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1 |  INTRODUCTION

Cancer remains one of the most common causes of death 
throughout the world.1-3 In 2018, the new cases and deaths 

of cancer were reported 18.1 and 9.6 million, respectively.4 
By 2030, it is expected that there will be ~17 million deaths.1 
These statistics emphasize the urgency of finding novel and 
more effective treatments. The historical treatment options 
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Abstract
Successful treatment of cancer remains a challenge, due to the unique pathophysiol-
ogy of solid tumors, and the predictable emergence of resistance. Traditional meth-
ods for cancer therapy including radiotherapy, chemotherapy, and immunotherapy 
all have their own limitations. A novel approach is bacteriotherapy, either used alone, 
or in combination with conventional methods, has shown a positive effect on regres-
sion of tumors and inhibition of metastasis. Bacteria‐assisted tumor‐targeted therapy 
used as therapeutic/gene/drug delivery vehicles has great promise in the treatment of 
tumors. The use of bacteria only, or in combination with conventional methods was 
found to be effective in some experimental models of cancer (tumor regression and 
increased survival rate). In this article, we reviewed the major advantages, chal-
lenges, and prospective directions for combinations of bacteria with conventional 
methods for tumor therapy.
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for cancer, including surgery, radiotherapy, chemotherapy, 
and immunotherapy all have some limitations. Treatment of 
various cancers is difficult due to the multifactorial physiol-
ogy (including problems with volume, site, stage, and me-
tastasis of the tumor). Moreover, resistance often emerges 
to reduce the initial effectiveness of chemotherapy, radio-
therapy, and immunotherapy, leading to poor tumor control, 
and many side effects occur during or after the treatment).5 
Alternative or complementary therapies such as gene ther-
apy, diet therapy, photodynamic therapy, insulin potentiating 
therapy, HAMLET (human alpha‐lactalbumin made lethal to 
tumor cells), telomerase therapy, hyperthermia therapy, di-
chloroacetate, non‐invasive RF cancer treatment, and bacte-
riotherapy have been proposed to improve and increase the 
effectiveness of conventional cancer therapy.6

The use of therapeutic bacteria is one approach that may 
be able to overcome some of the limitations of conventional 
cancer therapy as stated above. Bacteria alone can act as po-
tent antitumor agents. Another remarkable feature of bacteria 
is their ability to be genetically engineered to alter their abil-
ity to synthesize and release specific compounds, and tailor 
their metabolic pathways. Publications on the use of bacte-
rial anti‐cancer therapies have grown significantly over the 
past few decades. Therapeutic bacteria can especially target 
the hypoxic areas of tumors and actively penetrate the tis-
sue, and can allow different strategies such as the secretion of 
toxins/enzymes including proteases and lipases to be tested. 
Bacteria can be used as vectors to carry tumoricidal agents 
and immunotherapeutic agents, thereby destroying tumor 
cells (Table 1).7-10 However, the fight against cancer is not 
expected to be won any time soon, and so creative efforts to 
harness the power of bacteria for cancer treatment will still 
continue. This review covers the use of bacteria as anticancer 
agents to improve cancer treatment.

2 |  BACTERIA IN CANCER 
THERAPY

Cancer is a challenging disease, which requires a multi‐
pronged approach for effective treatment.11 The historical 
role of bacteria as anticancer agents was recognized as long 
as one century ago (Figure 1). For the first time clinicians 
used live bacteria (Streptococci and Clostridia) for cancer 
treatment. Today, genetically modified bacteria are mostly 
used for this purpose.12-16 Bacteria can be used in cancer 
therapy by taking advantage of different strategies (Figure 2). 
These strategies include native bacterial toxicity, combina-
tion with other therapies, bacteria that can control expression 
of anticancer agents, expression of tumor‐specific antigens, 
gene transfer, RNA interference, and pro‐drug cleavage.7 
The use of whole live, attenuated and/or genetically modified 
bacteria alone, or in combination with conventional agents 

has been tested in several experimental models of cancer. 
The most common bacteria used in this field are the genera 
Salmonella, Clostridium, Bifidobacterium, Lactobacillus, 
Escherichia, Pseudomonas, Caulobacter, Listeria, Proteus, 
and Streptococcus.8,17-20 The use of three species of bacteria, 
Clostridia, Bifidobacteria, and Salmonellae as vectors for 
delivering or expressing tumor suppressor genes, anti‐angio-
genic genes, suicide genes, or tumor‐associated antigens has 
been tested in animal models bearing various tumors.8,21-24 
Some clinical trials have already been conducted display-
ing partial responses, and thus further investigation should 
be performed in humans.8 Also, modified bacteria can be 
used for theranostic applications, since they can be detected 
using magnetic resonance imaging (MRI) or positron emis-
sion tomography (PET) as dual therapeutic and diagnostic 
agents.7,25-31

