
CT = corticosterone; RU486 = mifepristone.
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The lactic acidosis hypothesis of cerebral ischemia [1–3]
postulates that lactic acid accumulates in the brain during an
ischemic event and plays a major detrimental role in delayed
neuronal damage postischemia. The findings of Myers and
Yamaguchi [4] that glucose administration preischemia signif-
icantly aggravates the postischemic outcome have been
reproduced numerous times, and have repeatedly been pro-
moted as the validation of the lactic acidosis hypothesis of
cerebral ischemia.

The glucose paradox as proof of the validity of this hypothesis
is based on the idea that preischemic hyperglycemia leads to
elevated lactic acid levels, and thus to aggravation of post-
ischemic brain damage. Preventive measures are consequently
being practiced in hospitals throughout the world, including

the close monitoring and tight control of blood glucose levels
[5,6]. Nonetheless, such measures are in disagreement with
several facts. First, glucose is the only major aerobic and
anaerobic energy substrate in the brain. Second, during cere-
bral ischemia, glycolytic utilization of glucose is the only
metabolic process capable of producing significant levels of
ATP until all glucose and glycogen levels are extinguished.
Third, during ischemia, lactate is the main product of glycoly-
sis; on reperfusion/reoxygenation, when brain glucose is all
but gone, the abundant lactate can easily enter the tricar-
boxylic acid cycle to maintain ATP production as efficiently
as does glucose. Thus, paradoxically, the only process that
supplies ATP to the ischemic tissue is viewed as the one
responsible for the aggravation of the ischemic damage to
this very tissue.
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Abstract

The glucose paradox of cerebral ischemia (namely, the aggravation of delayed ischemic neuronal
damage by preischemic hyperglycemia) has been promoted as proof that lactic acidosis is a
detrimental factor in this brain disorder. Recent studies, both in vitro and in vivo, have demonstrated
lactate as an excellent aerobic energy substrate in the brain, and possibly a crucial one immediately
postischemia. Moreover, evidence has been presented that refutes the lactic acidosis hypothesis of
cerebral ischemia and thus has questioned the traditional explanation given for the glucose paradox.
An alternative explanation for the aggravating effect of preischemic hyperglycemia on the postischemic
outcome has consequently been offered, according to which glucose loading induces a short-lived
elevation in the release of glucocorticoids. When an episode of cerebral ischemia in the rat coincided
with glucose-induced elevated levels of corticosterone (CT), the main rodent glucocorticoid, an
aggravation of the ischemic outcome was observed. Both the blockade of CT elevation by chemical
adrenalectomy with metyrapone or the blockade of CT receptors in the brain with mifepristone
(RU486) negated the aggravating effect of preischemic hyperglycemia on the postischemic outcome.
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Both in vitro studies [7–13] and in vivo studies [14–28] have
shown that preischemic glucose supply is not necessarily
harmful, and that it could even be beneficial when provided
preischemia. These in vivo findings are considered oddities,
however, while in vitro data are not considered to necessarily
represent the true in vivo situation. Consequently, when dexa-
methasone treatment in stroke patients was found to induce
hyperglycemia, Wass et al. [29] suggested that lactic acido-
sis, not the steroid itself, is responsible for the exacerbation
of ischemic damage frequently observed with dexamethasone
treatment. It is important to note, however, that steroids such
as dexamethasone are regularly administered postischemia.
Postischemic hyperglycemia has been shown not to aggra-
vate postischemic damage [30–32]. In contrast, an associa-
tion between a pronounced systemic stress response, an
elevated level of cortisol in the plasma and increased mortal-
ity or morbidity has been reported [33].

The steroid prednisone was shown to inhibit insulin secretion
and to elevate blood glucose levels [34]. CT, the rodent
equivalent of human cortisol, was shown to depress the
release of glucose-induced insulin [35], while other studies
have concluded that hyperglycemia in acute stroke patients
represents a stress response [36,37]. Glucocorticoids have
been shown to inhibit glucose transport and glutamate
uptake in hippocampal astrocytes [38], to accelerate ATP
loss following metabolic insults in neuronal culture [39], and
thus to exacerbate insult-induced declines in energy metabo-
lism [40]. A recent in vitro study was able to demonstrate an
aggravation of ischemic damage by CT in vitro [41].

