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Data are mixed on whether patients with semantic variant primary progressive aphasia exhibit a category-selective semantic deficit

for animate objects. Moreover, there is little consensus regarding the neural substrates of this category-selective semantic deficit,

though prior literature has suggested that the perirhinal cortex and the lateral posterior fusiform gyrus may support semantic

memory functions important for processing animate objects. In this study, we investigated whether patients with semantic variant

primary progressive aphasia exhibited a category-selective semantic deficit for animate objects in a word-picture matching task,

controlling for psycholinguistic features of the stimuli, including frequency, familiarity, typicality and age of acquisition. We inves-

tigated the neural bases of this category selectivity by examining its relationship with cortical atrophy in two primary regions of

interest: bilateral perirhinal cortex and lateral posterior fusiform gyri. We analysed data from 20 patients with semantic variant pri-

mary progressive aphasia (mean age¼ 64 years, S.D.¼ 6.94). For each participant, we calculated an animacy index score to denote

the magnitude of the category-selective semantic deficit for animate objects. Multivariate regression analysis revealed a main effect

of animacy (b¼ 0.52, t¼ 4.03, P< 0.001) even after including all psycholinguistic variables in the model, such that animate objects

were less likely to be identified correctly relative to inanimate objects. Inspection of each individual patient’s data indicated the

presence of a disproportionate impairment in animate objects in most patients. A linear regression analysis revealed a relationship

between the right perirhinal cortex thickness and animacy index scores (b¼�0.57, t¼�2.74, P¼ 0.015) such that patients who

were more disproportionally impaired for animate relative to inanimate objects exhibited thinner right perirhinal cortex. A vertex-

wise general linear model analysis restricted to the temporal lobes revealed additional associations between positive animacy index

scores (i.e. a disproportionately poorer performance on animate objects) and cortical atrophy in the right perirhinal and entorhinal

cortex, superior, middle, and inferior temporal gyri, and the anterior fusiform gyrus, as well as the left anterior fusiform gyrus.

Taken together, our results indicate that a category-selective semantic deficit for animate objects is a characteristic feature of

semantic variant primary progressive aphasia that is detectable in most individuals. Our imaging findings provide further support

for the role of the right perirhinal cortex and other temporal lobe regions in the semantic processing of animate objects.
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Introduction
Semantic memory—memory for words, symbols, concepts,

and their relationships, or general knowledge1—can be spe-

cifically impaired in patients with a form of anterior tem-

poral lobe-predominant Frontotemporal Lobar Degeneration

that may manifest as Semantic Dementia (SD)2–4 or as se-

mantic variant Primary Progressive Aphasia (svPPA).5,6

Neuropsychological studies of patients with impaired seman-

tic memory have identified dissociable patterns of impair-

ment, with some exhibiting a category-selective semantic

memory deficit (CSSD) for animate or inanimate categories

of information,7,8 whereas others show generalized impair-

ment across categories. Detailed case reports provide well-

established evidence that some svPPA cases exhibit a CSSD

for animate objects—i.e. a disproportionate semantic mem-

ory loss for animate compared to inanimate objects.6,9–19

Although some group studies of patients with SD or svPPA

suggest that they have a non-selective general semantic im-

pairment,20,21 other studies of SD/svPPA have found a

CSSD for animate objects.22–25

An important factor that likely contributes to these

mixed findings pertains to the psycholinguistic

characteristics of the stimuli used to assess semantic

memory, including frequency, familiarity, typicality and

age of acquisition.22,26,27 Performance on tests of seman-

tic memory is better for more familiar, more frequent,

more typical and earlier acquired words.21,27–29 These

factors are particularly relevant when comparing animate

versus inanimate categories21 because many animate

objects in commonly used stimulus sets (e.g. rhinoceros)

are rated as less familiar and less frequent than inanimate

objects30 and are acquired at an older age.31 The few

studies accounting for psycholinguistic variables when

assessing the presence of a CSSD for animate objects

have yielded mixed results in svPPA. While some studies

have reported the absence of a CSSD for animate objects

after accounting for these factors in naming tasks,22,27

others have demonstrated that a CSSD for animate

objects is still present even after controlling for frequency,

familiarity and age of acquisition in various naming and

recognition tasks.12,25,32

If a CSSD for animate objects is present in some

patients with svPPA, this offers a valuable opportunity to

advance our understanding of the neural basis of cogni-

tive processes contributing to semantic memory. Such
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investigations are informed by functional neuroimaging

studies of healthy adults which suggest that animate or

inanimate stimuli may be represented differentially with-

in unimodal sensory and heteromodal association cortex.