3 |  GENETICALLY MODIFIED 
BACTERIA IN CANCER THERAPY

Gene therapy is a forward‐looking alternative approach to can-
cer therapy. Selective targeting and destruction of tumor cells 
are the major advantages of gene therapy.8,12,32,33 Genetically 
modified bacteria may also be able to lower pathogenicity to 
the host and increase the antitumor efficacy.32,34 Recently, a 
number of studies have developed a new approach for can-
cer therapy using genetically engineered bacteria designed to 
express reporter genes, cytotoxic protein and/or anticancer 
agents, and tumor‐specific antigens.10,34,35 It has been found 
that genetically modified bacteria can have a more signifi-
cant multiplication in tumors than in normal tissues.36,37 The 
ability of Salmonella typhimurium serovar VNP20009 and 
Clostridium butyricum M55 to selectively colonize tumors 
has allowed them to be used as delivery vectors in mouse 
tumor models, without severe immune responses or toxic 
side effects. However, the results of some of these studies 
were less promising than expected.8,18,19,38-40 Nevertheless, 
Clostridia strains (C acetobutylicum and C beijerinckii) can 
be successfully engineered to express genes encoding spe-
cific bacterial enzymes (cytosine deaminase, nitroreductase), 
or murine tumor necrosis factor alpha (m‐TNFα), producing 
more promising antitumor effects.41-43 A number of studies 
found that bacteria were able to produce antibodies that could 
bind to hypoxia inducible factor 1α (as a crucial transcription 
factor with a role in tumor development).7,44,45 Clinical tri-
als have demonstrated that the engineered S typhimurium and 
Clostridium novyi ‐NT expressing HlyE or Stx2 (an acidic 
pH‐responsive promoter) or recA (a 38 kDa protein essential 
for the repair and maintenance of DNA) activated the host 
immune system to express cytokines such as interleukin‐2 
(IL‐2), IL‐4, IL‐18, CC chemokine‐21, and consequently led 
to the regression and necrosis of tumors.8,46-48 These studies 
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T A B L E  1  The treatment strategy of bacteria in cancer therapy

Treatment strategy Type of bacteria, treatment approach Outcome Ref.

Immunotherapeutic agents Streptococcus pyogenes, intentionally 
infected a cancer patient with 
erysipelas

Rapid tumor regression 149

Streptococcus pyogenes, intentionally 
infected a cancer patient with 
erysipelas

Regression of cancer 150

Bacillus Calmette‐Guerin, injection into 
patients with tuberculosis

Reduced frequency of cancer 151

Clostridium spp, concurrently suffered 
from gas gangrene in patients with 
tumor

Tumor regression 152

Attenuated Salmonella typhimurium, 
vaccination of the B16F10 tumor‐bear-
ing mice by derivatives Salmonella 
typhimurium (SL1344 InvA or 
SL3261AT InvA

An antitumor effect 51

Listeria monocytogenes, vaccination a 
recombinant Listeria monocytogenes 
(Lm‐NP) on breast, melanoma, and 
cervical cancer

Regression growth all types 
of tumors

153

Vectors/spores to carry 
tumoricidal agents

Clostridium acetobutylicum DSM792, 
cloned of the construction 
(pIMP1eglArIL2) of the rIL2 
expression/secretion vector into 
Clostridium acetobutylicum DSM792

A significant increase in 
secretory production of 
biologically active rat 
interleukin‐2

154

Clostridium novyi‐NT, IV injection of C 
novyi‐NT spores and a single IV dose 
of liposomal doxorubicin (Doxil) 
administered into mice bearing 
colorectal cancer

Elimination of tumors 126

C novyi‐NT and C. sporogenes, 
conjugation of pMTL‐555‐VHH 
construct of a VHH‐AG2 expressing 
vector (an anti HIF‐1α) into these 
bacteria

Rise of delivery of therapeu-
tics agents

44

C novyi‐NT, IV administration of 
HTI‐286, docetaxel, vinorelbime, and 
MAC‐321 in combination with or 
without C novyi‐NT spores into mice 
bearing HTC 116 xenografts

Hemorrhagic necrosis of 
tumors

155

C novyi‐NT spores, IV injection C 
novyi‐NT spores into CT26 and 
RENCA tumors in mice and VX2 
tumor in rabbits

Relatively treated in mice and 
rabbits with cancer

156

Bifidobacterium longum 105‐A and 
108‐A, IV injection of the pBLES100 
(constructed by cloning a B longum 
plasmid and a gene encoding spectino-
mycin adenyltransferase AAD from 
Enterococcus faecalis into the E coli 
vector pBR322) to B16‐F10 melanoma 
tumor‐bearing mice

Increase in specific gene 
delivery vectors in the tumor

74

(Continues)
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suggested that a combination of bacteriotherapy with radio-
therapy, immunotherapy, or chemotherapy could be a novel 
and useful approach to cancer treatment.

4 |  BACTERIA AS 
IMMUNOTHERAPEUTIC AGENTS IN 
CANCER THERAPY

Cancer immunotherapy involves triggering a specific immune 
response in patients to allow various kinds of host immune 
cells to attack the cancer cells. It is believed that once the 
activated host immune cells (mainly tumor antigen‐specific 
CD8+ and CD4 +T lymphocytes that have been activated 

and stimulated) can recognize and destroy tumor cells. 
Bacterial infections (such as those caused by C novyi) can 
lead to the production of heat shock proteins such as Hsp70 
which is released from necrotic cells, and pathogen‐associ-
ated molecular patterns (PAMPs) which are released from 
bacteria.49 Hsp70 causes maturation of dendritic cells, which 
are the professional antigen‐presenting cells required for the 
generation of effective antigen‐specific immune responses. 
PAMPs bind to and activate toll‐like receptors, stimulating 
up‐regulation of pro‐inflammatory cytokines (eg, IL‐12), and 
costimulatory molecules (eg, CD40). Subsequently, these 
mediators cause production of interferon gamma (IFN‐γ) 
and a Th1‐dependent cell‐mediated response will com-
mence, essentially mediated by CD8+ effector cells.50 CD8+ 

Treatment strategy Type of bacteria, treatment approach Outcome Ref.

