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Summary

Outcomes for melanoma patients with stage III disease differ widely even within the same subcategory.

Molecular signatures that more accurately predict prognosis are needed to stratify patients according to risk.

Proteomic analyses were used to identify differentially abundant proteins in extracts of surgically excised

samples from patients with stage IIIc melanoma lymph node metastases. Analysis of samples from patients with

poor (n = 14, <1 yr) and good (n = 19, >4 yr) survival outcomes identified 84 proteins that were differentially

abundant between prognostic groups. Subsequent selected reaction monitoring analysis verified 21 proteins as

potential biomarkers for survival. Poor prognosis patients are characterized by increased levels of proteins

involved in protein metabolism, nucleic acid metabolism, angiogenesis, deregulation of cellular energetics and

methylation processes, and decreased levels of proteins involved in apoptosis and immune response. These

proteins are able to classify stage IIIc patients into prognostic subgroups (P < 0.02). This is the first report of

potential prognostic markers from stage III melanoma using proteomic analyses. Validation of these protein

markers in larger patient cohorts should define protein signatures that enable better stratification of stage III

melanoma patients.

Introduction

The 5-yr survival for clinically localized melanoma

(American Joint Committee on Cancer, AJCC stages I

and II) ranges from 97 to 53%, while the prognosis for

metastatic melanoma is poor with 5-yr survival rates

ranging from 70 to 39% for patients with lymph node

involvement (AJCC stage III) and 18 to 6% for patients

with distant metastases (AJCC stage IV) (Balch et al.,

2009). Patients with stage III disease can have vastly

Significance

Stage III melanoma patients can have vastly different outcomes. Currently, for stage IIIc patients, the risk of

progression and response to therapy cannot be predicted. Additional prognostic markers for accurate risk

stratification are needed. We describe here the first proteome analysis of lymph node metastases from

stage IIIc patients with poor and good survival. We have identified 84 proteins that change between the two

survivor groups. Several identified markers were validated with high concordance using selected reaction

monitoring mass spectrometry. The protein signatures obtained classify melanoma patients into the two

prognostic groups and may aid prognostication of metastatic melanoma.
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different outcomes, particularly those with bulky nodal

metastases (AJCC stage IIIc). Some patients have long

survival following current treatments, while others with

an identical AJCC stage survive less than 6 months.

Currently, prognosis based on histological and clinical

factors is unsatisfactory for predicting risk of disease

progression and response to adjuvant therapy. The

difficulty in classification of melanoma into prognostic

subgroups and selection of treatments is reflected in the

failure to improve outcomes for advanced disease.

Additional prognostic markers are needed to provide

more accurate diagnosis and prognosis.

Histological and clinical factors used for diagnosis of

melanoma are of limited use. Biomarkers could provide

additional prognostic information based on the molecular

mechanisms of transformation and disease progression.

A systematic review summarizes the use of protein

biomarkers visualized by immunohistochemistry to pre-

dict melanoma outcome (Rothberg et al., 2009). Gene

expression profiling of melanoma has yielded an enor-

mous amount of information leading to the definition of

molecular signatures for disease progression (Haqq et al.,

2005; Jaeger et al., 2007; Timar et al., 2010), recurrence,

and survival (Bogunovic et al., 2009). For example, global

gene expression profiling was used to classify AJCC

stage IV melanomas into four subtypes associated with

biological parameters such as pigmentation and immune

response, with significant correlation to clinical outcomes

(Jonsson et al., 2010). In addition, gene expression

signatures can predict clinical outcomes in stage III

melanoma patients (John et al., 2008). Recently, in a

parallel study to this article, Mann et al. (2013) reported

that the presence of BRAF and NRAS mutations, and the

absence of an immune-related transcriptome profile,

predicted poor outcome in stage III melanoma patients.

The phenotype of a cell or tissue correlates directly with

protein levels and their post-translational modifications,

but they may not correlate with mRNA levels (Gygi et al.,

1999). Several studies have sought to identify protein

signatures associated with melanoma disease progres-

sion (Bougnoux and Solassol, 2013).

Proteomic analysis of melanoma samples from large

patient cohorts is challenging and may be limited by lack

of fresh tissue. Previous proteomic studies on melanoma

have primarily used cell lines (Bougnoux and Solassol,

2013) that limit the clinical relevance. While a number of

studies have analyzed serum proteomes to identify

melanoma biomarkers (Findeisen et al., 2009; Mian et al.,

2005), there have been few proteomic studies involving

surgical specimens, most likely due to the limited access

to adequate amounts of clinical samples. Histology-

directed MALDI MS was used to identify differentially

abundant proteins from 69 lymph node samples

containing metastatic melanoma (stage III) and 17 control,

tumor-free lymph nodes (Hardesty et al., 2011). Protein

signatures were identified that enabled classification of

tumor and normal lymph tissue. Despite extensive efforts

using immunohistochemistry, gene expression, and pro-

tein profiling, there are few validated prognostic biomar-

kers that predict prognosis independently of more easily

assessed clinical and pathologic parameters (Balch et al.,

2009; Schramm and Mann, 2011). Some studies suggest

that the protein S-100B is of prognostic value for stage III

melanoma (Kruijff et al., 2009), but only serum lactate

dehydrogenase (LDH) has been validated as an indepen-

dent prognostic factor for stage IV melanoma (Deichmann

et al., 1999). Novel prognostic markers for routine diag-

nostic pathology are needed.