Areas preferentially engaged by animate objects in

healthy adults include the lateral fusiform gyri, perirhi-

nal and entorhinal cortex, inferior temporal gyrus, and

right superior temporal sulcus, whereas areas preferen-

tially engaged by inanimate objects include the left pos-

terior middle temporal gyrus, medial fusiform gyri and

inferior parietal lobule.33–38 Functional MRI studies

have shown greater activation in the lateral region of

the posterior fusiform gyrus using naming, basic-level

categorization or semantic decision tasks for animal ver-

sus tool stimuli.33,39–46 Neuropsychological studies have

also supported the role of the perirhinal cortex in dis-

ambiguating perceptually and semantically confusable

objects, such as animate objects, which are thought to

be more ambiguous than inanimate objects because they

share many visual features within their semantic cat-

egory.47–50

Variability in the absence or presence of a CSSD for

animate objects in patients with svPPA may arise from

individual variability in regional neurodegeneration.

Debate continues about the earliest and most consistent

sites of atrophy in the anterior temporal region in

patients with svPPA.51–53 Our own work suggests a rep-

licable localization within the tip of the temporal pole,51

but others have found the anterior fusiform and inferior

temporal gyrus,54 entorhinal cortex55 and perirhinal cor-

tex56 to be areas of greatest degenerative change. Despite

the relatively stereotyped pattern of anterior temporal

lobe atrophy in svPPA, heterogeneity is present in the lo-

calization and magnitude of atrophy across individual

patients.51,53,57 Some of this heterogeneity relates to the

severity of semantic memory impairment, some is related

to the presence of other impairments, such as visual ag-

nosia58–60 or behavioural symptoms,61 and some is driven

by overall dementia severity. This variability within

svPPA may offer the opportunity to test hypotheses about

relationships between relatively greater regional atrophy

and a more prominent CSSD for animate objects.

Here, we sought to address two major gaps in the lit-

erature. First, we aimed to determine whether patients

with svPPA exhibit a CSSD for animate objects after con-

trolling confounding psycholinguistic features of the stim-

uli. Based on previous literature12,25,32 and our own

clinical experience, we hypothesized that a CSSD for ani-

mate objects would be present in svPPA and would not

be attributable to differential frequency, familiarity, age of

acquisition, or typicality of the stimuli. We predicted that

this CSSD for animate objects would be found in the

sample as a whole and in the majority of individual

patients, since we believe that this is a characteristic

feature of svPPA. Second, we investigated the neural basis

of the CSSD for animate objects by examining the local-

ization of atrophy that correlates with relatively greater

semantic memory impairment for animate than inanimate

objects. Based on the literature reviewed above, we

hypothesized that a disproportionately poorer perform-

ance for animate (relative to inanimate) objects will be

associated with greater cortical atrophy in the bilateral

perirhinal cortex and the lateral fusiform gyri. To assess

the specificity of these regional associations and identify

additional regions that may contribute to a CSSD for

animate objects in svPPA, we conducted an analysis

examining the relationship between the effect of animacy

and cortical thickness within the entire temporal lobe.

The choice to restrict this analysis to the temporal lobes

was motivated by strong evidence supporting the role

of temporal lobe structures in semantic memory2–4

and by the typical pattern of atrophy exhibited by

patients with svPPA in the temporal lobes.51,53,57 If some

patients with svPPA exhibit a CSSD for animate objects

that are predictably localizable, this would have import-

ant implications for theoretical models of semantic

cognition.

Materials and methods

Participants

We analysed data from 20 svPPA patients (mean age¼
64 years, S.D.¼ 6.94; 10 females) who participate in the

ongoing Massachusetts General Hospital Frontotemporal

Disorders Unit PPA cohort. Participants undergo a com-

prehensive clinical evaluation as previously described.62,63

We perform a multidisciplinary assessment, including a

structured interview by a neurologist or psychiatrist

assessing cognition, mood/behaviour, sensorimotor func-

tion, and daily activities; a neurologic examination,

including office-based cognitive testing (for cases in this

report, BCD); a speech-language assessment by a speech-

language pathologist (M.Q. or D.H.), including the

Progressive Aphasia Severity Scale (PASS) to specifically

assess language impairment from a patient’s premorbid

baseline62; and an MRI scan with T1- and T2-weighted

sequences inspected visually by a neurologist. A clinician

also performs a structured interview with a care partner,

augmented with standard questionnaires. For most of the

participants in this report, the protocol included the

National Alzheimer’s Coordinating Center (NACC)

Uniform Data Set (using version 2.0 previously and cur-

rently version 3.0) and supplementary measures.