Bacterial toxins/enzymes Salmonella enterica Serovar 
Typhimurium, oral administrated  
construction of Salmonella‐based 
survivin vaccine into BALB/c, colon, 
DBT, and GL261 glioblastoma 
‐bearing mice

Vaccine as an adjuvant 
against different types of 
cancer

157

Streptococci and Serratia marcescens, 
injection of bacterial concoction de-
rived from heat‐killed streptococcal 
and Serratia marcescens (Coley's 
Toxin) into body, sarcomas

A severe erysipelas infection 
led to the cure of cancer

158

E coli BM2‐1 strain, direct inoculum of 
Cytotoxic Necrotizing Factor‐1 
(CNF‐1) to the HEp‐2 cells (exposed to 
UVB irradiation)

Activation of the Rho 
GTP‐binding protein and 
prevent apoptosis in 
epithelial cells

159

Corynebacterium diphtheriae, the 
incubation of the Vero cells for 1 h in 
growth medium with different amounts 
of nicked124 I‐labeled diphtheria toxin 
(DT)

Inhibition of protein synthesis 
and subsequent cell lysis 
and/or induction of apoptosis 
Vero cells

160

Clostridium perfringens, intratumoral 
injections of either 2, 10 µg of 
Clostridium perfringens enterotoxin 
(CPE) in xenografts of T47D breast 
cancer cells in mice

Rapid and dose‐dependent 
cytolysis

161

Clostridium botulinum, administration of 
botulinum neurotoxin (BoNTs) into 
tumors

BoNTs an effect on the tumor 
microenvironment and more 
effective destruction of 
radiotherapy and chemo-
therapy in cancer cells

129

Pseudomonas aeruginosa, IV injection 
of the chimeric fusion protein 
interleukin‐4‐Pseudomonas exotoxin 
(IL4‐PE) into GBM induce in nude 
mice and, intratumor administration of 
IL4‐PE in malignant astrocytoma in a 
phase I clinical trial

A significant antitumor 
activity

162

T A B L E  1  (Continued)
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lymphocytes isolated from C novyi NT‐treated mice can in 
turn stimulate acquired immunity in a tumor‐specific model. 
Avogadri et al, have described an interesting approach to 
melanoma immunotherapy dependent on the ability of in-
tracellular bacteria like S typhimurium to infect host cells.51 
They observed that S typhimurium used a type‐3 secretion 
system (T3SS) to infect tumor cells. Essentially, mutant 
strains, which were defective in T3SS lost the ability to enter 
tumor cells, both in vivo and in vitro. Tumor cells infected by 
Salmonella are not directly destroyed by the S typhimurium; 
but rather bacterial antigens are presented and become targets 

for anti‐Salmonella—specific T cells, a process that has not 
been fully explained. Furumoto et al, have reported that com-
pounds derived from bacteria (CpG oligonucleotides) can be 
used to activate dendritic cells and cause complete regression 
of B16F10 melanoma tumors, which are known to be highly 
immunosuppressive in mice.52

Recombinant Escherichia coli strains have been utilized 
for over 30 years as a standard tool in molecular biology, and 
are broadly used for manufacturing recombinant proteins. 
These strains can also be used for the delivery of tumor an-
tigens into dendritic cells. The simultaneous production of 

F I G U R E  1  Timeline | The history uses of therapeutic bacteria in oncology

F I G U R E  2  Schematic of therapeutic 
bacteria strategies against hypoxic tumor 
adapted from Forbes7
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listeriolysin O (LLO; a pore‐forming cytolysin released from 
Listeria monocytogenes) together with ovalbumin (OVA; a 
model tumor antigen) in E coli strains led to the MHC class 
I presentation of the OVA Kb‐restricted epitope, SIINFEKL, 
after phagocytosis of the microorganisms by macrophages.53 
LLO is expressed as a bacterial cytoplasmic protein, and is 
only released subsequent to the uptake of the L monocyto-
genes by phagocytosis and degradation within the phagocytic 
vesicles. LLO then punctures the phagosome, permitting its 
release into the cytosol together with co‐expressed proteins, 
for processing and presentation by the MHC class I path-
way. A recent study showed that, if applied several times, a 
combination of PAMPs could eradicate solid tumors in can-
cer bearing mice.54

