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One of the most important tasks in genome-wide association analysis (GWAS) is the detection of 
single-nucleotide polymorphisms (SNPs) which are related to target traits. With the development 
of sequencing technology, traditional statistical methods are difficult to analyze the corresponding 
high-dimensional massive data or SNPs. Recently, machine learning methods have become more 
popular in high-dimensional genetic data analysis for their fast computation speed. However, most of 
machine learning methods have several drawbacks, such as poor generalization ability, over-fitting, 
unsatisfactory classification and low detection accuracy. This study proposed a two-stage algorithm 
based on least angle regression and random forest (TSLRF), which firstly considered the control of 
population structure and polygenic effects, then selected the SNPs that were potentially related 
to target traits by using least angle regression (LARS), furtherly analyzed this variable subset using 
random forest (RF) to detect quantitative trait nucleotides (QTNs) associated with target traits. The 
new method has more powerful detection in simulation experiments and real data analyses. The 
results of simulation experiments showed that, compared with the existing approaches, the new 
method effectively improved the detection ability of QTNs and model fitting degree, and required 
less calculation time. In addition, the new method significantly distinguished QTNs and other SNPs. 
Subsequently, the new method was applied to analyze five flowering-related traits in Arabidopsis. The 
results showed that, the distinction between QTNs and unrelated SNPs was more significant than the 
other methods. The new method detected 60 genes confirmed to be related to the target trait, which 
was significantly higher than the other methods, and simultaneously detected multiple gene clusters 
associated with the target trait.

With the rapid development of biotechnology and sequencing technology, a large number of high-dimensional 
genetic data have been generated. How to analysis these kind datasets is a hot topic. The pervasive feature of 
genetic data is hundreds of thousands single-nucleotide polymorphisms (SNPs) along with a few hundred or 
thousand samples, that is, the “big P, small N” problem, which brings challenges to data mining and statistical 
analysis1–3.

However, a number of studies illustrate that most quantitative traits are controlled by a small portion of 
genetic markers among all SNPs4–6. Variable selection is the process of detecting the subset of potential variables 
associating with the phenotype, thus avoiding intractable problems of high-dimensional datasets analysis. There 
are many variable selection methods proposed for “big P, small N” datasets. The least absolute shrinkage and 
selection operator7 (LASSO) method minimizes the residual sum of squares, subject to the sum of the absolute 
value of the coefficients being less than a constant, which has the advantages of subset selection and ridge regres-
sion. Since LASSO is hard to implement and often has a high false positive rate in the detection8, many extension 
methods were continuously proposed under the framework of variable selection, such as, least angle regression9 
(LARS), the smoothly clipped absolute deviation (SCAD) penalized10 method, the elastic net11 method and the 
adaptive LASSO12 method. Although most of the mythologies are successfully applied to genome-wide associ-
ation analysis (GWAS) analysis13–16, they still suffer from the high false positive rate in detection, which hard to 
provide theoretical basis for the following work, say, fine mapping and gene cloning.
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Machine learning methods are alternative to classical statistical approaches of mining “big P, small N” genetic 
datasets by optimizing the classification. Support vector machine17 (SVM) is applied to reprioritize GWAS 
results5; artificial neural network18 (ANN) is utilized to classify and select quantitative trait nucleotides (QTNs) 
associating with complex traits in genome-wide association data4.

Random forest19 (RF) has become a popular machine learning method in recent years. In RF, multiple decision 
trees are constructed by autonomous sampling (Bagging) and node random splitting technique, the final classifica-
tion or regression results are obtained by voting or averaging. RF is easy to implement and has relatively fast learning 
speed. Recently, the improved RF methods have been proposed and applied to GWAS, Botta et al.20 and Nguyen et 
al.21 respectively proposed T-Trees method and ts-RF method, both of them optimize the split rules of RF decision 
tree nodes; Szymczak et al.22 redefined the calculation method of importance scores; Elyan & Gaber23 optimized the 
setting of ntree and mtry; Stephan et al.24 proposed a hybrid RF algorithm. However, most of the existing methods do 
not consider the population structure and polygenetic effect background, and the importance scores of all variables 
are maintained at the same level, so it is hard to distinguish whether the variable is related to the target trait or not.