Cases selected for this study had been diagnosed with

svPPA according to consensus guidelines.64,65 All patients

presented with impaired confrontation naming and single-

word comprehension with intact motor speech. Most

patients (85% of our sample) presented with surface dys-

lexia, as evidenced by regularization errors when asked

to spell irregularly spelled words. Multidisciplinary assess-

ment and structured care partner interviews documented

the absence of visual agnosia and prominent behavioural
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disturbance in all patients. Visual inspection of a clinical

MRI revealed cortical atrophy that was most prominent

in the left anterior temporal lobe and ruled out other

causes of focal brain damage. Besides a single left-handed

patient, all patients were right-handed and all were native

English speakers. All patients and their care partners

denied a pre-existing psychiatric disorder, other neuro-

logical disorder or developmental cognitive disorder.

All patients and their care partners gave written

informed consent in accordance with guidelines estab-

lished by the Mass General Brigham Healthcare System

Institutional Review Boards which govern human subjects

research at Massachusetts General Hospital.

Single-word comprehension task

Stimuli and procedures

All participants completed a spoken word-picture match-

ing task from the Cambridge Semantic Battery (CSB)66–68

consisting of 64 black-and-white drawings69 representing

animate and inanimate categories. The animate stimuli

included a total of 32 items with eight items belonging to

the following categories: domestic animals, foreign ani-

mals, fruits and birds. The inanimate stimuli included 32

stimuli divided into the categories of small household

items, large household items, vehicles and tools.

Black-and-white line drawings were reproduced on ver-

tically oriented white paper with picture arrays, each

page consisting of 10 items (i.e. one target and nine foil

items) from the same category. For each item, partici-

pants heard the examiner say the name of an object and

were asked to point to it. The examiner then turned the

page and presented a new target item.

Animacy index score

Similar to prior work,70 the magnitude of each partici-

pant’s CSSD for animate objects was calculated as the

ratio of the difference between inanimate and animate

scores and the sum of those scores.

Animacy Index

¼ Inanimate Raw Score � Animate Raw Score

Inanimate Raw Score þ Animate Raw Score

Positive scores indicated poorer performance on ani-

mate relative to inanimate objects (i.e. a CSSD for ani-

mate objects) and negative scores indicated poorer

performance on inanimate relative to animate objects.

Psycholinguistic factors

The original picture matching stimuli from the CSB have

been divided into two sets, one matched for familiarity

and the other for age of acquisition.66 Each matched set

consists of 16 animate and 16 inanimate items. Previous

investigations have shown the confounding effects of fre-

quency, familiarity, typicality and age of acquisition on

SD/svPPA patients’ picture naming accuracy using the

same stimuli from the CSB.27,30 We used ratings from

the Morrison et al.31 corpus to account for frequency, fa-

miliarity, and age of acquisition, as well as Morrow and

Duffy29 ratings to account for typicality (Supplementary

Table 1).

MRI data acquisition and analysis

Each participant underwent an MRI scan within six

months of the CSB administration. One participant who

did not have an MRI scan and a single left-handed par-

ticipant were excluded from analysis, resulting in an

imaging subsample of 18 svPPA patients. Structural MRI

data were collected on a 3 T MRI scanner (Siemens TIM

Trio 3.0 T, Siemens Medical Systems, Erlingan, Germany)

that included the acquisition of a T1-weighted multi-echo

magnetization prepared rapid acquisition gradient echo

(MPRAGE) structural image using the following parame-

ters: FOV¼ 256, 192 sagittal slices, thickness¼ 1.0 mm,

matrix 240 � 256, voxel size 1 � 1 � 1 mm, repetition

time¼ 2.53 ms, echo¼ 3.48 ms, flip angle¼ 7�.

Cortical reconstructions of the T1-weighted images

were performed using the FreeSurfer analysis suite version

6.0 (https://surfer.nmr.mgh.harvard.edu/ Accessed January

2021) using a procedure that has been previously

described in detail.71–78 Each structural volume under-

went spatial and intensity normalization, skull stripping,

and an automated segmentation of cerebral white matter

to locate the grey–white boundary. Defects in the surface

topology were manually corrected, and the grey–white

boundary was deformed outward using an algorithm

designed to obtain an optimal representation of the pial

surface. Cortical thickness was then derived from the dis-

tance between the grey–white boundary and the pial sur-

face across the entire cortical mantle.