5 |  BACTERIAL TOXINS OR 
ENZYMES IN CANCER THERAPY

Several pathogenic microorganisms express and release 
particular protein toxins that serve to suppress the immune 
response of the infected host. Some of these have been 
tested to some extent for cancer therapy.55 Commonly, 
they catalyze the covalent alteration of specific proteins. 
In that way, they can inhibit the production or release 
of antibodies and cytokines. Moreover, they can inhibit 
macrophage migration and disrupt the barrier function of 
epithelial cells. Often, these toxins are powerful enzymes 
with high specificity against their cellular substrates, 
which are frequently signaling molecules. These enzy-
matic toxins have the capability to alter their substrates in 
the cytosol after bacteria enter the cells. A few toxins are 
able to change the function and morphology of the cells, 
or possibly kill the host cells. Since many of these toxins 
have well‐known structures, cellular receptors, molecular 
mechanisms, and uptake pathways, they have been utilized 
to analyze or influence particular signaling pathways of 
mammalian cells.55 Bacterial toxins are the most powerful 
cytotoxins produced by bacteria themselves. Cytolysin A 
(ClyA; also known as HlyE) is a bacterial enzyme toxin, 
which works by making pores in eukaryotic cell mem-
branes and triggering caspase‐mediated cell death.10,47 
A few studies have found that treating mice with S typh-
imurium or E coli strains expressing the ClyA toxin in-
hibited tumor growth.10,47 Three of the cytotoxins have 
been found to belong to the TNFα superfamily: TNF‐re-
lated apoptosis‐inducing ligand (TRAI‐l), FAS ligand 
(FAS‐l), and TNFΑ.7,56 These proteins selectively cause 
programmed cell death via death receptor pathways, ac-
tivating the apoptotic mediators, caspase 3 and caspase 
8.56 Recently, in a report of “photo‐controlled bacterial 
metabolite therapy”, Zheng et al57 developed a biotic/abi-
otic hybrid system. They combined carbon nitride (C3N4) 

with an E coli strain that was able to produce nitric oxide 
(NO). In a mouse model, the C3N4 loaded bacteria were 
accumulated throughout the tumor, and the treatment re-
sulted in a significant antitumor activity (~80% inhibition 
of tumor growth). Furthermore, cell cycle inhibitors (e.g. 
cytolethal distending toxins, CDTs, and the cycle inhibit-
ing factor, Cif) blocked cell division and were proposed to 
compromise the immune system by impeding the clonal 
expansion of lymphocytes. Conversely, cell cycle stimula-
tors, for example, the cytotoxic necrotizing factor (CNF) 
stimulate cell proliferation and interfere with cell differen-
tiation.58,59 Bacterial toxins that block or stimulate the eu-
karyotic cell cycle have been called “cyclomodulins”. For 
instance, CNF is a cell‐cycle stimulator released by some 
bacteria such as E coli. CNF stimulates the G1‐S cycle 
transition and increases replication of DNA. However, the 
overall number of cells does not increase, and the cells be-
come multinucleated instead, possibly through the ability 
of toxin to prevent cell differentiation and trigger cell ap-
optosis.60 Cif is involved in enterohemorrhagic E coli and 
enteropathogenic E coli, while CDTs are produced by sev-
eral Gram‐negative bacterial species, and Salmonella typhi 
and Campylobacter jejuni. The antitumor effects of bacte-
rial toxins could be associated with reduced side effects 
compared to traditional antitumor therapy. These bacterial 
toxins could be combined with anti‐cancer drugs, or with 
irradiation to enhance the efficacy of cancer therapy.61

6 |  BACTERIAL SPORES AND 
VECTORS AS TUMORICIDAL 
AGENTS

Live bacterial vectors may be valuable tools for the devel-
opment of new cancer therapies, which can be added to the 
collection of existing drugs.62 In one aspect of this novel 
methodology, bacteria are modified to deprive cancerous 
cells of oxygen, thereby causing tumor death.

The interest in utilizing bacteria as anticancer agents 
goes back to the end of the 19th century; however, with 
the advent of molecular biology, this methodology has also 
been recently revisited.63,64 Over the past 50 years, many 
strains of obligate and facultative anerobic bacteria have 
been investigated as oncolytic agents owing to their abil-
ity to specifically multiply in oxygen‐poor (hypoxic) tis-
sues.65-67 Early results suggested that anerobic bacteria 
particularly targeted solid tumors, triggering an inflamma-
tory response inside the tumor followed by tumor regres-
sion in up to 30% of cases for instance after administration 
of bacterial spores.68-70 Several strains of Bifidobacteria, 
Salmonella sp,71 E coli,72,73 and Clostridium74 have been 
shown to selectively colonize the hypoxic areas of tumors 
and destroy tumor cells, thereby providing an additional 
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specific tumor‐targeted therapy.62 Several studies have sug-
gested that bacteria have been engineered to express a cy-
totoxic protein or reporter gene could be utilized in tumor 
treatment or tumor imaging.75 These genetically modified 
bacteria multiply in tumors by up to 1000‐fold higher, than 
in normal tissues.71 S typhimurium has been utilized as a 
carrier to transport various converting enzymes and anti-
gens into tumors.76 The genus Clostridium is strictly an-
erobic and the vast majority of species can produce spores 
permitting survival but not growth in hypoxic conditions.77 
Once conditions are favorable (as in wounds or spoiled 
meat), these spores can germinate into metabolically active 
bacterial cells. Furthermore, clostridia utilized in the field 
are generally susceptible to a wide range of antibiotics, per-
mitting control of their replication at any time.77 Highly 
hypoxic tissue is usually only found in tumors and is ab-
sent in most other organs of the body. This high specificity 
was shown by Malmgren et al,78 who injected Clostridium 
spores into tumor‐bearing mice, and showed that only the 
mice with tumors died from the infection. In view of the 
fact that necrotic mainly areas exist only inside tumors 
and not in normal tissues, it was realized that lethal toxin‐
free Clostridium novyi NT spores could be very efficient 
in eradicating established tumors.66,67,79 The systemic ad-
ministration of clostridia spores (which is remarkably well 
tolerated) can lead to the destruction of tumor cells sur-
rounding necrotic and hypoxic regions that are resistant to 
conventional therapies.80 The majority of anerobic bacteria 
tested up to now can form extremely resistant spores that 
enable them to survive even in oxygen‐rich conditions, but 
they cannot multiply or grow there. However, when they 
experience favorable conditions, for example, dead regions 
within tumors, the spores will germinate and the bacte-
ria will multiply, rendering them ideal to target cancers. 
Spores of C novyi‐NT (a genetically modified strain with-
out the lethal toxin) have demonstrated antitumor activity 
without any systemic side effects. In mice receiving an 
intratumoral injection of C histolyticum spores, a marked 
lysis of tumor tissues was observed. A similar phenomenon 
was found in mice injected intravenously with spores of 
C sporogenes. Additionally, Clostridium was not detected 
in normal tissues of mice receiving an intravenous injec-
tion of bacteria, but only in tumors. Pharmacological and 
toxicological assessment of mice injected with C novyi‐NT 
spores suggested that the spores were quickly cleared from 
the general circulation by the reticuloendothelial system. 
No systemic toxicity was seen in healthy mice or rabbits 
even after massive doses. However, in tumor‐bearing mice, 
toxicity appeared to be associated with the tumor size, and 
in this case, spores did cause bacterial infection. Bacterial 
spores have been additionally exploited as delivery agents 
for cytotoxic peptides, anticancer agents, therapeutic pro-
teins, and as vectors for gene therapy.6,40,47