In real data analysis at present, the methodologies for genome-wide single-marker scan under polygenic back-
ground and population structure controls are widely used to conduct GWAS, such as efficient mixed model asso-
ciation (EMMA)25 and its improved method EMMA eXpedited (EMMAX)26, which reduces the computational  
time for analyzing large GWAS datasets from years to hours. On the other hand, multi-locus GWAS  
analysis methods have also been proposed, such as fast multi-locus random-SNP-effect EMMA 
(FASTmrEMMA)16, which is more powerful in QTN detection and model fit.

In this study, we proposed a two-stage association analysis method by combining variable selection with 
machine learning, two-stage algorithm based on least angle regression and random forest (TSLRF). TSLRF firstly 
adopted the model transformation of FASTmrEMMA16 method to control the population structure and correct 
the polygenic background, secondly applied LARS to select the subset of variables, which were potentially related 
to the target traits, finally utilized RF to calculate the importance scores and rankings of selected SNPs from 
LARS. The new method could flexibly scan each SNPs from the high dimensional datasets by constructing a fast 
and new matrix transformation. Furtherly, TSLRF improved the importance scores of QTNs, which were associ-
ated with target traits, thus boosted the signals of related SNPs.

We conducted the simulation experiments (199 individuals, 10,000 SNPs) and real Arabidopsis thaliana data 
analysis (derived from 199 individuals, 216,130 SNPs, which are over 1,000 times larger than sample size) to val-
idate the reliability of the new method. All the results showed that, TSLRF is relatively superior to the other five 
methods including classical RF in model fitting degree, prediction accuracy and computing time, it can effectively 
increase the discrimination between QTNs and SNPs. In addition, for real Arabidopsis data, the number of con-
firmed genes which are detected by TSLRF is significantly more than the other methods.

Materials and Methods
Genetic model.  Let yi(i = 1, 2, …, n) be the phenotypic observation value of the ith individual in a natural 
population with n samples. The genetic model can be described as:

α γ ε= + + +y W Z u (1)

where = ...y y y( , , )n
T

1 ; α is a c × 1 vectorthe intercept, population structure effect and so on; γ Σγ~ MVN 0( , )p  
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2  is a random ×n 1 vector of polygenic effects; 
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2  distribution; σ2 is 
residual error variance; In is an ×n n identity matrix; µ ΣMVN ( , )n  denotes multivariate normal distribution with 
n-dimensional mean vector u and ×n n covariance matrix Σ. To control polygenic background, The model 
transformation16 is adapted to whiten the covariance matrix of the polygenic matrix K and residual noise. By 
decomposing the variance of y in the model (1) and standardizing designed matrices for fixed and random effects 
(Supplementary methods), model (1) can be rewritten as:
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σ IMVN (0, )n n
2  distribution.Here, we integrated LARS and RF to implement GWAS in simulation study and real data 

analysis. LARS algorithm overcomes the deficiency in calculation of LASSO, and it is an effective approach for  
computing and analyzing high-dimensional data. Here, LARS selected the variables having the largest absolute cor-
relation with the response y, say xj1, and performed simple linear regression between them to calculate residual vector 
which was orthogonal to x j1

and now considered to be the response, then projected the other variables orthogonal 
to x jl

 and repeated the selection process. The details of LARS algorithm are shown in Supplementary methods.
As LARS terminates at the saturated least squares fit after n-1 steps, where n−1 variables have entered the 

active set, a LARS fit always has no more than n−1 variables with nonzero coefficients9. Efron et al.9 provided a 
Cp-type risk estimation formula of a s-step LARS estimator µ̂s as:
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where, σ2 is the usual ordinary least squares (OLS) estimates of σ2 from the full OLS model.
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The smaller Cp indicates the better LARS estimation. We applied LARS to analyzing one simulated dataset which 
were randomly selected from 1,000 replication simulated datasets, and obtained the Cp values and residual sum of 
squares (RSS) values of Y and µ̂s at each step (Supplementary Fig. S1). It clearly shows that, as the iteration steps 
increases, the value of Cp and RSS decrease. At the maximum iteration step, = −s n 1 step, the model performs best 
with the smallest Cp, 196, and the smallest RSS, 0.0137. For the other replications, the results have the same trend. 
Therefore, we set the maximum iteration step s as n-1 in simulation experiments and real Arabidopsis data analyses, 
then at most n-1 variables which were most likely to be associated with the target traits could be selected to construct 
a RF model. In the following section, we recorded the number of variables selected by LARS as k.