Until recently, no studies had been conducted to determine
whether glucose loading preischemia induces an elevation in
blood glucocorticoids (see below). In an unrelated study,
Harris et al. [42] found that glucose challenge in mice ele-
vated CT blood levels sixfold 30 min after glucose injection,
which returned to baseline levels 90 min later. Wang et al.
[43] demonstrated that a carbohydrate-rich diet boosted CT
blood levels. In contrast, metyrapone (2-methyl-1,2-di-3-
pyridyl-1-propanone), a glucocorticoid biosynthesis inhibitor,
was shown to reduce ischemic brain injury, possibly by
reducing blood CT levels [44–47].

Preischemic hyperglycemia: detriment or
benefit
A recent study in rats is most revealing regarding the role that
glucose plays in cerebral ischemia [48]. When rats were
made hyperglycemic by glucose loading (2 g/kg, intraperi-
toneally) 15–60 min prior to a 7-min episode of cerebral
ischemia, a significant increase in the degree of delayed neu-
ronal damage postischemia was found in comparison with
control, saline-injected rats (Fig. 1). In contrast, rats loaded
with glucose 120–240 min preischemia, although also hyper-
glycemic at the onset of ischemia, showed a significantly
lower degree of delayed neuronal damage postischemia in
comparison with control rats. Hippocampal levels of lactate

were measured at the end of the ischemic period in rats
administered with either saline or glucose preischemia. The
lactate levels measured were significantly and equally higher in
rats administered glucose either 15 or 120 min preischemia
when compared with control, saline-administered rats.

These results contradict, and thus refute, the hypothesis that
delayed ischemic neuronal damage is directly correlated with
brain lactate levels. Our finding that inhibition of lactate utiliza-
tion immediately postischemia is detrimental [49] further
refutes the lactic acidosis hypothesis. Thus, in those cases
where high brain levels of lactate were detected 30–90 min
after the onset of reperfusion [1,50–58], lactate probably
remained unused due to cell death.

Since neither glucose nor lactate appears to be the damag-
ing factor during cerebral ischemia, we postulated that
glucose loading evokes a short-lived (30–60 min) systemic
response (hormonal or other) that, when occurring simultane-
ously with an ischemic episode, is capable of aggravating the
degree of delayed neuronal damage postischemia. Allowing
this short-lived systemic response to subside (120 min) prior

Figure 1

The effects of glucose administration (2 g/kg, intraperitoneally [i.p.]) on
three different parameters. Blood glucose and corticosterone levels in
samples taken from one group of rats at the time points indicated after
glucose injection, and the degree of ischemic hippocampal damage
(as measured 7 days postischemia) in another group of rats
administered glucose at the same time points prior to induction of
ischemia. Also shown are the effects of either metyrapone (100 µg/kg,
i.p.) or mifepristone (RU486; 40 mg/kg, i.p.) on the degree of ischemic
damage in rats that were administered glucose 15 min preischemia.
*Significantly different from control, normoglycemic rats (P < 0.05);
**significantly different from hyperglycemic rats injected with glucose
15 min preischemia (P < 0.05) using an unpaired t test.



Critical Care    August 2002 Vol 6 No 4 Schurr

to the onset of the ischemic episode would make apparent
the protective effect of glucose on the ischemic brain (Fig. 1).
This glucose-induced protection stems from both hyper-
glycemic supplies of the sugar to sustain anaerobic glycolysis
and from the ample supplies of lactate available for oxidation
on reperfusion/reoxygenation.

Corticosterone: a systemic factor released in
response to glucose administration
Preliminary experiments to test the effects of glucose loading
on plasma CT levels revealed a sharp increase in the level of
this stress hormone 15–30 min after glucose administration,
followed by a return to baseline level 120 min after glucose
administration [48]. These changes appear to correlate with
the aggravation of neuronal damage by hyperglycemia when
induced 15 min preischemia, and by the lack of such aggra-
vation when glucose is administered 120 min preischemia.

