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RNA helicases and remodeling proteins
Anna Marie Pyle1,2
It is becoming increasingly clear that RNA molecules play a

major role in all aspects of metabolism. The conformational

state and stability of RNA are controlled by RNA remodeling

proteins, which are ubiquitous motor proteins in the cell. Here,

we review advances in our understanding of the structure and

function of three major structural families of RNA remodeling

proteins, the hexameric ring proteins, the processive

monomeric RNA translocase/helicases, and the functionally

diverse DEAD-box remodeling proteins. New studies have

revealed molecular mechanisms for coupling between ATP

hydrolysis and unwinding, the physical basis for regulatory

control by cofactors, and novel functions for RNA remodeling

proteins.

Addresses
1 Department of Molecular, Cellular and Developmental Biology, Yale

University, Howard Hughes Medical Institute, New Haven, CT 0652,

United States
2 Department of Chemistry, Yale University, Howard Hughes Medical

Institute, New Haven, CT 0652, United States

Corresponding author: Pyle, Anna Marie (anna.pyle@yale.edu)

Current Opinion in Chemical Biology 2011, 15:636–642

This review comes from a themed issue on

Molecular Machines

Edited by Stephen Benkovic and Kevin D. Raney

Available online 20th August 2011

1367-5931/$ – see front matter

Published by Elsevier Ltd.

DOI 10.1016/j.cbpa.2011.07.019

While only a small portion of our genome is translated into

protein, almost the entire genome is transcribed into

RNA molecules [1]. Large and small, structured and

flexible, coding and noncoding, RNAs are strikingly

diverse and involved in every aspect of our metabolism.

Many of these RNAs must change shape and structure

during the course of their functional lifetimes, sometimes

cycling through several conformations in order to regulate

linear series of metabolic events, such as the stages of

RNA splicing. One of the most dramatic examples of this

behavior is ‘RNA thermosensors’, which are regions of

RNA that change conformation as a function of tempera-

ture, thereby regulating the translation of adjacent genes

[2,3]. However, the structural gymnastics of RNA folding

and unfolding often require additional help from proteins

[4]. These ‘RNA remodeling enzymes’ fall into several

families with diverse structural features and functional

behaviors [5–7]. In most reviews on this topic, these
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enzymes are grouped and functionally classified through

phylogenetic analysis. However, it is becoming increas-

ingly clear that the conserved ‘motor domains’ within

these enzymes can be combined and utilized in a variety

of ways. As a result, remodeling proteins with the same

‘core’ can perform different tasks, and proteins with

divergent ‘cores’ can behave quite similarly. For purposes

of this review, the enzymes are grouped by structural and

mechanical features, as these can provide different

insights into physical behavior.

Ring around the RNA
We typically think of helicases as fuel-driven motors,

which couple ATP hydrolysis to protein conformational

changes that stimulate RNA unwinding. However, there

is growing evidence that some proteins can couple bind-

ing energy to RNA duplex destabilization, formally

behaving as helicases without ATP hydrolysis. For

example, the eukaryotic exosome threads single-stranded

RNA through its central ring, unwinding RNA without

ATP hydrolysis [8]. One can imagine that the ring-like Ro

autoantigen might have similar properties [9].

However, hexameric rings are one of the most common

types of nucleic acid unwinding motors that encircle

single-stranded RNA and strip away complementary

strands in an ATP-dependent fashion [10,11]. The

best-studied example is the Rho transcription termin-

ation factor, which has been visualized crystallographi-

cally in complex with ATP analogs and an RNA

translocation substrate [12��] (Figure 1). These structures

show that the protein subunits wrap around the RNA

strand like ‘spiral staircase’. Each subunit projects a loop

into the center of the ring, which captures and engages

functional groups on the ribose moiety. The relative RNA

engagement of each protein subunit is directly coupled to

its ATP hydrolysis state, suggesting that each subunit

takes its turn at the leading edge of travel, pulling RNA

through the ring and moving the protein in a 50 ! 30

direction. Remarkably, the papillomavirus E1 ring heli-

case pulls DNA through its central ring in the opposite

direction [13], appearing to tug on the backbone with

loops in the opposite orientation.