In order to select potentially significant variable set, the selected potential variable set …{ }x x x, , ,j j jk1 2
 by 

LARS was constructed to the RF model. RF first used Bagging algorithm to generate ntree (default is 500 in RF) 
new self-sampling sample sets and ntree out of bag (OOB) datasets from the original training dataset. Then, a RF 
model was constructed by ntree CART trees generated by node random splitting technique, which randomly 
extracted mtry variables from the k variables at each node of each tree. Here, we set mtry be the value that could 
make the RF model get the best model fitting degree. RF took the average output of all CART trees as the predic-
tion results in regression. The details of conducting RF are shown in Supplementary methods. Finally, we calcu-
lated the importance scores of the k selected variables by the variable importance measure (VIM) method in RF. 
VIM calculated the importance scores by OOB error rate: %IncMSE, which was obtained by randomly replacing 
the value of the calculated variable to form new OOB test data and calculating its prediction error. The larger 
%IncMSE indicates the variable more important. The details of calculating variable importance scores are shown 
in Supplementary methods. According to the importance scores, we could rank k variables and select the set of 
potentially significant variables furtherly.

TSLRF is an R-based implementation, where achieved LARS and RF using the package lars and randomForest, 
respectively, in R program.

Evaluation indicators.  In this study, mean absolute error (MAE), mean absolute percentage error (MAPE) 
and Pearson correlation coefficient r were selected to evaluate the performance of the new method.

MAE is defined as:
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MAE is often used to assess the divergence between predicted and true value. The larger MAE indicates the 
lower accuracy of the results, on the contrary, the smaller the better. Assuming that = …y i n( 1, 2, , )i  is the 
phenotypic observations of quantitative traits, = …ŷ i n( 1, 2, , )i  is the predicted value from ten-fold cross val-
idation, the following symbols have the same meaning.
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different from MAE, MAPE considers the deviation between predicted and true values, moreover, it takes the 
proportion between deviation and true values into account. In this way, the error will be placed under the unified 
scale, and the predictions will be more accurate. MAPE is also one of the commonly used objective functions in 
some competitions. Like MAE, the smaller MAPE the better.

Pearson correlation coefficient r is defined as:
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; Pearson correlation coefficient |r| ≤ 1, 
indicating the degree of proximity between the predicted value and the true value. The larger absolute value of r 
indicates the predicted value closer to the true value.

Experimental materials.  In this study, the performance of the TSLRF method was verified by using the 
simulation datasets and Arabidopsis real datasets. Each dataset contained phenotypic observations of quantitative 
traits and SNP markers, and the number of SNP variables was hundreds or thousands of times larger than the 
sample size.

We simulated 1,000 datasets (replications) with 199 individuals and 10,000 SNPs derived from Arabidopsis 
natural population27, all of the SNPs were spaced on five chromosome segments, the positions of these SNPs in 
the genome were between 11,226,256 and 12,038,776 bp on Chr. 1, between 5,045,828 and 6,412,875 bp on Chr. 
2, between 1,916,588 and 3,196,442 bp on Chr. 3, between 2,232,796 and 3,143,893 bp on Chr. 4 and between 
19,999,868 and 21,039,406 bp on Chr. 528. The simulation datasets have been analyzed by several studies6,16,28 
previously. Six QTNs were simulated and placed on the SNPs with allelic frequencies of 0.30. Their heritabilities 
were set as 0.10, 0.05, 0.05, 0.15, 0.05 and 0.05, respectively. The heritability here is the narrow sense heritability29, 
whose value is equal to the proportion of breeding value variance to phenotypic variance, which also indicates the 
coefficient of determination r2 for breeding value and phenotypic value. The heritability and position of each QTN 
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are listed on Table 1. The total average and residual variance were both set at 10.0. Here, 1,000 simulation datasets 
(replications) were analyzed by several established methods and the new method TSLRF.