7 |  COMBINATION OF 
BACTERIOTHERAPY WITH 
DIFFERENT APPROACHES IN 
CANCER THERAPY

The combination of bacteriotherapy with other different 
types of cancer therapy has shown remarkable potential for 
both diagnostic and therapeutic applications. Chemotherapy, 
radiotherapy, and immunotherapy are accepted as the major 
conventional types of cancer treatment.81 However, con-
ventional strategies can cause numerous complications in 
patients including induction of cancer cell resistance, sys-
temic toxicity, and immune suppression, not to mention that 
they have failed to completely eradicate all the cancer cells 
in most cases. It is known to be challenging to effectively 
administer radiotherapy or chemotherapeutic agents to the 
hypoxic and acidic regions in tumors. Incomplete tumor tar-
geting, inadequate tissue penetration, and limited cancer cell 
toxicity are limitations of most cytotoxic drugs.82 Therefore, 
viruses or other vectors have been used for selective tumor 
targeting and cancer therapy. About 30% of cancer‐related 
deaths are caused by failure of local tumor control, suggest-
ing that improving local control has the potential to improve 
the survival of one‐third of all cancer patients. Several ways 
to improve local tumor control are currently under investi-
gation. Promising strategies seem to be those that combine 
existing therapeutic modalities with new approaches, such as 
combining ionizing irradiation with gene therapy.83

8 |  COMBINATION OF 
BACTERIOTHERAPY WITH 
RADIOTHERAPY

Radiotherapy remains central among the most effective ap-
proaches to treat many different cancers. Even so, damage to 
normal tissues cannot be completely avoided, representing 
an important limitation for the efficacy of this cancer treat-
ment approach.84 One of the fundamental explanations for 
the lack of efficacy of radiotherapy in some solid tumors is 
the presence of hypoxic (i.e. poorly vascularized) zones that 
are resistant to radiation. However, this limitation could be 
an advantage for other approaches, for example, the use of 
facultative or obligate anerobic bacteria.62 Therefore, the 
radiotherapeutic doses could be lowered to spare surround-
ing healthy tissues. Contrasted with another investigative ap-
proach, gene therapy, bacteriotherapy has the advantage of 
avoiding genetic modification of tumor cells, which is rather 
inefficient and not risk‐free. The combination of radiotherapy 
with bacteria is a novel active area of investigation. In spite 
of the fact that there have been few investigations using bac-
teria to promote radiotherapy, this field may still become a 
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practical approach in clinical radiation oncology. It has been 
shown that genetically engineered Salmonella bacteria have 
the desired properties of an antitumor vector. They can selec-
tively replicate within tumors, and can express effector genes 
such as the herpes simplex thymidine kinase. Salmonella 
that targets tumors from a distant inoculation site, can medi-
ate tumor growth suppression.85 Lipid A‐altered Salmonella 
auxotrophs were developed that displayed attenuated toxic-
ity in mice and swine. These mutants demonstrated consid-
erably reduced induction of host TNF‐α (a key mediator in 
bacteria‐mediated tumor therapy), yet retained the capacity 
for tumor multiplication and growth suppression, achieving 
accumulation in tumors of 109 colony forming units (cfu)/g 
of tumor, which was 1000 times higher than normal tissues 
in mice.86,87 The outcome was followed for tumor growth 
and mouse survival. When the bacteriotherapy was combined 
with radiation treatment it produced additional antitumor ef-
fects. In dose‐response studies with increasing doses of radia-
tion but single dosages of Salmonella, the 2 agents together 
caused synergistic suppression of tumor growth (greater than 
additivity).88 The attenuated S typhimurium strain ΔppGpp 
(guanosine 5’‐diphosphate‐3’‐diphosphate) could be used to 
kill tumor cells. It was engineered to carry a pBAD plasmid 
coding for cytotoxic protein cytolysis A (ClyA) and also for 
bacterial luciferase (Lux) to allow optical imaging.46 ClyA 
is a 34‐kDa pore‐forming hemolytic protein, which can be 
produced S typhimurium and E coli without posttranslational 
modification.89 The ClyA cytotoxicity toward macrophages 
and mammalian cells induced cell caspase‐mediated cell 
death. A serious drawback of radiotherapy is that it is not 
clear whether the radiation affects cytotoxin‐expressing 
Salmonella that has localized in the tumor. Liu et al37 re-
ported that the combination of radiotherapy and bacterial 
therapy using engineered S typhimurium ∆ppGpp reduced 
tumor growth compared with bacterial therapy alone. In addi-
tion, the researchers recently showed that the agonist of toll‐
like receptor 5 (TLR5), called bacterial flagellin, as well as 
CBLB502 (its pharmacologically optimized derivative) could 
protect primates and rodents from gastrointestinal and hemat-
opoietic radiation syndromes induced by total body irradia-
tion.84,90 In another investigation, Platt et al88 showed that the 
combination of X‐rays with Salmonella had supra‐additive 
antitumor effects, with a larger slope of the dose‐response 
curve. They additionally proposed that at higher radiation 
doses (25‐50 Gy), the supra‐additive effect was not clear, 
as this would have needed a full fractional dose‐response. 
Felgner et al40 recently reported that pre‐exposure to thera-
peutic bacteria (E coli Symbioflor‐2 or Salmonella SL7207 
vector strains) in naive mice and tumor bearing mice that 
were subsequently immunized, caused a significantly differ-
ence in the phenotype of the microenvironment of colonized 
tumors. Bettegowda et al91 used a combination of spores of C 
novyi‐NT together with radiation therapy to treat transplanted 