Here, we describe the first proteomic analyses of

lymph node metastases from stage IIIc melanoma

patients with poor and good survival outcomes. Comple-

mentary proteomic discovery platforms, two-dimensional

fluorescence difference gel electrophoresis (DIGE), iso-

baric tags for relative and absolute quantitation (iTRAQ),

and two-dimensional liquid chromatography coupled to

tandem mass spectrometry (2DLC-MS/MS) were used to

identify differentially abundant proteins between the

survivor groups. Some of these potential prognostic

markers were validated using selected reaction monitor-

ing (SRM) mass spectrometry with an orthogonal method

of protein quantitation. Protein signatures obtained clas-

sify melanoma patients into the two prognostic groups.

Differentially abundant proteins identified here provide

information on the molecular mechanisms associated

with poor survival outcomes and, when independently

validated, should enable more accurate risk stratification

of AJCC stage III melanoma patients.

Results

Difference gel electrophoresis and iTRAQ 2DLC-MS/MS

analyses were performed on whole tissue extracts of

lymph node melanoma metastases from AJCC stage IIIc

patients with good (n = 19, >4 yr survival post-resection)

and poor (n = 14, died <1 yr post-resection) survival

outcomes (Tables S1 and S2). Differentially abundant

proteins (84) with potential prognostic utility were iden-

tified. Of these proteins, 21 have been validated using

SRM with high concordance between these analytical

approaches.

DIGE analysis

A representative DIGE image is shown in Figure S1 with

differentially abundant proteins indicated. On each ana-

lytical DIGE gel, more than 1000 protein spots were

detected and 994 spots were matched across the nine

gels. A total of 20 protein spots showed significant

differences in protein abundance between the two

prognostic groups (Student’s t test P < 0.05, Table S3).

Protein spots were excised from preparative gels for

identification by tryptic in-gel digestion and LC-MS/MS

analysis. Following a Mascot database search of the

ESI-MS/MS data, 19 of the 20 protein spots, belonging to

13 protein species, were identified. Protein spot 16 was
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of low abundance and not identified. Phosphoglycerate

kinase 1 (spots 2, 10), glutathione S-transferase P (spots

5, 13), glyceraldehyde 3-phosphate dehydrogenase (spots

15, 20), tumor rejection antigen gp96 (spots 3, 19), and

peptidyl-prolyl cis-trans isomerase (spots 7, 9 and 18)

showed multiple spots, most likely due to post-transla-

tional or chemical (e.g., deamidation of asparagine)

modifications leading to spot shifts in the gel.

iTRAQ 2DLC-MS/MS analysis

The summary of proteins, peptides, and spectra obtained

from iTRAQ 2DLC-MS/MS analysis using ProteinPilotTM is

presented in Table S4. The reproducibility of the iTRAQ

2DLC-MS/MS experiments was assessed using an inter-

nal control (iTRAQ 113), comprised of all samples and run

in all six iTRAQ sets. The median Pearson’s coefficient for

the pairwise comparison between the sets was 0.76

(Table S5). A detailed list of proteins detected together

with sequence coverage and the number of peptides

matched is provided in Table S6. Quantitative iTRAQ

2DLC-MS/MS was performed using the detected peptide

levels. After removing peptides with missing values, 8260

peptides were identified from merging the six 2DLC-MS/

MS runs, corresponding to 2031 proteins. The number of

proteins identified across 33 samples is presented in

Figure S3. At 10% FDR (adjusted P-value <0.1), 73

proteins were differentially abundant between poor and

good prognosis patients (Table S7), 59 (81%) of which

were significant at 5% FDR (adjusted P-value <0.05) and
38 (52%) were significant at 1% FDR (adjusted P-value

<0.01). A heat map generated from iTRAQ-labeled,

differentially abundant proteins shows clustering of

melanoma patients with poor (<1 yr) and good (>4 yr)

survival outcomes (Figure 1).

Pathways and network analysis

The Human Protein Reference Database (http://www.

hprd.org/) was used to assign proteins to their primary

cellular location and biological process. More than 80% of

the differentially abundant proteins identified by DIGE and

iTRAQ 2DLC-MS/MS are intracellular with only 5%

assigned to plasma membranes and 12% to the extra-

cellular space (Figure S4A). As shown in Figure S4B, the

majority of proteins identified by DIGE and iTRAQ 2DLC-

MS/MS are involved in metabolism: energy pathways

(20%), protein metabolism (20%), cell communication

and signal transduction (17%), cell growth and/or main-

tenance (11%), regulation of nucleobase, nucleoside,

nucleotide and nucleic acid metabolism (13%), immune

response (6%), and apoptosis (2%). Key differences for

the poor prognosis cohort include an increase in protein

metabolism and regulation of nucleobase, nucleoside,

nucleotide, and nucleic acid metabolism, and a decrease

in cell communication/signal transduction proteins (Figure

S4C,D). Of the five significant pathways identified by

MetaCoreTM, four are involved in the immune response

(Table S8; 1% FDR). Eight significant networks were

generated, of which three were assigned to protein

folding and three to immune response (Table S8; 1%

FDR).