The real dataset included 199 Arabidopsis lines (http://www.arabidopsis.usc.edu/) with 216,130 SNPs and 107 
traits27. Among these traits, we analyzed five traits related to flowering time, including LD: days to flowering 
under long days; LDV: days to flowering under long days with vernalization; SD: days to flowering under short 
days; FT16: days to flowering at 16C; FT22: days to flowering at 22C. These data were downloaded from the fol-
lowing website: http://www.arabidopsis.usc.edu/.

Results
Analysis of the simulated datasets.  To validate the performance of TSLRF, the simulation experiment 
was implemented, firstly. We generated 1,000 datasets (replications) from Arabidopsis inbreed population, and 
simulated six QTNs, all of which were placed at SNP positions. All the simulation information is listed on Table 1 
as described above. Each of the 1,000 replications was analyzed by TSLRF, two-stage stepwise variable selec-
tion based on random forest30(TSRF), RF, support vector regression (SVR), ANN and EMMAX, respectively. 
Subsequently, we used three statistical indicators mentioned above: MAE, MAPE and r to evaluate the prediction 
accuracy and model fitting of the above six approaches. Meanwhile, we also compared the importance scores 
of three RF methods (TSLRF, TSRF and RF) and the computing time of six methods. All the six methods are 
R-based implementation, where three RF framework methods are implemented using randomForest package; 
SVR and ANN are implemented using e1071 and nnet packages, respectively; EMMAX is implemented using 
Genomic Association and Prediction Integrated Tool (GAPIT) software.

Model accuracy.  The model accuracy of the six methods were evaluated by the ten-fold cross validation. The 
MAE and MAPE of 1,000 repeated simulated data analyses by six methods are shown on Supplementary Table S1. 
The Fig. 1a illustrates the MAE of the TSLRF, TSRF, RF, SVR, ANN and EMMAX, as it shows, TSLRF has the 
smallest MAE, 2.0997, which indicates that TSLRF is more accurate among them; the MAE of TSRF, RF and SVR 
are similar to each other, they are 2.3745, 2.5236 and 2.5345, respectively; the MAE of EMMAX and ANN are 

QTN Chr. Position r2(%)#

Importance score

TSLRF TSRF RF

1 1 11298364 10 8.240 (3.5068)* 3.849 (2.1362) 0.974 (0.9176)

2 1 11655607 5 4.998 (2.6696) 2.084 (2.1669) 0.662 (0.9459)

3 2 5066968 5 5.349 (2.7481) 2.196 (2.1439) 0.667 (0.9695)

4 2 5134228 15 9.851 (3.0699) 4.594 (1.6362) 1.222 (0.7815)

5 2 5464675 5 5.157 (2.3644) 1.905 (2.0249) 0.688 (0.9324)

6 2 6137189 5 4.266 (2.4887) 1.515 (2.1581) 0.586 (0.9323)

Table 1.  The comparison of TSLRF, TSRF and RF in the simulation experiment. *The values in parentheses 
were the standard deviation of the importance scores obtained in 1,000 replication simulation analyses for each 
QTN. #The heritability of simulated QTNs.

Figure 1.  The mean absolute error (MAE, panel a) and the mean absolute percentage error (MAPE, panel b) of 
ten-fold cross-validation in 1,000 repeated simulated analyses by using the two-stage algorithm based on least 
angle regression and random forest (TSLRF), two-stage stepwise variable selection based on random forests 
(TSRF), random forest (RF), support vector regression (SVR), artificial neural network (ANN) and EMMA 
eXpedited (EMMAX).
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3.4358 and 3.6041, larger than the other four methods. Obviously, ANN has the lowest model accuracy among 
these five methods.

The MAPE of TSLRF, TSRF, RF, SVR and ANN (Fig. 1b) has the same trend as MAE. Differently, the MAPE of 
EMMAX is 1.7393, which is smaller than TSLRF, 2.6270, the tendency is contrast to MAE.