tumors in mice. Their results indicated that C novyi‐NT 
spores alone only had very minor therapeutic effects, while 
the combination resulted in long‐term remission in a signifi-
cant fraction of animals. In their studies partial and complete 
responses were found with the combination of external beam 
therapy or brachytherapy, and a single dose of C novyi‐NT. 
Nevertheless, they recommended that the combination ther-
apy using conventional doses of radiation could be toxic for 
organs like the liver. On the other hand, they suggested that 
a combination of radioactive iodine with C novyi‐NT might 
enable patients to be treated with lower doses of radiolabeled 
antibodies, subsequently limiting toxicity to normal tissues, 
for example, to bone marrow. Nuyts et al32 tested bacteria as 
a potential gene delivery agent and combined it with radia-
tion therapy. They isolated 2 radiation‐inducible genes of the 
SOS repair system (recA and recN genes) in Clostridium ace-
tobutylicum DSM792, and confirmed these genes could be 
activated at a radiation dose of 2 Gy. These results suggested 
that fractionated radiotherapy could trigger repeated gene in-
duction in bacteria leading to enhanced and prolonged pro-
tein expression.32 They suggested that the radio‐responsive 
recA promoter could increase TNFa production in recom-
binant clostridia after 2 Gy of irradiation.83 Jiang et al10 as-
sessed the antitumor effects of combining RT with bacteria. 
In this investigation, E coli carrying pAClyA was injected 
into CT26‐bearing BALB/c mice, after which they were ir-
radiated with different radiation doses (0, 8, 15, 21 Gy). This 
research showed that engineered bacteria such as E coli strain 
K‐12 can produce ClyA to enhance the therapeutic effects of 
radiation. Furthermore, their findings confirmed that radio-
therapy and bacteriolytic therapy could inhibit the develop-
ment of tumor metastasis. Table 2 summarizes the studies on 
the use of bacteria after or during radiotherapy as a combina-
tion cancer therapy.

Several innovative approaches have been proposed to re-
duce radiotherapy‐induced normal tissue damage.92,93 The 
application of bacteria could also be used to reduce normal 
tissue damage during or after RT. Certain strains of bacteria 
(particularly Lactobacilli and Bifidobacteria) have been pro-
posed to reduce RT side effects.25,94-96 The use of probiotics 
to preserve normal tissue during or after radiotherapy has 
also been shown in many clinical and preclinical studies.97-108

9 |  COMBINATION OF 
BACTERIOTHERAPY WITH 
CHEMOTHERAPY

Chemotherapy is still the mainstay of treatment for inoper-
able cancer, despite numerous shortcomings such as inadeq-
uate drug concentrations in tumors, occurrence of systemic 
toxicity (hematological, gastrointestinal, alopecia, heart, and 
skin toxicity) in many types of cancer, and almost inevitable 



   | 3175SEDIGHI Et al.

induction of drug resistance.109-112 Neutropenia is one of 
the main manifestations of hematological toxicity. It is well 
known that due to immunosuppression, neutropenia poses a 
risk of infectious disease occurring during treatment. In addi-
tion, chemotherapy is responsible for gastrointestinal toxicity 
because of mucosal damage, and altering the natural host mi-
croflora.113-115 It should be noted that tumor cells that remain 
after chemotherapy frequently show increased aggressiveness, 
and can enter blood and lymph vessels, thereby increasing the 
probability of metastasis.116,117 Therefore the introduction of 
new approaches is required to increase effectiveness and re-
duce toxicity in chemotherapy.109 Combining chemotherapy 
with bacteriotherapy could be one of these new approaches. 
It should be pointed out that bacteria can specifically target 
the most hypoxic tumors which are often those most resistant 
to chemotherapy.118 Bacteria can, not only sensitize tumors 
to increase the efficiency of chemotherapy, but they can also 