Verification of prognostic candidates and survival

analysis

Nineteen prognostic candidates (accession numbers

highlighted in Tables S3 and S7) were selected for

validation based on the presence of proteotypic peptides

and functional relevance to cancer progression. A further

four proteins (ATP synthase subunit b, ATP-dependent

RNA helicase DDX5, periostin, and T-complex protein 1

subunit zeta) were selected for SRM analysis due to their

potential as prognostic markers (see Discussion). SRM

analyses were performed using the original cohort

(n = 33; Table S1) plus an additional 10 samples (Table

S2). SRMmeasurements were highly reproducible across

the replicates (median R = 0.85, Figure S5). The fold

changes of proteins and P-values between the two

prognostic groups, as well as the correlation of SRM

measurements with iTRAQ data, are presented in

Table 1. Twenty-one proteins were differentially abun-

dant between poor and good prognosis groups

(P < 0.05), while two proteins (LDHA and KRT9) had

marginal significance (P < 0.1; Table 1). All proteins, with

the exception of KRT9, were significant at the 10% FDR

adjustment (Table 1). The distribution of protein abun-

dance levels across the patient cohorts is shown in

Figures 2 and S6. The SRM results confirm the iTRAQ

Figure 1. Hierarchical clustering for 73 differentially abundant

proteins (10% false discovery rate (FDR)) for 33 melanoma patients.

Proteins were identified using iTRAQ 2DLC-MS/MS (Table S7).

Decreased (green) and increased (red) protein levels are shown.

Patients with poor (<1 yr, blue color) and good (>4 yr, red color)

survival outcomes have segregated as indicated by the red and blue

bars above the heat map.
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Table 1. Summary of SRM measurements from 33 AJCC stage III melanoma samples

Acc. noa Protein name

Gene

name

FDb

PP/GP

Unadjusted

P-valuec
Adjusted

P-valued Corr.e
mRNA FDf

PP/GP

Q15063 Periostin POSTN 1.68 0.000 0.001 0.85 �1.21

P08238 Heat-shock protein HSP 90-b HSP90AB1 1.37 0.000 0.000 0.59 1.20

P09874 Poly [ADP-ribose] polymerase 1 PARP1 1.36 0.000 0.002 0.81 1.07

P11142 Heat-shock cognate 71 kDa protein HSPA8 1.27 0.003 0.009 0.52 �1.29

P17844 Probable ATP-dependent RNA helicase DDX5 DDX5 1.22 0.000 0.001 0.48 �1.23

P60842 Eukaryotic initiation factor 4A-I EIF4A1 1.21 0.002 0.007 0.66 �1.08

P23526 Adenosyl homocysteinase AHCY 1.19 0.001 0.003 0.75 1.07

P12956 X-ray repair cross-complementing protein 6 XRCC6 1.18 0.000 0.000 0.46 �1.04

P13010 X-ray repair cross-complementing protein 5 XRCC5 1.15 0.022 0.051 0.39 �1.04

P00338 L-lactate dehydrogenase A chain LDHA 1.13 0.055 0.098 0.84 �1.04

Q08211 ATP-dependent RNA helicase A DHX9 1.13 0.034 0.073 0.63 1.02

Q99798 Aconitate hydratase, mitochondrial ACO2 1.12 0.040 0.083 0.54 1.09

P40227 T-complex protein 1 subunit zeta CCT6A 1.12 0.043 0.083 0.64 �1.07

P06576 ATP synthase subunit b, mitochondrial ATP5B �1.17 0.013 0.035 0.93 1.06

P35527 Keratin, type I cytoskeletal 9 KRT9 �1.22 0.098 0.158 0.23 1.01

P27797 Calreticulin CALR �1.26 0.003 0.008 0.69 �1.06

Q9UL46 Proteasome activator complex subunit 2, PA28 b PSME2 �1.26 0.048 0.090 0.77 �1.51

P04179 Superoxide dismutase [Mn], mitochondrial SOD2 �1.33 0.022 0.051 0.84 �1.50

P10909 Clusterin CLU �1.36 0.001 0.003 0.97 �1.00

Q06323 Proteasome activator complex subunit 1, PA28 a PSME1 �1.37 0.000 0.001 0.86 �1.29

O75367 Core histone macro-H2A.1 H2AFY �1.41 0.001 0.003 0.74 �1.11

P13796 Plastin-2 (L-Plastin) LCP1 �1.56 0.000 0.000 0.90 �3.40

Q9ULZ3 Apoptosis-associated speck-like protein containing a CARD PYCARD �1.70 0.000 0.000 0.80 �1.09

aAccession numbers of proteins were from the Swiss-Prot database.
bPositive fold difference represents higher levels in poor prognosis subjects, and negative fold difference represents higher levels in good

prognosis subjects.
cUnadjusted P-values.
dFalse discovery rate is calculated using the function p.adjust in the Limma package based on Benjamini & Hochberg (Benjamini and Hochberg,

1995).
ePearson correlation of SRM values with those of iTRAQ 2DLC-MS/MS.
fmRNA gene expression level was obtained using the corresponding data set (see (Mann et al., 2013) for full description of expression data).