These two measurements show that, among the six approaches, TSLRF performs relatively better model accu-
racy than the other established methods, the performance of ANN is not satisfied.

Importance scores.  For the three methods (TSLRF, TSRF and RF) under the RF framework, we detected 
whether SNPs were related to the target traits through ranking their importance scores. We randomly selected 
the result of one simulation dataset (from 1,000 replications) for analysis, the importance scores obtained from 
the above three methods are shown in Fig. 2. The gray needles indicate the estimated importance scores of the 
corresponding SNPs, and the black thick needles represent the estimated importance scores of the simulated 
QTNs related to the target trait. The results of the TSLRF (Fig. 2a) show that the six simulated QTNs located on 
chromosome 1 and chromosome 2 have higher importance scores and rankings, making it easy to distinguish 
QTNs and other SNPs. However, the importance scores and rankings of six simulated QTNs computed by TSRF 
(Fig. 2b) and RF (Fig. 2c) do not perform well.

Meanwhile, we calculated the average importance scores of 1,000 repeated simulated analyses for three RF 
methods. As shown on Table 2, for TSLRF, the importance score of top-ranked QTN was 9.851, which was more 
than two times as much as TSRF (4.594) and nine times much than RF (1.222). The average importance score of 
the six simulated QTNs also has the same trend, 6.310 in TSLRF, 2.690 in TSRF and 0.800 in RF. However, in three 

Figure 2.  Importance scores of 10,000 SNPs of one replication dataset (from 1,000 replication simulated 
datasets) analysis by using TSLRF (panel a), TSRF (panel b) and RF (panel c).

https://doi.org/10.1038/s41598-019-54519-x
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RF methods, the average scores of other SNPs unrelated to target trait were all less than 1. Obviously, compared to 
TSRF and RF, TSLRF significantly improves the ability to distinguish QTNs and SNPs.

In addition, Table 1 and Supplementary Fig. S2 show the average importance scores in 1,000 replicated simu-
lated data analyses of each QTN. It can be clearly seen that the QTN with a larger heritability tends to have a more 
significant importance score. As shown on Table 1, QTN4 located in chromosome 2 with 15% hereditability had 
the highest importance score (9.851) among all of the QTNs, importance score of QTN1 with 10% hereditability 
followed QTN4 (8.240), the rest QTNs with the same hereditability had similar scores, about 5.

We also analyzed the simulation datasets using SVR, ANN and EMMAX. For SVR and ANN, we obtained the 
weight of each SNP; for EMMAX, the effect of each SNP. Based on weights or effects, the importance rankings of 
all SNPs can be easily obtained. However, the weights, effects and the importance scores are not under the unified 
scale, so we did not list the weights or effects obtained by SVR, ANN and EMMAX here.

Higher degree of model fitting.  We measured the model fitting degree by calculating Pearson correlation 
coefficient r between the true phenotypic value and the predicted value, which was calculated by the predict func-
tion in R program. The average r for 1,000 replications calculated by TSLRF, TSRF, RF, SVR, ANN and EMMAX 
are shown on Supplementary Table S1. Clearly, the model fitting degree in TSLRF, TSRF, RF, SVR and EMMAX 
are at the same level, larger than 0.90, which means that all of the five methods have dramatic higher model fitting 
degree than ANN. SVR has the highest r, TSLRF follows it, which has the higher r among the three RF methods.

Fast computing time.  We compared the computing time of 1,000 repeated simulated analyses using six 
approaches. Figure 3 shows that, the three approaches under RF framework have fast computing speed than the other 
three methods. For 1,000 replications, the computing time of TSLRF and RF were on the same order of magnitude, 
only cost less 100 minutes, say, less 6 seconds for one replication averagely, followed by TSRF, SVR and EMMAX. 
ANN took the most expensive computing time about 600 minutes, which was nearly 7 times more than TSLRF.

For the model accuracy and the computing time, the performance of ANN was unsatisfied, thus, the ANN 
method was not used for analyzing the Arabidopsis datasets in the next section.