be exploited as drug/gene delivery vehicles. Bacterial toxins 
can destroy tumors and can also be used for bacterial‐based 
cancer vaccines.6,61 Genetically modified bacteria can be 
used for selective tumor targeting as well as bacterial gene‐
directed enzyme prodrug therapy for cancer.6 Moreover, bac-
terial endotoxins can also be used to fight cancer particularly 
in combination with chemotherapy.7 Probiotic bacteria could 
mitigate the severity of chemotherapy‐induced toxicity, par-
ticularly the gastrointestinal side‐effects. VSL‐3 is 1 type of 
probiotic formula that has been effective in reducing compli-
cations (such as diarrhea induced by chemotherapy in rats).119 
Whitford et al, showed that Streptococcus thermophilus has 
beneficial effects on 5‐fluorouracil (5‐FU) complications (in-
testinal mucositis).120 Bowen et al suggested that, in spite of 
the overall shortage of hard data, probiotics should be tested 
for chemotherapy complications.113 In another investiga-
tion, 150 patients with colorectal cancer receiving 5‐FU and 

T A B L E  2  Summaries of studies on combination of bacteriotherapy and radiotherapy for cancer therapy

Strain(s) Methods Outcome Ref

Clostridium novyi‐NT Injection 3 × 108 spores of C novyi‐NT and irradiation; 
external beam radiation (0.1 Gy/s, Cs‐137 source), 
systemic radioimmunotherapy with 500µCi of 
I‐131‐labeled T84.66 mAb and brachytherapy (10 Gy/
day) used of plaques loaded with I‐125 seeds in 
different transplanted tumors in mice

C novyi‐NT plus external beam radiation led to 
tumor shrinkage in mice bearing HCT116 
tumors

91

C novyi with brachytherapy led to cure 100% of 
mice bearing HCT116 and HuCC‐T1 
xenografts

Treated of the xenografts of colorectal cancer 
LS174T by combination of C novyi‐NT with 
radioimmunotherapy

C oncolyticum M55 Injection C. oncolyticum M 55 spores with local tumor 
hyperthermy in mice bearing Ehrlich solid carcinoma, 
Harding‐Pasey‐melanoma and fibrosarcoma

Oncolysis of the tumors 163

C oncolyticum M55 IV injection C. oncolyticum M 55 spores in combina-
tion with local tumor hyperthermy 2305 NMRI‐mice 
bearing neck tumors

intensification of the oncolysis tumors after 12 h 164

C oncolyticum M55 local X‐irradiation and local HFH with iv spore‐ C. 
oncolyticum M55 in Harding‐Passey‐Melanoma‐bear-
ing mice

Relatively cure 165

C acetobutylicum 
DSM792

Induction of the recA and recN genes (involved in 
DNA repair) in Clostridium by radiation 2 Gy

Significant increase in b‐galactosidase activity 32

C acetobutylicum 
DSM792

Induction of the gene involved in recA gene in 
Clostridium by radiation 2 Gy

Significant increase TNFα 83

E coli K‐12 SC injection E coli containing expressing ClyA gene 
(5 × 107 CFU) with 21 Gy radiation murine CT26 
colon carcinoma cells

Tumor shrinkage, suppressed metastatic tumor 
growth and prolonged the survival time

10

Salmonella YS146 and 
YS166

Combination treatment administration of X‐rays 5 to 
15Gy with ip or iv injection Salmonella 2 × 105 cfu 
into mice bearing B16F10 or Cloudman S91 
melanomas

Suppression of tumors growth and prolonged 
mice survival

88

Salmonella typhimu-
rium SHJ2037

Combination treatment radiotherapy 21Gy with iv 
injection S typhimurium (containing of Plasmid 
construction plasmid pBAD‐RLuc8‐clyA) into mice 
bearing colon tumor CT26

Regression of tumors 37
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leucovorin bolus injections plus continuous 5‐FU infusion as 
postoperative adjuvant therapy, were randomly allocated to 
receive L rhamnosus GG (1‐2 × 10(10) CFU) and fiber (11 g 
guar gum) per day, while others did not. The patients receiv-
ing Lactobacillus had significantly less severe grades of diar-
rhea. These participants also had less abdominal discomfort 
thereby reducing the need for hospital care and lowering of 
chemotherapy doses.121 Abd El‐Atti et al showed the effec-
tiveness of probiotics to control chemotherapy complications 
in patients with advanced breast cancer.122 One of the most 
troubling treatment‐related complications in patients with 
head and neck cancer is oral mucositis. Some of the recent 
studies have investigated the positive effects of Lactobacillus 
brevis CD2 lozenges on the severity and prevalence of mu-
cositis, as well as the tumor resistance to radiotherapy. It was 
observed that patients who received Lactobacillus during 
chemotherapy had fewer intestinal problems than the others, 
resulting in shortening the course of chemotherapy and lower 
doses.94,102,108,112,123-125 Another method to reduce the side ef-
fects of chemotherapy is the COBALT strategy (combination 
bacteriolytic therapy; simultaneous use of C novyi‐NT spores 
with conventional chemotherapeutic agents). Although 
COBALT showed meaningful antitumor effects, it could not 
completely prevent animal deaths.66 Another use of C novyi‐
NT is its membrane‐disrupting potential in liposome‐encapsu-
lated drug delivery to tumor cells.126,127 Nitroreductase (NR) 
enzymes from different bacterial strains have been investi-
gated in some studies.128 It was shown that the NR enzyme 
from Haemophilus influenza had promising pharmacokinetic 
properties and could be utilized in treating tumors in mice. 
Mice were treated either with C sporogenes alone, or with C 
sporogenes in combination with NR and CB1954.