GP, good prognosis; PP, poor prognosis.

A B

C D

Figure 2. Scatter plots showing the distribution of protein levels in 33 lymph node melanoma metastases, verified by SRM. Each protein is

represented by 2 peptides; (A) plastin-2, (B) apoptosis-associated speck-like protein containing a CARD, (C) heat shock protein HSP 90-beta, and

(D) eukaryotic initiation factor 4A-I. The ordinate denotes the normalized logarithmic ratio of the sum of transitions from the indicated endogenous

peptide to the sum of transitions of all samples to the corresponding peptide analyzed, followed by RUV adjustment. The abscissa represents

patient survival in months. Patients with poor survival (<1 yr) are indicated in green, and patients with good survival (>4 yr) are indicated in blue.

The red line is the average log ratio of the peptide. P-values of individual peptides were calculated using moderated t test. The experiment was

performed in duplicate, circles represent replicate 1, and stars are replicate 2.
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2DLC-MS/MS findings, with high concordance between

the two methods (Figure 3); the median Pearson’s

coefficient for the analyses was 0.74, and for some

proteins >0.90 (Table 1). Western blot analyses were

performed on two proteins, confirming that protein

changes observed by MS are also found using a different

analytical platform. Consistent with 2DLC-MS/MS and

SRM results, Western blotting showed increased levels

of eukaryotic initiation factor 4A-I (P = 0.014) and

decreased superoxide dismutase [Mn] (P = 0.099) in

patients with poor prognosis (Figure S7).

Proteomic patterns as assessed by SRM (Table 1)

were used to construct Kaplan–Meier survival curves for

patients with good and poor prognosis (Figure 4), with a

24% prediction error. The Kaplan–Meier plot for the

cross-validated predicted outcomes from the initial 33

AJCC stage III melanoma patients shows wide separation

of patient groups (P = 0.019). Significant (P = 0.02) sep-

aration of good and poor prognosis groups was also

demonstrated using Kaplan–Meier plots for an indepen-

dent predicted outcome generated from the 10 indepen-

dent melanoma samples. The survival times were less

Figure 3. Correlation plots of differentially abundant proteins assessed using iTRAQ 2DLC-MS/MS and SRM from 33 AJCC stage III melanoma

patients. The ordinate denotes the log ratio of the protein abundance level using iTRAQ 2DLC-MS/MS analysis, and the abscissa is the log ratio of

the protein level assessed by SRM. Abbreviations: GP, good prognosis (red); PP, poor prognosis (blue).

A B

Figure 4. Kaplan–Meier survival curves for patients with good and poor prognosis based on SRM data (Table 1). (A) Kaplan–Meier curve for the

cross-validated predicted outcomes from the initial 33 AJCC stage III melanoma patients. (B) Kaplan–Meier plot for an independent predicted

outcome generated from the 10 independent melanoma samples. A log-rank test was used to test for significance in survival between the

prognostic groups (P < 0.05). Abbreviations: GP, good prognosis; PP, poor prognosis.
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strict for these additional 10 samples with median survival

of 1.1 yr for poor and 3.6 yr for good prognosis groups.

The clear separation of the two prognostic groups

indicates the robustness of our candidate markers.

Discussion

The AJCC melanoma staging system stratifies patients

into heterogeneous groups, with wide variability in

outcomes and responses to therapy. More accurate

prognostic indicators are needed for metastatic mela-

noma patients. Considerable efforts are focused on

developing criteria for treatment selection, based on

individual cancer molecular profiles. While several studies

have attempted to identify gene and mRNA signatures for

survival in stage III melanoma, proteomic analyses have

been limited. Identification of differentially abundant

proteins between different prognostic groups will aid

the development of prognostic indicators for stage III

melanoma and enhance understanding of the molecular

mechanisms associated with poor outcomes.

A total of 84 proteins (73 from iTRAQ 2DLC-MS/MS, 13

from DIGE, two common to both) were identified as

differentially abundant between the poor and good

prognosis cohorts. Many of the identified proteins are

highly abundant heat-shock, metabolic, and structural

proteins (Table S7, Figure S4). Sample complexity is a

critical factor for peptide identification and quantitation.

Due to the large number of proteotypic peptides in tissue

samples, only a small subset of all peptides in a sample

(the most abundant peptides) can be identified and

quantified in a single MS run. Prefractionation using

SCX chromatography reduced sample complexity to

some extent and enabled quantitation of some low

abundance proteins (e.g., STAT1, SUB1).