Cortical thickness in our first a priori region of interest

(ROI), the perirhinal cortex, was extracted using previ-

ously published Freesurfer-derived labels.79 The lateral

posterior fusiform gyrus ROI was defined using peak

Talairach coordinates reported by a previous meta-ana-

lysis of functional MRI studies identifying regions more

active while naming animate (i.e. animals) relative to in-

animate (i.e. tools) objects in cognitively normal adults.40

Talairach coordinates corresponding to the posterior fusi-

form (Left: �40, �62, �18; Right: 40, �68, �18) were

converted to MNI space (Left: �47.17, �66.51, �17.46;

Right: 44.28, �67.58, �18.33)80 and a sphere with

10 mm radius was generated to represent our lateral fusi-

form gyrus a priori ROI. This was then projected to the

pial surface, visually inspected for accuracy, and subse-

quently used to extract cortical thickness values for each

participant (Fig. 1). Next, we combined Freesurfer-derived

labels to create bilateral temporal lobe masks using the

following ROIs from the Desikan–Killiany atlas: temporal

pole, entorhinal cortex (which also includes perirhinal

cortex in this atlas), parahippocampal gyrus, fusiform

gyrus, lingual gyrus, inferior temporal gyrus, middle tem-

poral gyrus, superior temporal gyrus and the superior
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temporal sulcus (Fig. 1). These masks were used in subse-

quent general linear model analyses. Finally, the bilateral

precentral gyrus was selected as a control region.81

Statistical analyses

Behavioural aims

We used a multiple regression model to assess the inde-

pendent effects of animacy, frequency, familiarity, age of

acquisition and typicality on single-word comprehension

accuracy across all stimuli (i.e. the percentage of partici-

pants who correctly identified each stimuli item). Sixty-

one of the 64 stimuli had ratings available for frequency,

familiarity and age of acquisition; 50 ratings were avail-

able for typicality. Spearman’s correlation analyses were

used to determine the relationships between each variable

and percent correct per stimulus item (Supplementary

Table 2).

Next, we examined the impact of each psycholinguistic

variable on single-word comprehension performance in

our primary analysis. To investigate the effects of famil-

iarity and age of acquisition, we used the two evenly

matched sets of the current CSB word-picture matching

stimuli in which half of the animate and inanimate items

are matched for familiarity in one subset and half are

matched for age of acquisition in the other subset.66

A paired samples t-test was performed to analyse per-

formance on animate and inanimate items in each of the

familiarity and age of acquisition matched sets. For fre-

quency and typicality, we divided the total stimuli into

higher and lower frequency and typicality animate versus

inanimate subsets using the median as the cut point

based on the ratings for these items. These 32-item

matched sets did not have overlapping items. There were

61 ratings available for frequency, yielding 30 high

(mean¼ 3.31, S.D.¼ 0.46; range¼ 2.75–4.70) and 31 low

(mean¼ 2.10, S.D.¼ 0.29; range¼ 1.60–2.65) frequency

items. There was no difference in average frequency rat-

ings for low frequency animate versus inanimate items

(t¼�1.43, P¼ 0.16), or for high frequency animate ver-

sus inanimate items (t¼�0.73, P¼ 0.47). For typicality,

there were 50 ratings available, yielding 25 high (mean-

¼ 6.63, SD¼ 0.24; range¼ 6.22–6.94) and 25 low (mean-

¼ 5.56, S.D.¼ 0.55; range¼ 4.45–6.12) typicality items.

There was no difference in average typicality ratings for

low typicality animate versus inanimate items (t¼�0.07,

P¼ 0.95), or for high typicality animate versus inanimate

items (t¼ 0.59, P¼ 0.56). We calculated each partici-

pant’s performance on each subset. A repeated measures

ANOVA was performed with animacy (i.e. animate, in-

animate), frequency (i.e. high, low) and typicality (i.e.

high, low) as within-subject factors.

Finally, to examine the potential influence of overall

language severity on the CSSD for animate objects, we

used a repeated measures ANOVA with total perform-

ance scores (i.e. percent correct) on animate and inani-

mate categories as a within-subjects factor and overall

language severity (i.e. Clinical Dementia Rating language

score of 0.5 or 1) as a between-subjects predictor.

Imaging aims

Linear regression analyses assessed the relationship be-

tween animacy index scores and cortical thickness in the

bilateral perirhinal cortex and lateral fusiform gyri, as

well as the bilateral precentral gyrus, our control region.