A novel study demonstrated the power of botulinum 
neurotoxin (BoNT) to destroy tumor vessels, allowing 
greater cancer cell destruction by chemotherapy.129 The 
most important problem in this process was insufficient 
tumor lysis. Since all the components of malignant tissue 
are not completely consumed by bacteria, bacteriotherapy 
should be combined with chemotherapy.130 Salmonella and 
Clostridium produce the suicide enzyme cytosine deami-
nase (CDase) which transforms the pro‐drug 5‐fluorocyto-
sine (5‐FC) to chemotherapeutic 5‐FU.42,131-133 Nemunaitis 
et al in an experimental clinical trial used 5‐FC and re-
combinant Salmonella expressing CDase, and 66.7% of 
patients showed a tumor response.18 Another study investi-
gated the ability and efficiency of Salmonella typhimurium 
VNP20009 in a murine melanoma model combined with 
different chemotherapy drugs.118 Kasinskas et al,134 dis-
cussed the relationship between S typhimurium and the 
microenvironments of solid tumors. They suggested that 
the interaction of S typhimurium with the microenviron-
ment regulated the amount and location of bacterial ac-
cumulation. Through monitoring these interactions, they 

proposed that administration of S typhimurium could lead 
to increased effects of standard chemotherapeutic drugs. 
Exploiting S choleraesuis as a single tumor‐targeting an-
ticancer agent in tumor‐bearing mice was reported by Lee 
et al.135 Their study indicated that the combination of S 
choleraesuis and cisplatin postponed tumor development 
and increased survival.

10 |  BACTERIA IN THERANOSTIC 
APPROACHES

Theranostics describes the use of multifunctional approaches 
to simultaneously image, monitor and treat tumors, and has 
recently attracted a great deal of attention.136-138 One of the 
common approaches to theranostics is to use drug‐delivery 
nanovesicles, that also incorporate an imaging component.139 
Bacteria can be used in theranostics because they can specifi-
cally target tumors and can replicate in tumor cells.6,139 The 
ease of genetic manipulation of bacteria allows for the produc-
tion of attenuated strains with greater safety profiles, and vector 
systems, thereby allowing for precise tuning and multifunc-
tional capabilities.7,140 To facilitate the monitoring of migra-
tion patterns and to follow the proliferation of these bacteria, 
scientists use genetically modified bacteria to express reporter 
genes that allow optical imaging.10 In addition, bacteria can 
be detected by MRI or PET.7,10,140 Sheng‐Nan Jiang et al,10 
used an E coli strain K‐12 (MG1655) producing the cytotoxic 
protein and pore‐forming hemolytic cytolysin A (to kill colon 
cancer cells) and the bacterial luciferase (Lux) operon (as an in 
vivo imaging marker). They found that a combination of bac-
teriotherapy and radiotherapy reduced tumor metastasis and in-
creased the survival rate in mice. Cheng‐Hung Luo developed 2 
approaches for cancer theranostics using Bifidobacterium breve 
and Clostridium difficile to increase the treatment and imag-
ing effectiveness.141 In another study, Zurkiya et al142 applied 
magnetotactic bacteria (naturally producing magnetosomes) to 
deliver a gene expression marker (magA) in the human 293FT 
cell line as a candidate MRI reporter gene. Quispe‐Tintaya et 
al tested an engineered bacterial strain (virulence‐attenuated 
live Listeria monocytogenes with bound radioactive antibod-
ies), instead of administering radiotherapy and bacterial tumor 
therapy independently. They observed that this construct led 
to primary tumor regression (>60%) and reduced metastases 
(>90%).143 Some bacteria (Haloarchaea) that produce gas ves-
icles (~width of 45‐250 nm and length of 100‐600 nm) have 
been examined as theranostic agents.144,145 Recently, Shapiro 
et al146 described a novel diagnostic strategy using gas vesi-
cles (harvested from Anabaena flosaquae and Halobacterium 
NRC‐1) as ultrasound contrast agents for molecular imaging 
in mice. In addition, they suggested that these vesicles could 
be targeted as therapeutic agents and drug or gene delivery 
vehicles.147
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11 |  CONCLUSIONS AND 
PROSPECTIVES

The unique pathophysiology of solid tumors causes major ob-
stacles for traditional anticancer therapies. There are advantages 
and disadvantages in the applications of therapeutic bacteria in 
cancer therapy.18,134 Currently, although traditional cancer ther-
apies are still the mainstream treatments, bacteriotherapy has 
demonstrated remarkable effects, thanks to its high specificity, 
ability to be controlled post‐administration, and oncolytic capa-
bilities in many in vivo studies.34 Nevertheless, many problems 
remain for using bacteria in clinical practice as antitumor agents 
including; bacterial toxicity, DNA instability, limited targeting 
efficiency, choice of practical and safe bacterial strains, and 
testing combination with other therapies.7,80,148 Hopefully, 
these obstacles can be overcome by more sophisticated genetic 
engineering of tailored strains. In the future, genetically modi-
fied bacteria will be made more practical for both diagnostic 
and therapeutic anticancer applications, and to enhance radio-
therapy, immunotherapy, or chemotherapy efficacy.
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