It is not surprising that only two proteins (calreticulin

and collagen type 1 a1) were common to both proteomics

platforms, as iTRAQ coupled to LC-MS/MS is comple-

mentary to DIGE (Wu et al., 2006). Similarly, others have

found a low correlation between DIGE and iTRAQ 2DLC-

MS/MS (Lim et al., 2009). Poor prognosis patients are

characterized by increased levels of proteins involved in

protein metabolism/folding, nucleic acid metabolism,

angiogenesis, deregulation of cellular energetics, and

methylation processes, and decreased levels of proteins

involved in apoptosis and immune response (Figure S4).

Several proteins identified here were previously asso-

ciated with melanoma prognosis. L-lactate dehydroge-

nase A chain (LDHA) and L-lactate dehydrogenase B

chain (LDHB) are more abundant in patients with poor

prognosis (Tables 1 and S7). LDH was reported as the

strongest independent prognostic factor for stage IV

melanoma (Deichmann et al., 1999). The lower abun-

dance of histone H2A (H2AFY) in poor prognosis patients

(Tables 1 and S7) is consistent with the results of

Hardesty et al. (2011), who found that decreased levels

of histones H4, H3, and H2B correlated with poor survival

of patients with AJCC stage III melanoma. L-plastin

(LCP1) and signal transducer and activator of transcription

1 (STAT1) also showed significant differential mRNA

levels in our parallel transcriptomics study (Mann et al.,

2013). This concordance rate may be explained by a

predominance of mRNAs encoding membrane proteins

identified in the transcriptomics study, whereas the

proteomics approaches used here predominantly isolated

intracellular proteins (Figure S4A). Proteomic analyses of

total cell or tissue lysates typically identify only a handful

of membrane proteins; the amphiphilic nature, heteroge-

neity, and relative low abundance of plasma membrane

proteins likely contribute to an under-representation in

global proteome analyses. Furthermore, mRNA is not the

functional end point of gene expression, and mRNA

abundance was previously shown as a poor indicator of

corresponding protein levels (Gygi et al., 1999).

The differences in protein abundance between the poor

and good prognosis groups are subtle. While iTRAQ

labeling enables quantification of large numbers of

proteins, it has a low dynamic range and tends to

underestimate the actual abundance changes of proteins

(Trinh et al., 2013). In addition, the proteins identified

here may originate from different cell types in the tissue

sample (melanoma, leukocytes, stroma). Analysis of

protein abundances in specific cell subpopulations (e.g.,

by microdissection) may reveal higher fold-changes

between the two prognostic groups. Despite the

relatively low abundance changes of individual proteins

(Table 1), the combined protein signature does classify

patients into prognostic groups using the Kaplan–Meier

estimate (Figure 4) for the original 33 samples and the

additional 10 samples. The functions of some of the

identified proteins and their roles in cancer progression

and prognosis are described below.

Increased levels of chaperones, DNA repair proteins,

and RNA helicases in poor prognosis patients

Cytosolic heat-shock protein 90 kDa, beta (HSP90AB1),

its ER paralogue, tumor rejection antigen gp96

(HSP90B1), and heat-shock cognate 71 kDa protein

(HSPA8), are found at higher levels in poor prognosis

patients (Tables 1, S3 and S7). Many proteins required for

melanoma initiation and progression, including mutated

BRAF, CRAF, IGF1R, cyclin D1, CDK4, and AKT, are

known clients of HSP90 (Grbovic et al., 2006). HSP90

was identified as a progression marker in primary mela-

nomas, with high levels associated with higher Clark

levels and increased Breslow thickness (McCarthy et al.,

2008). Several subunits of T-complex protein 1 (TCP-1)

were found at higher abundance in poor prognosis

patients (Tables 1 and S7). Increased expression of

TCP-1 subunit zeta (CCT6A) may be associated with

melanoma drug resistance (Tanic et al., 2006).

Increased levels of poly(adenosine diphosphate-ribose)

polymerase 1 (PARP1) in lymph node metastases from

poor prognosis patients are in accordance with previous

ª 2014 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd. 1111

Signatures for survival of stage III melanoma



observations where overexpression of PARP1 was pro-

posed as a molecular marker of aggressive cutaneous

melanoma (Staibano et al., 2005). In addition, PARP1 was

associated with melanoma development (Zhang et al.,

2011), tumor aggressiveness, and chemoresistance (Ten-

tori et al., 2008). Eukaryotic initiation factor 4A1 (DDX2A,

gene EIF4A1), probable ATP-dependent RNA helicase

DDX5 (DDX5), and ATP-dependent RNA helicase A

(DDX9, gene DHX9) are 3 RNA helicases present at

higher levels in poor prognosis patients (Table 1). DDX2A

(eIF4A1) mRNA is consistently overexpressed in human

melanoma cells in vitro (Eberle et al., 1997). Antisense-

mediated downregulation of DDX2A in melanoma cell

lines resulted in inhibition of proliferation, suggesting that

DDX2A may play a role in melanoma tumorigenesis

(Eberle et al., 2002). DDX5 is involved in alternative

splicing of the proto-oncogene c-H-ras (Guil et al., 2003)

and is elevated in cutaneous squamous cell carcinoma

(Wang et al., 2012). DDX9 is cleaved early in apoptosis,

suggesting that loss of its function might contribute to

induction of apoptosis (Takeda et al., 1999).