General linear model analyses were run using FreeSurfer’s

mri_glmfit command to determine the relationship be-

tween the animacy index and cortical thickness at each

vertex point of the cortex82 within the temporal lobes

only (with FDR < 0.05 corrections). Statistical signifi-

cance maps were generated and overlaid onto the average

cortical surface template for evaluation.

Data availability statement

The authors confirm that the data supporting the findings

of this study are available within the article and its sup-

plementary material. Additional data are available from

the corresponding author, upon reasonable request.

Results

Clinical and demographic
characteristics

Baseline speech-language characteristics and demographic

information are summarized in Table 1. Mean PASS sum

Figure 1 Regions of interest. The mask used for the vertex-

wise general linear model analysis restricted to the temporal lobes

is shown along with the two a priori ROIs—the perirhinal cortex

and the lateral fusiform gyrus—represented in blue and green,

respectively. The medial view is rotated 45 degrees to aid

visualization.
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of boxes were 4.6 (S.D.¼ 1.95), Clinical Dementia Rating

Language scores were 0.78 (S.D.¼ 0.26), and global

Clinical Dementia Rating scores were 0.5 (S.D.¼ 0.16).

That is, about half of the sample had very mild aphasia

and the other half had mild aphasia, and nearly all patients

had very mild global cognitive impairment. The education

level of these patients was high (mean¼ 17.2 years,

S.D.¼ 2.35). All participants were non-Hispanic, and all

but two were white (one Caribbean-American and one

Asian-American).

Behavioural aims

Relationships of psycholinguistic variables to the

CSSD for animate objects

The multivariate regression analysis revealed a significant

main effect of animacy (b ¼ 0.52, t¼ 4.03, P< 0.001)

even after including all psycholinguistic variables in the

model [F(5,43)¼ 8.83, P< 0.001], such that animate

items were less likely to be identified correctly relative to

inanimate items. A main effect of age of acquisition

(b¼�0.57, t¼�3.50, P¼ 0.001), but not frequency

(b¼ 0.22, t¼ 0.91, P¼ 0.37), familiarity (b¼�0.16,

t¼�0.59, P¼ 0.56), or typicality (b ¼ 0.04, t¼ 0.25,

P¼ 0.80), was found. To account for the potential prob-

lem of multicollinearity in the regression analysis

(Supplementary Table 2), we computed the variance infla-

tion factor (VIF) from the standardized regression coeffi-

cient. Given the relatively higher VIF (>5) for familiarity

and frequency compared to the other variables (where

recommendations for acceptable levels of VIF include a

maximum of 483,84), multivariate regression analysis was

re-run without these two variables. Results were consist-

ent with the initial analysis (Supplementary Text 1).

Impact of psycholinguistic variables on single-word

comprehension

We explored the role of each individual psycholinguistic

variable on CSSD for animate objects. Participants

performed worse for animate than inanimate items in the

familiarity-matched (t¼�3.77, P¼ 0.001) and age of

acquisition-matched (t¼�4.35, P< 0.001) sets (Fig. 2B).

A repeated measures ANOVA with frequency and ani-

macy (i.e. animate, inanimate) revealed main effects of

frequency [F(1,19)¼ 22.99, P< 0.001] and animacy

[F(1,19)¼ 16.90, P¼ 0.001], with participants correctly

identifying fewer animate and lower frequency items

(Fig. 2A). No frequency by animacy interaction was

found [F(1,19)¼ 1.77, P¼ 0.20], suggesting that the effect

of animacy is independent of item frequency. A repeated

measures ANOVA with typicality and animacy revealed

main effects of typicality [F(1,19)¼ 31.78, P< 0.001] and

animacy [F(1,19)¼ 8.19, P¼ 0.01], with participants cor-

rectly identifying fewer animate and lower typicality items

(Fig. 2C). A typicality by animacy interaction was not

found [F(1,19)¼ 1.29, P¼ 0.27], suggesting that the effect

of animacy is independent of item typicality. Table 2

shows the consistent presence of the CSSD for animate

objects in the vast majority of participants on nearly all

stimulus classes. Across all 64 stimuli, a CSSD for ani-

mate objects was found in 75% of individuals

(15 patients) in our sample. Of the five individuals who

Table 1. Clinical and demographic characteristics of svPPA participants

Subject Age Sex Education Handedness CDR-G CDR-Lang PASS domains PASS

SOB
Art Flu Syn WR Rep AC SWC Read Writ Func

S1 72 F 18 R 0.5 1 0 0 0 1 0 0 1 0.5 0.5 0 3

S2 68 M 18 R 0.5 0.5 0 0 0 0.5 0 0 0.5 0 0.5 0 1.5

S3 79 M 20 R 0.5 0.5 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 3.5

S4 61 M 18 R 0.5 0.5 0 0 0 0.5 0 0 0.5 0 0 0 1

S5 67 F 14 R 0.5 0.5 0 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0.5 4.5