These preliminary results support the postulate by which the
glucose paradox is an outcome of glucose-induced increase
in CT levels that lasts for approximately 60 min (see also
[42]). While the observed changes in plasma CT levels in
response to glucose loading do correlate with the post-
ischemic outcome, such correlation by itself does not provide
the proof that CT is the culprit of the glucose paradox
phenomenon. A more direct approach must be taken to
demonstrate the complicity of CT. Hence, either blockade of
CT biosynthesis, on the one hand, or antagonism of its recep-
tor, on the other, or both, would provide stronger supportive
evidence if and when these approaches could abolish the
aggravating effect of preischemic hyperglycemia.

Chemical adrenalectomy, using metyrapone, is one way to
inhibit CT biosynthesis. Preliminary experiments with
metyrapone [48] support the notion that glucose-induced CT
release is the culprit behind the glucose paradox. As can be
seen from Figure 1, rats pretreated with metyrapone suffered
no aggravation of neuronal damage when administered
glucose 15 min preischemia. These rats actually exhibited a
degree of ischemic damage that was significantly lower than
the damage measured in control, normoglycemic rats. This
indicates that, once the aggravating factor (i.e. CT) is
removed, glucose can be beneficial even when loaded shortly
preischemia. The blood glucose levels of metyrapone-treated,
glucose-loaded rats just prior to the ischemic episode were
as high as those of untreated rats loaded with glucose.

The second approach, antagonizing CT action at its receptor,
was also tested. For that purpose, the glucocorticoid recep-
tor antagonist mifepristone (RU486) [59] was used. Glucose-
loaded rats (15 min preischemia) treated with the antagonist
(40 mg/kg, intraperitoneally) 45 min preischemia exhibited a
significantly lower degree of postischemic damage than
glucose-loaded rats untreated with RU486. The damage was
indistinguishable from that measured in control, normo-
glycemic rats (unpublished data).

When the findings of the glucose-induced, short-lived increase
in CT release and of the abilities of both metyrapone and
RU486 to abolish the preischemic hyperglycemia-aggravated
postischemic damage are taken together, they unequivocally
point at CT as the culprit behind the glucose paradox of cere-
bral ischemia. The CT hypothesis is consequently being offered
to explain this paradox instead of the lactic acidosis hypothesis.

Summary
The glucose paradox of cerebral ischemia, the phenomenon
of preischemic hyperglycemia-aggravated postischemic
outcome, has been blamed on the accumulation of lactate
and the intensification of acidosis. This explanation has
recently been questioned with several data.

Data have shown that lactate is an excellent aerobic energy
substrate in the brain, and a crucial one during recovery from
ischemia. It is therefore an unlikely detrimental factor in cere-
bral ischemia.

Glucose, the only readily available energy substrate in the
brain under normoxic conditions, has been shown as the only
substrate that could sustain ion homeostasis, at least for a
while, during an ischemic episode. Yet, when administered
shortly (15–60 min) preischemia, an aggravation of the
ischemic outcome is observed. When administered
2–3 hours preischemia, however, despite the presence of
hyperglycemic conditions, no aggravation of the outcome
was observed. Hence, glucose per se is an unlikely aggrava-
tor of ischemic damage.

It has been shown that glucose loading induces a short-lived
(~60 min), several-fold increase in CT plasma levels, a stress
hormone known to aggravate the outcome of metabolic
insults. It has also been shown, however, that pretreatment of
rats with metyrapone, an inhibitor of CT biosynthesis, abol-
ished the postischemic aggravating effect of glucose when
loaded shortly preischemia. Finally, RU486 (an antagonist of
the CT receptor) was also shown to abolish the aggravating
effect of glucose loading shortly preischemia.

It is hypothesized that glucose-induced CT release, when
occurring shortly preischemia, is the event responsible for the
phenomenon known as the glucose paradox of cerebral
ischemia. Neither lactate nor glucose per se has anything to
do with this phenomenon. Both investigators and clinicians are
encouraged to re-examine their notions and clinical practices
regarding the roles of glucose in cerebral ischemia (stroke).
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