Deregulation of mitochondrial enzymes in poor

prognosis patients

One of the hallmarks of aggressive malignancies is

defective mitochondrial electron transport. Here, several

mitochondrial proteins (12%, Figure S4A) were deregu-

lated in poor prognosis patients. Mitochondrial ATP

synthase subunit beta (b-F1-ATPase, gene ATP5B) and

superoxide dismutase [Mn] (SOD2) are lower while

aconitate hydratase (ACO2) is higher in patients with a

poor prognosis (Table 1). SOD2 expression is decreased

in many cancers and has been implicated as a candidate

tumor suppressor gene in human melanoma (Church

et al., 1993). Low b-F1-ATPase levels and therefore a

diminished bio-energetic capability of the tumor are

associated with poor prognosis as assessed in large

cohorts of patients with colorectal (Lin et al., 2008), lung

(Cuezva et al., 2004), and breast (Isidoro et al., 2005)

cancer. Significant findings of different SOD2, ACO2, and

b-F1-ATPase levels in melanoma patients with poor

survival warrant further investigation for their potential

use as biomarkers.

Escape from immuno-surveillance in poor prognosis

patients

Metastatic melanoma is highly immunogenic. The major-

ity of the molecular pathways and networks associated

with the proteins identified here (Table S8) are involved in

immune response, perhaps indicative of evasive immune

strategies in patients with poor outcomes. Several pro-

teins involved in the immune response were reduced in

poor prognosis patients. Changes in calreticulin (CALR)

levels, a component of the antigen-processing machinery

(APM), may affect immune response to metastatic

melanoma (Anichini et al., 2006). Intracellular calreticulin

may contribute to immune evasion through reduction of

major histocompatibility complex (MHC) class I antigen

presentation (Chao et al., 2010), whereas cell surface

calreticulin is required for the interpretation of a cell death

response by antigen-presenting cells (Obeid et al., 2007).

IFN-c exposure of melanoma cells increased calreticulin

cell surface accessibility (Cornforth et al., 2011) that has

been associated with increased phagocytosis of mela-

noma cells by macrophages, an antitumoral immune

response (Qin et al., 2011). Depleted calreticulin in lymph

node metastases from poor prognosis patients could

contribute to mechanisms by which tumor cells escape

immunosurveillance. Subcellular localization of calreticulin

in lymph node tumors is required to determine its role in

antimelanoma immunity.

The L-plastin gene is activated in most human cancer

cells (Park et al., 1994); however, L-plastin is also

expressed at high levels in leukocytes and has important

functions in innate and adaptive immunity (Shinomiya,

2012). L-plastin was shown to regulate chemokine-

induced lamellipodia formation, polarization, and migra-

tion of human T-lymphocytes (Freeley et al., 2012). The

reduced levels of L-plastin observed in this study in poor

prognosis patients may indicate reduced numbers of

leukocytes and, subsequently, immune reactivity.

Proteasome activator complex subunit 1 (PA28a, gene
PSME1) and proteasome activator complex subunit 2

(PA28b, gene PMSE2), other proteins that might alter the

immune response to melanoma cells, were lower in

patients with poor outcomes. Proteasomes, the major

proteolytic machinery in the cytosol, generate most of the

MHC class I-presented peptides (Kloetzel, 2001) recog-

nized by CD8+ cytotoxic T lymphocytes. PA28a and

PA28b are two IFN-c-inducible subunits of proteasome

activator PA28 that enhance antigen presentation (Jiang

and Monaco, 1997; Van Hall et al., 2000). The generation

of a cytotoxic T-lymphocyte epitope on melanoma cells is

dependent on the function of PA28 (Sun et al., 2002).

Moreover, PA28 function is particularly relevant for the

generation of normally poorly excised peptide products

(Textoris-Taube et al., 2007), indicating that PA28 is able

to alter the immunophenotype of a cell. The depletion of

calreticulin, L-plastin, PA28a, and PA28b suggests that

the immune response may be impaired in lymph node

metastases from patients with reduced survival. These

observations are mirrored by the recent parallel study by

Mann et al. (2013) that highlights a significant association

of immune response genes, T-cell receptor signaling, and

IFN-c signaling with survival outcomes of patients with

AJCC stage IIIc metastatic melanoma.