S6 62 M 16 R 0.5 1 0 0.5 0.5 1 0.5 0.5 1 1 1 0.5 6.5

S7 55 F 18 R 0.5 1 0 1 0 1 0.5 1 1 2 1 0.5 8

S8 67 M 17 R 0.5 0.5 0 0 0 0.5 0 0.5 0.5 0 0.5 0.5 2.5

S9 65 F 18 R 0.5 0.5 0 0 0 1 0.5 0.5 0.5 0.5 0.5 1 4.5

S10 59 F 18 R 0.5 0.5 0 0 0.5 0.5 0 0 0.5 0.5 0 0.5 2.5

S11 53 M 20 R 0.5 1 0 0 0.5 1 0.5 1 1 2 0.5 1 7.5

S12 63 F 16 R 0.5 1 0 0.5 0.5 1 0.5 0 1 0.5 0.5 0.5 5

S13 62 M 22 L 0.5 0.5 0 0 0 2 0 0 1 0.5 0.5 0.5 4.5

S14 70 F 16 R 0.5 1 0 0 0 1 0 0 1 0.5 0.5 0.5 3.5

S15 62 F 13 R 1 1 0 0 0 1 0 0.5 1 2 0.5 1 6

S16 63 M 20 R 0.5 1 0 0.5 0.5 1 0 0.5 1 0.5 0.5 0.5 5

S17 79 M 18 R 0.5 1 0 0 0.5 1 0 0.5 0.5 1 1 1 5.5

S18 54 F 16 R 0.5 0.5 0 0 0.5 1 0.5 0 0.5 1 0.5 0.5 4.5

S19 69 F 14 R 0.5 1 0 0 0 1 1 0.5 1 1 1 1 6.5

S20 56 M 14 R 1 1 0 0 0.5 1 0.5 1 1 1 1 1 7

Art, articulation; AC, auditory comprehension; CDR-G, Clinical Dementia Rating (CDR) global score; CDR-Lang, CDR supplemental language score; Flu, fluency; Func, functional

communication; PASS SOB, Progressive Aphasia Severity Scale Sum of Boxes; Read, reading; Rep, repetition; SWC, single-word comprehension; Syn, syntax; WR, word retrieval;

Writ, writing.
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did not present with a CSSD for animate objects, two

were at ceiling (S2 and S3), one showed equivalent

performance on both categories (S4), and two showed

worse performance on inanimate relative to animate

objects (S1 and S7).

Impact of overall language severity on single-word

comprehension

A repeated measures ANOVA with total performance

scores (i.e. total percent correct) and overall language se-

verity (i.e. Clinical Dementia Rating language score of

0.5 versus 1) revealed a main effect of animacy

[F(1,18)¼ 21.12, P< 0.001] and overall language severity

[F(1,18)¼ 14.33, P¼ 0.001], such that worse single-word

comprehension performance was associated with worse

aphasia severity and with animate objects (Fig. 3). No

disease severity by animacy interaction was found

[F(1,18)¼ 1.70, P¼ 0.21], suggesting that the animacy ef-

fect did not differ across levels of language severity, at

least in these very mild to mildly impaired patients

(Fig. 3). Despite the absence of an interaction, the differ-

ence between inanimate and animate scores showed a

larger effect size in the Clinical Dementia Rating

Language 1 group (Cohen’s d¼ 0.96) than the 0.5 group

(Cohen’s d¼ 0.82).

Brain–behavior relationships

A priori ROIs

A linear regression analysis revealed a relationship

between right perirhinal cortex thickness and animacy

index scores (b¼�0.57, t¼�2.74, P¼ 0.015) such that

worse performance on animate relative to inanimate items

was associated with a thinner right perirhinal cortex

Figure 2 Effects of frequency, familiarity, age of acquisition, and typicality on individual performance. Individual patient data

illustrate CSSD for animate objects in most patients across matched sets of stimuli. When performance is not at ceiling, the vast majority of

individual svPPA patients show a CSSD for animate objects across stimuli with various psycholinguistic characteristics. (A) Individual accuracy

scores on low (top right) versus high (top left) frequency stimuli. A repeated measures ANOVA with frequency and animacy (i.e. animate,

inanimate) revealed main effects of frequency [F(1,19)¼ 22.99, P< 0.001] and animacy [F(1,19)¼ 16.90, P¼ 0.001]. No frequency by animacy

interaction was found [F(1,19)¼ 1.77, P¼ 0.20]. (B) Individual accuracy scores on the familiarity (middle left) and age of acquisition-matched