Biochemical studies on Rho translocation suggest, how-

ever, that the overall mechanism is more complicated

[11]. Chemogenetic and kinetic methods have shown that

some positions along the sugar-phosphate backbone are

more important than others. While one might expect that

each 20-hydroxyl group is recognized in the same way by

Rho, the functional analysis indicates that every seventh

20-hydroxyl group plays a particularly important role in
www.sciencedirect.com
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The hexameric Rho helicase bound to an RNA translocation substrate and ATP analogs. On the left is a top-down view of single-stranded RNA

threading through the hexameric ring. The ATP analog ADP-BeF3 (pink) is bound at the interface of each RecA-fold subunit. There is an increasing level

of engagement with ADP-BeF3 as one progresses from subunits F to B, signifying their respective place in each hydrolysis/translocation cycle.

Reprinted with permission from Thomsen and Berger [12��].
the mechanism [14�]. This suggests that future research

on Rho may reveal additional events along the transloca-

tion pathway or different types of engagement between

protein and RNA than has been visualized to date.

Processive, monomeric RNA helicase
enzymes
It is often thought that nonhexameric RNA helicases lack

the processivity of their phylogenetically related counter-

parts, the SF1 and SF2 DNA helicases. However, a subset

of RNA helicases unwinds RNA in a highly processive

manner [6]. Phylogenetically, these are often SF2 heli-

cases that contain the DExH signature in conserved

Motif II and which lack the ‘Q’ motif that typifies their

DEAD-box cousins [15]. Structurally, all these enzymes

contain a fundamental motor unit (Domains 1 and 2)

composed of two RecA-like domains that hydrolyze ATP

and bind RNA using conserved amino acids at the domain

interface (Motifs I–VI) [15]. But they also contain

additional domains [16��], such as Domain 3 in Flaviviral

helicases. Accessory domains can rigidify the relative

position of Domains 1 and 2, perching atop the RNA-

binding cleft and providing an extensive RNA interface

[6]. Biologically, these proteins have a range of function,

including roles in RNA surveillance and decay, as illus-

trated by new structural work on the Mtr4 helicase [16��].
Some of the most well-studied examples derive from viral

systems for replication or transcription. For example, the

Dengue [17��,18] and Hepatitis C NS3 proteins

[19��,20��,21] and the vaccinia NPH-II proteins [22] have

been the subject of intensive structural and mechanistic

investigation [6,7]. Processive RNA helicases from other
www.sciencedirect.com 
systems, such as coronaviruses [23], provide rich areas for

future investigation.

An important exception on many levels is the Upf1

helicase [24], which plays a key role in the quality control

of eukaryotic messenger RNA. Upf1 is phylogenetically

classified as an SF1 helicase (like UvrD or Rep), but it

unwinds RNA in a cofactor-dependent fashion [25]. Its

additional allosteric ‘RNA clasping’ domains (1B and CH,

in this case) can open and shut, engaging and disengaging

from the RNA-binding cleft and thereby controlling heli-

case behavior [26��] (Figure 2). The ‘on–off switch’ [24],

that controls dynamics of the cleft is a regulatory protein

called Upf2, which binds Upf1 and modulates its function

[26��,27]. Thus, the accessory domains of Upf1 have

multiple conformations that permit control of transloca-

tion and helicase activity by cofactor proteins.

The physical basis for processive translocation on RNA

was recently revealed through structural studies on the

HCV NS3 protein [19��]. By crystallizing full-length NS3

in the presence of bound RNA and an ATP analog, these

studies show that Domains 1 and 2 open and close in

response to ATP binding, and that RNA translocates by

one nucleotide in the process. Consistent with its role in

the formation of the RNA-binding cleft, Domain 3 clamps

down in response to RNA binding. Similarly, a series of

structures capturing a shortened NS3 helicase construct

in the presence of ATP and DNA suggest a single

nucleotide step for ATP-dependent translocation

[20��]. Despite these similarities, there are important

differences in NS3 conformation when RNA (the natural
Current Opinion in Chemical Biology 2011, 15:636–642
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Figure 2
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Structure of Upf1 containing the CH and 1B domains. These domains (green and orange, respectively) help the RecA folds (yellow) to clamp down on

the RNA molecule (black). Note the interface between the CH domain and the RecA2 domain (inset).