Other functions

Collagen type I aI (COL1A1) was identified at higher

abundance from both DIGE and 2DLC-MS/MS analyses

in patients with poor prognoses (Tables S3 and S7). Type I

collagen is synthesized by tumor-associated non-trans-

formed fibroblasts and demarcates the transition from

non-invasive keratinocytic intra-epidermal neoplasia to
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invasive cutaneous squamous cell carcinoma (Van Kem-

pen et al., 2004). In addition, collagen type I contributes

to angiogenesis and the development of deeply invasive

cutaneous melanoma (Van Kempen et al., 2008) . Perio-

stin (POSTN), present at higher abundance in patients

with shorter survival times (Table 1), activates the

Akt/PKB signaling pathway, leading to enhanced cellular

survival (Bao et al., 2004) and angiogenesis (Shao et al.,

2004). Periostin expression is unchanged in primary

disease, but overexpressed in 60% of melanoma liver

or lymph node metastases, with melanoma cells and the

surrounding stroma identified as sources of periostin

(Tilman et al., 2007). In addition, periostin levels correlate

with increased primary tumor thickness and the develop-

ment of metastatic disease (Tilman et al., 2007). The high

levels of collagen type I aI and periostin detected here

(Tables 1 and S7) may increase tumor aggressiveness,

leading to poor survival outcomes in stage IIIc patients by,

for example, enhancing angiogenesis and melanoma cell

survival.

S-Adenosylhomocysteinase (SAHH, gene AHCY), the

key enzyme in the maintenance of methylation homeo-

stasis, is higher in patients with poor prognosis (Tables 1

and S7). More than 70 genes are hypermethylated in

cutaneous melanoma (Van Den Hurk et al., 2012).

Regional hypermethylation was increased with advanced

clinical stage, and the methylation status of MINT31

(methylated in tumor loci 31) was associated with disease

outcome in stage IIIc patients (Tanemura et al., 2009).

The increased levels of SAHH may indicate deregulated

methylation in poor prognosis patients.

Apoptosis-associated speck-like protein containing a

CARD (ASC, gene PYCARD) was found in lower abun-

dance in the poor prognosis cohort (Tables 1 and S7).

Importantly, pro-apoptotic ASC is subject to aberrant DNA

methylation and epigenetic silencing in a number of

different tumor types, including melanoma (Guan et al.,

2003). ASC is high in benign melanocytic nevi and

markedly reduced in human melanoma cell lines and

clinical specimens (Guan et al., 2003). Decreased

abundance of ASC may confer a survival advantage for

melanoma cells by allowing them to escape from

apoptosis.

In summary, we have performed the first comprehen-

sive proteomic profiling of melanoma lymph node metas-

tases in AJCC stage IIIc patients with poor and good

survival outcomes. Deregulated proteins in poor progno-

sis patients may provide signatures for prognosis and

offer insights into important aspects of melanoma

biology. Proteins verified by SRM are able to classify

stage IIIc melanoma patients into prognostic subgroups

(P < 0.02). The protein markers identified here comple-

ment the molecular signatures described by Mann et al.

(2013). Further assessment of these candidate proteins

using robust methodology and statistics will be necessary

to evaluate their potential to predict outcomes for

patients with AJCC stage IIIc metastatic melanoma.

Methods

Clinical specimens

Melanoma lymph node metastases were obtained from the Mela-

noma Institute Australia (BioSpecimen Bank, Sydney South West

Area Health Service institutional ethics review committee (RPAH

Zone) Protocols No. X08-0155/HREC 08/RPAH/262, X11-0023/HREC

11/RPAH/32 and X07-0202/HREC/07/RPAH/30). With informed con-

sent, samples of melanoma lymph node metastases from AJCC

stage IIIc patients undergoing surgery at the Melanoma Institute

Australia (Sydney, NSW, Australia) were collected and banked.

Quantitative iTRAQ 2DLC-MS/MS and SRM analyses were per-

formed on 33 melanoma lymph node tumors from patients with good

prognosis (19 samples, >4 yr survival post-resection) and poor

prognosis (14 samples, died <1 yr post-resection). The proteomic

analyses presented here use the same patient selection criteria and

many of the samples that were analyzed in the parallel transcripto-

mics study (Mann et al., 2013). Due to larger quantities of protein

required for DIGE analysis, we analyzed a subset of these samples

(n = 18). Providing sufficient material was present, priority was given

to samples with the shortest and longest survival times for the poor

and good prognosis cohorts, respectively. One sample (PP4) was

removed from the DIGE analysis, as this patient died from causes

other than melanoma. Clinico-pathologic characteristics of the 33

AJCC stage IIIc melanoma patients and their tumors are summarized

in Tables S1 and S2. There was limited access to frozen lymph node

metastases from patients from the extreme ends of the survival

spectrum (poor: <1 yr, median survival time 0.5 yr; good: >4 yr,

median survival time 8.1 yr). For validation by SRM using an

independent cohort, 10 additional samples with less strict survival

times were used. For poor prognosis (n = 6), median and mean

survival times were 1.1 and 1.3 yr (SD = 0.3, range: 1.0–2.0 yr),

respectively. For good prognosis (n = 4), median and mean survival

times were 3.6 and 3.3 yr (SD = 0.8, range: 2.1–4.0 yr), respectively.