(middle right) stimuli sets. Participants performed worse for animate than inanimate items in the familiarity-matched (t¼�3.77, P¼ 0.001) and

age of acquisition-matched (t¼�4.35, P< 0.001) sets. (C) Individual accuracy scores on low (bottom right) versus high (bottom left) typicality

stimuli. A repeated measures ANOVA with typicality and animacy revealed main effects of typicality [F(1,19)¼ 31.78, P< 0.001] and animacy

[F(1,19)¼ 8.19, P¼ 0.01]. A typicality by animacy interaction was not found [F(1,19)¼ 1.29, P¼ 0.27]. þ indicates worse performance on

animate relative to inanimate objects (i.e. equivalent to A in Table 2).
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(Fig. 4). The relationships between animacy index scores

and cortical thickness did not reach statistical significance

in the left perirhinal cortex (b¼�0.13, t¼�0.54,

P¼ 0.60), left lateral posterior fusiform gyrus (b¼�0.30,

t¼�1.25, P¼ 0.23), or the right lateral posterior fusi-

form gyrus (b¼ 0.08, t¼ 0.34, P¼ 0.74). A linear

Table 2 Summary of presence (i.e. a positive animacy index score) or absence of a CSSD for animate objects in

individual patients across frequency, familiarity, typicality and age of acquisition matched stimuli

Subjects High frequency

stimuli

Low frequency

stimuli

AoA matched

stimuli

Familiarity

matched stimuli

High typicality

stimuli

Low typicality

stimuli

S1 N I A I I I

S2 C C C C C C

S3 C C C C C C

S4 N I N N I I

S5 N A A N N I

S6 A I A N I A

S7 A I I A I I

S8 A I N A A I

S9 A A A N I A

S10 A A A A A A

S11 A A A A I A

S12 A A A A A A

S13 A A A A A A

S14 A A A A I A

S15 A A A A A A

S16 A A A A A I

S17 A A A A A A

S18 A A A A A A

S19 A A A A A I

S20 A A A A A A

The designated subject numbers above are used consistently throughout the paper and denote the same individuals. A, worse performance on animate relative to inanimate objects;

AoA, age of acquisition; C, ceiling on both animate and inanimate categories; I, worse performance on inanimate relative to animate objects; N, equivalent performance on animate

and inanimate objects.

Figure 3 Effect of overall language severity on group

performance. While the group means are lower for animate than

inanimate objects for both groups based on overall severity of

language impairment, a larger effect size is found in the CDR-

Language 1 group (Cohen’s d¼ 0.96) than in the CDR-Language 0.5

group (Cohen’s d¼ 0.82). A repeated measures ANOVA with total

performance scores (i.e. total percent correct) and overall language

severity (i.e. Clinical Dementia Rating language box score of 0.5

versus score of 1) revealed a main effect of animacy

[F(1,18)¼ 21.12, P< 0.001] and overall language severity

[F(1,18)¼ 14.33, P¼ 0.001]. No disease severity by animacy

interaction was found [F(1,18)¼ 1.70, P¼ 0.21].

Figure 4 Association between perirhinal cortical atrophy

and the magnitude of a CSSD for animate objects in

svPPA. Patients with svPPA all exhibit atrophy in the perirhinal

cortex, and in this sample more atrophy in the right perirhinal

cortex is associated with a more prominent CSSD for animate

objects (b¼�0.57, t¼�2.74, P¼ 0.01). The scatterplot shows

each svPPA patient’s right perirhinal cortical thickness plotted

against animacy index score, with a positive value indicating the

presence of a CSSD for animate objects. A reference is provided

for the average right perirhinal ROI cortical thickness in the healthy

control group (3.16 mm, S.D.¼ 0.35), indicating the presence of

atrophy in this ROI in all patients.
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regression analysis did not reveal a significant relation-

ship between animacy index scores and the control ROIs:

the left precentral gyrus (b¼�0.17, t¼�0.70, P¼ 0.49)

or the right precentral gyrus (b¼�0.12, t¼�0.49,

P¼ 0.63).