Analysis of the arabidopsis datasets.  The well-known Arabidopsis data27 includes 199 diverse inbred 
lines, each of which has 216,130 SNPs and 107 traits. To verify the performance of TSLRF, we re-analyzed five 
traits related to flowering time, including LD, LDV, SD, FT16 and FT22, and compared the result of TSLRF 
with that of TSRF, RF, SVR and EMMAX. The SNPs with minor allele frequency (MAF) less than 10% were 
deleted, the population structure and polygenic background were controlled by the model transformation of 
FASTmrEMMA6,16 (in the package mrMLM in R program). All the SNPs within 20 KB of each putative QTN 

Importance score TSLRF TSRF RF

top-ranked QTN 9.851 4.594 1.222

Average of six simulated QTNs 6.310 2.690 0.800

Average of unrelated SNPs 0.852 −1.166 0.006

Table 2.  The average important scores of top-ranked QTN, six simulated QTNs and unrelated SNPs 
respectively, calculated by TSLRF, TSRF and RF methods in 1,000 replicated simulated analyses.

Figure 3.  Computing time (minutes) of 1,000 repeated simulated analyses using TSLRF, TSRF, RF, SVR, ANN 
and EMMAX.

https://doi.org/10.1038/s41598-019-54519-x
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were used to mine the candidate genes by TAIR (https://www.arabidopsis.org/) for these five traits. The detected 
putative QTNs associated with interested traits were used to fit the regression for each trait and model fitness was 
assessed by the indicators as above.

Table 3 showed the quantity of detected genes (confirmed by TAIR) using five approaches. For TSLRF, the 
numbers of detected genes which were significantly related (top 20) to the five traits (LD, LDV, SD, FT16 and 
FT22) were 10, 11, 16, 13 and 10 (Table 3), respectively, and the total quantity of confirmed genes was 60. The 
corresponding numbers of the associated genes was 52 for TSRF, 37 for RF, 40 for SVR and 39 for EMMAX. 
Apparently, for TSLRF, the quantity of significant genes (confirmed by TAIR) related to the interested flowering 
traits, is much larger than the other methods.

Interestingly, the new method dissected several clusters of genes, which were associated with the same trait 
(Supplementary Table S2), such as, gene AT2G06990, AT2G07020, AT2G07040 and AT2G07050, adjacent to 
the SNP located at 2,916,675 bp on chromosome 2, were found relating to short days (SD); gene AT2G07020, 
AT2G07040 and AT2G07050, adjacent to the SNP located at 2,924,501 bp on chromosome 2, were confirmed 
as well as associating with SD. More importantly, several genes could be simultaneously detected by multiple 
traits, say gene AT3G50870 could be simultaneously detected under LD, SD and FT22. Moreover, Supplementary 
Table S3 shows that, for TSLRF, many genes detected associating with target traits could be simultaneously 
detected by other methods, for example, gene AT2G06990, AT2G07020, AT2G07040 and AT2G07050, adjacent 
to the SNP located at 2,916,675 bp and 2,910,430 bp on chromosome 2, which were confirmed associating with 
SD, could be simultaneously detected by TSLRF, TSRF and SVR. It demonstrates that TSLRF is more efficient and 
accurate than the other four methods in terms of detection capabilities.

In addition, the genes (confirmed by TAIR) detected by TSLRF obviously owned higher rankings compared 
with the other four methods (Supplementary Table S3). Take LD as an example, for TSLRF, the confirmed gene 
with the highest ranking was gene AT2G22540 (adjacent to the SNP located at 9,588,685 bp on chromosome 
2), which ranked 1st; however, in TSRF, RF, SVR and EMMAX, the genes with the highest ranking were gene 
AT3G13530, AT1G03457, AT5G06500 and AT5G01180, ranked 4th, 3rd, 3rd and 5th, respectively. It means that 
top 2, 3 or 4 SNPs detected by these methods seem to be less important from the perspective of confirmed gene by 
TAIR. For the other traits (LDV, SD, FT16 and FT22), the rankings also have the same tendency. As clearly shown 
on Table 3, for the proposed method TSLRF, the total quantity of confirmed genes (ranked top 20) was much 
more than the other four methods. All of the above evidences show that, TSLRF can efficiently distinguish QTNs 
and SNPs, and has accurate detection capability.