For preparation of protein lysates, frozen melanoma lymph node

tumors were ground to a powder with liquid nitrogen and solubilized

with 7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 65 mM DTT, 2 mM

TBP, and 40 mM Tris base supplemented with protease inhibitors.

Lysateswere sonicated three times on ice using a step tip probe at 20%

cycle intensity for 10 s (Ultrasonics Model W-225R; Ultrasonics, Inc.,

Plainview,NY, USA) and placedon ice for 30 s between eachsonication.

Protein lysates were centrifuged (16 000 g, 15 min, 4°C), and stocks

stored at�80°C. iTRAQ labeling and 2DLC-MS/MS (Appendix S1), DIGE

analysis, protein function and network analysis (Appendix S2), and SRM

analysis (Appendix S3) are described in Supporting Information.

iTRAQ 2DLC-MS/MS data analysis

To identify differentially abundant proteins between poor and good

prognosis groups, the following statistical analysis was carried out. All

peptide expression ratios from the iTRAQ2DLC-MS/MS analysiswere

transformed to logarithm (base 2) values. Here, a twofold increase or

decrease is reported as 1 or�1, respectively. Peptides detected in less

than 25% of samples were removed prior to the analysis (Figure S2).

For each protein, a fixed effect model can be written as

Yjk ¼ lþ Tpp þ Pek þ ejk (1)

where j denotes the subject and k the number of peptide observations

for each subject. The vector Y represents log ratios from different

subjects, l represents the mean, and the parameter T is the parameter

of interest, which in this case is the true fold difference between the

good and poor prognosis groups for the protein under consideration. The

parameter Pek is the kth peptide effect that is the difference between

ª 2014 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons Ltd. 1113

Signatures for survival of stage III melanoma



the fold change of the k peptide and the average over all peptides, and

the symbol e denotes the error. Our main goal was to estimate T for all

identified proteins. This model selects for proteins that are differentially

expressed between good and poor prognosis groups adjusting formean

differences between individual peptides within each protein. Candidate

protein sets were selected by controlling for 10% FDR, which is

equivalent to an adjusted P-value of 0.1. In practice, these models are

fitted using functions in R/BIOCONDUCTOR software (Gentleman et al.,

2004). The heat map from protein expression data was constructed

using the function ‘heatmap.2’ in R that uses a Euclidean distance

metric. The MS/MS spectra of differentially abundant proteins were

manually inspected for correctness.

SRM data analysis

The SRM data files (*.wiff) were imported into SKYLINE software,

manually accessed for quality and exported for statistical analysis.

Further manual inspection was performed to determine the inclusion

or exclusion of each peptide for downstream analysis. The level of a

peptide was summarized based on adding up intensity levels from all

transitions from endogenous peptides, and a RUV random normal-

ization was used (Gagnon-Bartsch and Speed, 2012). For each

protein, a similar fixed effect model (as for the iTRAQ 2DLC-MS/MS

data) was used written as

Zjkl ¼ lþ Tpp þ Pek þ Rl þ ejkl (2)

where j denotes the subject, and k the number of peptide

observations for each subject. The vector Z represents normalized

log ratios observed in SRM experiments from different subjects, l
represents the mean, and the parameter T represents fold differ-

ences between good and poor prognosis for the protein under

consideration. The parameter Pek, represents the kth peptide effect,

Rl represents the lth run (in this case, two independent runs of the

SRM experiment exist for each protein), and the symbol e denotes

the error. For proteins with only one peptide, the model

Zjl ¼ lþ Tpp þ Rl þ ejl (3)

was used, equivalent to performing a t test between poor and good

prognosis groups adjusting for differences between the two repli-

cates. In addition, the Pearson’s correlation coefficient between

iTRAQ and SRM data for each protein was calculated. Statistical

analyses were performed in the R statistical environment.

Survival analysis

Survival modeling was performed to classify patients into two risk

groups. All samples (the initial 33 and 10 additional independent

samples) were combined and preprocessed together. Missing values

were imputed based on KNN imputation implemented in the R

package ‘imputation’ (Troyanskaya et al., 2001). Data were standard-

ized (mean centered) at the peptide level and averaged to form

protein level expression. Focusing on the SRM data, we selected all

23 proteins from the SRM analysis (Table 1) and assessed the

prognostic capacity. Using ‘C classification’ and linear kernel, a linear

support vector machine (SVM) model based on the implementation

in ‘e1071’ R package (Chang and Lin, Initial version: 2001, last

updated: March 4, 2013) was applied to the initial set of 33 patient

samples. The average of 100 sets of fivefold cross-validation error

rate was calculated. We constructed Kaplan–Meier curves for the

cross-validated predicted outcomes from the initial 33 patients. A log-

rank test was used to test for significance in survival between the

prognostic groups (P < 0.05). In addition, an independent predicted

outcome was generated from the additional 10 samples and a

corresponding KM plot generated (for details see Appendix S3).
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