Reprinted with permission from Chakrabarti et al. [26��].
substrate) is bound [19��]. For example, conserved resi-

due Thr416, which has long been implicated in transloca-

tion of SF2 proteins, is only engaged with the phosphate

backbone in the structure containing RNA [19��]. Both

these studies are consistent with single molecule inves-

tigations of ATP-dependent translocation by NS3 [28].

While translocation of RNA helicases appears to be

largely explained from structural and biochemical exper-

imentation, the actual mechanism of unwinding remains

an area of intense investigation. Single molecule exper-

iments on HCV NS3 show that strand separation does not

take place in one base-pair steps, but in larger units of at

least three base pairs [28,29]. Kinetic studies indicate that

the rate constant for unwinding of each three base-pair

step corresponds to the rate constant for phosphate

release after ATP hydrolysis, suggesting that phosphate

release is the power stroke for duplex unwinding [30��].
The release of top-strand RNA occurs in even larger steps

of at least 10 base pairs [29,31,32]. There is not yet a clear

physical understanding of these behaviors, which may be

linked to the function of other domains appended to the

helicase.

The NS3 proteins from Flaviviral and Hepaciviral repli-

cation complexes contain a fourth domain that plays a role

in helicase function of these enzymes [6]. This domain is

a serine protease, and in the case of HCV NS3, it plays a

major role in RNA binding and stepping behavior

[33��,34]. A structural basis for this remained unclear

until the crystal structures of the Dengue and West Nile
Current Opinion in Chemical Biology 2011, 15:636–642 
NS3 proteins revealed that the protease domain swings

beneath the D1 and D2 ATPase domains [17��,18,35], in

a location that can readily influence ATPase and unwind-

ing functions (Figure 3). Biophysical studies on the full-

length HCV NS3 protein suggest that a similar confor-

mation also occurs in HCV NS3, and that it is required for

unwinding of RNA [36��]. Intriguingly, crystallographic

investigations of full-length HCV NS3 depict the pro-

tease domain in a different position, packed against the

back of D1–3 [19��,37]. This enclosed structural state is

also biologically relevant and it represents the confor-

mation required for autoproteolysis [36��]. Thus, HCV

NS3 has at least two distinct conformational forms, which

may allow it to toggle between its dual roles in proteolysis

and helicase activity, and potentially regulate viral func-

tion.

Rearranging and letting go: the
multifunctional DEAD-box proteins
The most ubiquitous RNA remodeling machines are the

DEAD-box proteins, which are named for the conserved

sequence within ATPase Motif II [38]. These proteins

contain a minimal ATPase motor consisting only of

Domains 1 and 2, which is mechanically coupled to a

diversity of other protein substructures. Domains 1 and 2

are loosely connected until the binding of ligands (RNA,

small molecules or other proteins) brings them together

and forms an ATP-binding cleft at their interface. Struc-

tural studies show that the ATP-binding cleft is deeply

buried within DEAD-box proteins [39], suggesting

particularly tight coupling of ATP hydrolysis with
www.sciencedirect.com
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Figure 3
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Two conformations of the NS3 protein from Dengue virus. In both conformations, the protease domain is located beneath Domains 1 and 2, but it has

been visualized in two possible rotational conformations, which differ in their ability to interact with nucleotide.

Reprinted from Luo et al. [17��].
mechanical work. This effect may be accentuated by the

presence of the ‘Q-motif’, which is an ATP-binding site

unique to DEAD-box proteins that allows for total speci-

ficity for ATP rather than other nucleotide triphosphates

[38].

Some DEAD-box proteins can function as helicases, and

RNA unwinding by these proteins contributes to many

biological processes [7,38]. However, the basic mechan-

ical core of DEAD-box proteins is coupled to diverse

protein scaffolds, leading to different mechanical func-

tions by family members containing the same set of

conserved ATPase motifs [40�]. DEAD-box proteins

serve as anchors for protein complexes [41], RNP remo-

deling enzymes [38], catalysts for RNA folding

[40�,42��,43], agents for RNA transport [44��], and many

other activities, often regulated by cofactor proteins

[44��,45�]. Thus, it is risky to assume from sequence

alone that a DEAD-box protein is a helicase.