We implemented ten-fold cross validation to evaluate the model accuracy. Figure 4 illustrates that, for TSLRF, 
the level of model accuracy (MAE and MAPE) is similar to that of TSRF, which is more accurate than RF and 
SVR, EMMAX performs well than TSLRF in terms of MAPE. Moreover, Supplementary Table S4 shows that, 
TSLRF, TSRF, RF, SVR and EMMAX also have high model fitting degrees which are at the same level, where, 
SVR and EMMAX are slightly better, TSLRF following them, has better model fitting degree among the three RF 
framework methods.

The computing time (Table 4) for high-dimensional Arabidopsis genetic datasets (216,130 SNPs, 199 individ-
uals) using five methods indicates that, TSLRF, RF and SVR have similar computing time, and the data analysis 
time of each trait is about 2 minutes. EMMAX takes about 15 minutes to analyze a trait. Unlike simulation exper-
iment, TSRF spend more than 60 times longer than TSLRF.

Discussion
In recent years, GWAS has become an important method to dissect complexity traits. A number of studies 
demonstrate that controlling population structure and kinship indeed improves the power of detection and 
decreases the false discover25,28,31,32. In this paper, we proposed a new method called two-stage algorithm based on 
least angle regression and random forest (TSLRF), which adopted the model transformation of FASTmrEMMA16, 
this background control algorithm whitens the covariance matrix of the polygenic matrix K and environmental 
noise, and specifies the number of nonzero eigenvalues as one. All the results in this paper show that, population 
structure and polygenic background control are crucial for TSLRF in GWAS, particularly for the importance 
rankings and scores of SNPs.

Variable selection plays a critical role in TSLRF, here LARS was applied in TSLRF to select the markers most 
likely associated with the target trait. To obtain accurate results, we using a simulated dataset which were ran-
domly selected from 1,000 replication simulated datasets to compare different variable selection cases, setting the 
maximum iteration step of LARS from 1 to −n 1, and found that, when the maximum iteration step was set as 

Methods LD LDV SD FT16 FT22 Total

TSLRF 10 11 16 13 10 60

TSRF 5 10 12 8 17 52

RF 8 8 4 10 7 37

SVR 7 6 16 4 7 40

EMMAX 6 10 12 7 4 39

Table 3.  The number of confirmed genes (top 20) detected by four methods (TSLRF, TSRF, RF, SVR and 
EMMAX) under five traits (LD, LDV, SD, FT16 and FT22) in analysis of Arabidopsis natural population. LD: 
days to flowering under long days; LDV: days to flowering under long days with vernalization; SD: days to 
flowering under short days; FT16: days to flowering at 16C; FT22: days to flowering at 22C.
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−n 1, the model performs best with the smallest Cp and RSS. Then, we used at most −n 1 selected variables to 
build subsequent RF model. Finally, the results of the selected top 20 potential related SNPs turned out the stabil-
ity of TSLRF.

For the computing time, the new method TSLRF and classical RF both perform better and have faster speed 
than the other four methods (TSRF, SVR, ANN and EMMAX), that is the reason of RF so popular in machine 
learning. TSRF, as a method under the RF framework, takes quite expensive computing time (more than one 
hour) in real data analysis (Table 4), which is due to the fact that, it first grouping the original data and uses RF to 
calculate the importance scores, removes the last variable set with the lowest importance scores; secondly, calcu-
lates the importance scores of the remaining variables, and deletes the last variable set with the lowest importance 
scores; finally, repeats the above process until the last group completes their calculation. This kind of repeated 
sampling greatly increases the computing time. In the simulation datasets, the number of SNPs was just 10,000, 
which was divided into only 10 groups with 1,000 SNPs a group, the repeated sampling here did not obviously 
increase the calculation time, so it still performed a relatively fast computing speed. However, for the Arabidopsis 
real datasets, large-scale datasets resulted in computing time increasing exponentially. Therefore, although TSRF 
increases the distinction of QTNs and SNPs, the proposed new method, TSLRF, is recommended from the point 
of computing time.

Data availability
All data generated or analyzed during this study are included in this published article.
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