating a

major role of the forward model in motor control and learning.

Moreover, models of physical laws that are able to predict

object motion in the gravitational field may also be represented in

the brain [3] (for a review see [2]). For instance, during ball

catching in the gravitational field, it has been found that the

vestibular network and the medial cerebellum were activated [44]

(for the implication of the vestibular system see [45–47]). It must

Figure 6. Comparison between simulated and robot movements. Distribution of the RMSED (left column) and RMSES (right column) for the
three sessions for the simulation 1 (A) and the robotic experiment (B). Both type of error are represented as a function of movement amplitudes
during the session I (i.e. intra- and extrapolated positions) and of initial positions and movement amplitudes during respectively the session II and III.
doi:10.1371/journal.pone.0005176.g006
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be noted that the predictive mechanisms embedded in our

cerebellar model is not in contradiction with the idea that the

posterior parietal cortex could also be involved in motor

predictions. Since both parietal cortex and cerebellum are

anatomically connected through a functional loop [48,49], they

could share a neural substrate for forward models and may have

different roles in motor prediction [50,51]. Thus, prediction

related to a high cognitive level could be implemented in the

parietal cortex, whereas sensorimotor predictions (e.g. self-

generated movements) may be performed by the cerebellum

[12,50].

Beyond the cerebellum and the parietal posterior cortex that

seem to be the main candidates for forward models [31,50], others

studies, without always mentioning explicitly such a computational

concept, revealed that others neural regions would also incorpo-

rate predictive mechanisms. For instance, the basal ganglia that

projects to the cerebral cortex through multiple parallel channels

[52,53] would also perform predictions based on the environmen-

tal states to select the appropriate action in a given context [54,55].

Also, highly neural recurrent structures such as the hippocampus

[56,57], the prefrontal [58,59] and the orbitofrontal [60,61] cortex

seem to perform associative prediction that would reflect outcome

expectancies, providing thus, an internal representation of the

consequences likely to follow a particular act.

However, two main differences appeared between these

predictive mechanisms and those embedded in the cerebellum

and by extension in our model. First, our cerebellar model used a

learning rule that simulated supervised learning that takes place in

the cerebellum and driven by the climbing fibers messages issued

from the inferior olive. Here, pointing errors were detected and

used to compute the teaching signals, as it seems to occur in the

inferior olive. This type of learning contrasts with the reinforce-

ment learning used in the basal ganglia [54,55] or hippocampus

[57] and the unsupervised learning that takes place in the cortex

[54]. However, more generally and independently of the learning

procedure used, a key feature of our model is its capability to

compute an inverse mapping by means of a direct mapping

embedded into recurrent loops. Therefore, we can wonder if it

might be possible that similar mechanisms, albeit a different

learning method, might take place in others predictive structures

as those mentioned to compute inverse mappings. Second, our

cerebellar model predicts the sensorimotor output of the system

contrary to the predictive mechanisms above described that

perform predictions at a higher and more general behavioral level.

Such lower and higher levels of prediction have been investigated

in a series of computational studies in order to understand their

interactions using multiples environments and tool manipulations

[30,32,38,62,63]. The lower level would correspond to the

sensorimotor processes of detailed environment interactions to

provide an accurate control of limb motion. The higher cognitive

level would embed abstractions of those lower sensorimotor

processes level to infer behaviors or plan goal-oriented movements.

Our cerebellar model implemented predictive mechanisms

related to the sensorimotor (short-timescale) predictions of the

internal state of the arm, addressing thus, mainly the lower level.

However, it is of interest to note that our model predicts the

internal state of the arm (inertia) but also its mechanical

interaction with the external (gravity) context in which actions

takes place. In humans, the estimation of action context in terms of

mechanical interaction between the body limb and the environ-

ment or a tool is essential for the performance of skilful

movements. For instance, when we make a reaching movement

while rotating our torso, we compensate for the velocity-dependent

Coriolis forces that arise from the rotation and act on our arm

[64]. Likewise, the development of a new forward model in the

context of microgravity, allows astronauts to adapt their actions

during space flights. Therefore, from a general point of view, the

cerebellar model presented here takes in to accounts these

dynamical interactions between a given environment and the

body limbs but is not able to deal with multiple environments or

tools. Thus, this model could be naturally embedded into a more

general neural structure including a higher level. For instance, this

could be explicitly done by means of a modular structure

incorporating switching mechanisms such as gate-selection

[30,32,38], or by means of an emerging functional hierarchy

using neural networks with neurons having different timescale

[63].

Performance and limits of our model of the cerebellar
pathways

The movement accuracy achieved by our model during the

robot experiment (RMSES between 0.33u and 5.81u) was

comparable to previously reported data for human arm pointing

movements with one [5] or two [65] geometrical DoF, with

constant pointing errors less than 5u. The model was able to learn

a set of upward and downward movements and to generalize by

interpolation and extrapolation to other types of movements

including those with non-monotonous profiles of gravitational

torque. However, the pointing errors varied as a function of the

type of generalization. First, the error increased when movement

amplitudes were tested outside those of the training range. Second,

the error also varied as a function of the time-varying profile of

gravitational torque exerted during the movement: monotonic

variations of gravitational torque (session I and II) provoked

smaller errors than non-monotonic variations (session III).

Furthermore, although learning was faster and produced smaller

errors when based on a specific weight matrix per inertial

condition, a global weight matrix across different inertial

conditions provided much better generalization.

As previously mentioned, the two types of errors presented here

refer to two different aspects of the performance of the model.

Therefore, a reduced dynamic error reflects the capacity of our

model to take into account the dynamic features of the system (e.g.

non-linearities, delays, stiffness) whereas a small static or constant

error would suggest the presence of a small and constant bias in

the sensorimotor transformations [23]. Concerning the simulations

1 and 2, our model of cerebellar pathways was able to capture

adequately the dynamics of the moving limb. However, the further

the model had to extrapolate from the training conditions, the

stronger was the constant bias in the sensorimotor transformations

(even if both types of error remain small, ,1.2u). Furthermore,

whereas for the two simulations the dynamic error was always

inferior or equivalent to the static error, during the robotic

experiment session this trend was inverted (dynamic higher than

static error). This is due to the fact that contrary to the simulation,

when the learning is performed during the experimental session,

some mechanical features (e.g. stiffness) were either not accurately

taken into account or neglected by the model of cerebellar

pathways.

Conclusions
This study presents a command circuit comparable to the

cerebellar pathways that learns the inverse dynamics of an

anthropomorphic robot arm, including the effects of the

gravitational forces. Learning was achieved through an internal

forward model allowing the computation of an approximation of

the inverse dynamics. After learning, this circuit was able to drive

arm movements in the vertical plane, with an accuracy
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comparable to that of human movements. The model suggests that

the cerebellar cortex is a plausible neural site for learning internal

predictive forward models of the gravitational forces, and that the

whole cerebellum is likely able to perform approximate inverse

computations.
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