For DEAD-box proteins where the mechanochemical

cycle has been studied, ATP hydrolysis (specifically, at

the stage of Pi release) stimulates the dissociation of

bound RNA molecules [46��,47], allowing recycling of

these ‘single-use’ proteins [7]. In some cases, small mol-

ecules or bound proteins also stimulate RNA release

[44��]. Studies of the DbpA protein have provided
www.sciencedirect.com 
insights into the coupling between ATP hydrolysis and

RNA unwinding [48��]. DbpA maintains high affinity for

RNA in the ATP-bound state and RNA duplex destabi-

lization occurs upon ATP hydrolysis, as the protein enters

the ADP.Pi state. Release of Pi causes displacement of

the protein from the RNA strand, allowing one round of

unwinding a short duplex. It is important to note, how-

ever, that single-strand translocation by DEAD-box

proteins has not yet been directly investigated. It is

entirely possible that there are functions of these proteins

(such as translocation) where the protein is not comple-

tely released from the lattice during a cycle of ATP

hydrolysis and where a cycle of weak and strong binding

may instead propel unidirectional motion, as in cyto-

skeletal motor proteins.

Dbp5 is an RNP remodeling protein that sits on the edge

of the nuclear pore complex, where it plays an essential

role in RNA export [49,50]. Dbp5 is activated by the small

molecule cofactor inositol 6-phosphate (IsP6) and it

releases RNA upon every cycle of ATP hydrolysis,

suggesting a model for release of exported RNA [44��].
Recent structural analyses reveal a mechanochemical

cycle in which RNA and nucleotide release are stimulated

through the binding of protein cofactors Gle1 and

Nup159, which crank open the cleft between Domains

1 and 2, releasing ADP and bound RNA [44��] (Figure 4).
Current Opinion in Chemical Biology 2011, 15:636–642
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Figure 4
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Cofactors modulate the active site of Dbp5: the C-terminal domain of Dbp5 moves from an active state that is engaged with nucleotide (white), to a

progressively inactive state in the presence of Nup159 (purple), where a catalytically essential arginine is completely displaced.

Reprinted with permission from Montpetit et al. [44��].
During the process of RNA folding in vivo [42��], proteins

assist in the destabilization of misfolded intermediates

and in the stabilization of weak folding intermediates.

Many of these proteins are DEAD-box proteins [43], and

Mss116 is a well-studied example [42��]. Mss116 is

known to stimulate group II intron self-splicing in vivo
[51], and it can enable certain group II introns to self-

splice in vitro under physiological ionic conditions [52].

Like many DEAD-box proteins, Mss116 is capable of

unwinding short RNA duplexes [46��,52,53], however,

studies of Mss116 mutants in vivo and in vitro show that its

role in splicing is not necessarily dependent on helicase

activity [52,54�]. Ensemble and single molecule exper-

iments [55��,56], along with folding studies conducted in
vivo [42��], show that Mss116 stabilizes an RNA folding

intermediate that is required along the pathway to group

II intron assembly. ATP hydrolysis is required only

during the rapid final stage of intron folding, suggesting

that protein release is required for consolidation of the

catalytic domains and for turnover of the protein [55��,56].

Thus, certain DEAD-box proteins may serve as stabiliz-

ing RNA-binding proteins, rather than destabilizing heli-

cases. Unlike many other types of RNA-binding proteins,

DEAD-box proteins are readily ‘removable’ in a con-

trolled fashion, as ATP hydrolysis stimulates their release

from RNA.

Conclusions
In many ways, RNA helicases function similarly to DNA

helicases, and they have close phylogenetic relationships.

However, the basic motor unit that is shared among all

these proteins is utilized in diverse ways in RNA metab-

olism, resulting in a functional repertoire that goes
Current Opinion in Chemical Biology 2011, 15:636–642 
beyond translocation and unwinding. Thus, the func-

tional demands of RNA metabolism have resulted in

molecular motors with new mechanical behaviors and

properties.
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