Figure 4 shows the mean cortical thickness of the right

perirhinal cortex with 95% confidence intervals from a

sample of MRI scans from control subjects, age and gen-

der matched cognitively unimpaired participants (n¼ 79;

mean age¼ 66 years, S.D.¼ 5.74), from the Massachusetts

Alzheimer’s Disease Research Center Longitudinal

Cohort. These participants had undergone comprehensive

clinical assessments at the time of their MRI scan, includ-

ing with the NACC UDS battery, and were determined

to be cognitively normal (Clinical Dementia Rating¼ 0;

no neurologic or psychiatric history).

Cortical surface-based analysis within the

temporal lobe

A vertex-wise general linear model analysis restricted to

the temporal lobes revealed a stronger association be-

tween positive animacy index scores and cortical atrophy

in the right hemisphere including regions of the perirhinal

cortex, superior, middle, and inferior temporal gyri, and

the anterior fusiform gyrus, which falls within Brodmann

Area 20 (Fig. 5). Peak MNI coordinates were found in

the right inferior temporal gyrus (51.78, �45.06,

�18.27), superior temporal gyrus (55.40, �6.27, �6.50),

perirhinal cortex (30.83, �14.96, �36.13), anterior fusi-

form gyrus (41.61, �34.81, �17.20), and the middle

temporal gyrus (61.98, �39.07, �5.25). Within the left

hemisphere, a CSSD for animate objects was associated

with atrophy within the anterior fusiform gyrus only

(within Brodmann Area 20; �36.45, �34.56, �20.49).

Discussion
Data have been mixed as to whether svPPA patients ex-

hibit a CSSD for animate objects when controlling for

the potentially confounding psycholinguistic characteris-

tics of the stimuli. In the present sample of 20 mildly

impaired svPPA patients, we found a CSSD for animate

objects in nearly all participants that was not attributable

to differential frequency, familiarity, age of acquisition or

typicality of words. In cases where a CSSD for animate

objects was not observed, it was usually due to a ceiling

effect. Consistent with the hypothesized role of the peri-

rhinal cortex in subserving processes important for under-

standing animate objects, greater atrophy in the right

perirhinal cortex in these patients was associated with a

more prominent CSSD for animate objects. Other tem-

poral lobe regions where greater atrophy was associated

with a more prominent CSSD for animate objects

included the inferior temporal, middle and superior tem-

poral, and anterior fusiform gyri (Brodmann Area 20).

Interestingly, the only left hemisphere region to show this

effect was the anterior fusiform gyrus (Brodmann Area

20). These findings not only extend our understanding of

the characteristics of impaired semantic memory in

svPPA, but also provide further evidence for the role of

the anterior ventral temporal cortex in the representation

and semantic processing of animate objects.

svPPA patients exhibit a

characteristic CSSD for animate

objects

Consistent with previous case reports,6,9–19 a dispropor-

tionately poorer performance with animate compared to

inanimate objects was found in our sample as whole and

in nearly all individual patients. Our results provide

strong evidence that a CSSD for animate objects may be

an early and consistent clinical characteristic of this

illness.

Figure 5 Regions within the temporal lobe mask that are

associated with a greater CSSD for animate objects. This

statistical map shows where cortical atrophy is associated with a

greater CSSD for animate objects, as measured by the animacy index,

within a priori hypothesized temporal lobe regions (FDR < 0.05

corrected; depicted as red-to-yellow heat gradient). The medial view

is rotated 45 degrees to aid visualization. Within these svPPA

patients, a larger CSSD for animate objects is associated with greater

cortical atrophy in the perirhinal cortex, anterior fusiform gyrus

(Brodmann Area 20), inferior temporal gyrus, and portions of the

middle and superior temporal gyrus in the right hemisphere, and with

only the anterior fusiform gyrus (Brodmann Area 20) in the left

hemisphere.
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Several previous investigations of svPPA/SD patients

have argued that psycholinguistic confounds are respon-

sible for the CSSD for animate objects, such that the

effect of animacy was not present after controlling for

the psycholinguistic features of the stimuli.22,27,85,86

Moreover, prior studies have shown an effect of typical-

ity, but not animacy, on picture naming and word-picture

matching accuracy.27,87 In contrast, a typicality effect was

not found in the present study. Besides a main effect of

animacy, a main effect of age of acquisition was found;

that is, age of acquisition was a predictor of performance

when accounting for other confounding variables.

However, when the task stimuli were matched for age of

acquisition across animate and inanimate categories in

the present study, 80% of svPPA patients still exhibited

worse performance on animate than on inanimate items

(Fig. 2B).

Discrepant findings may be related to the stimulus

materials employed to assess semantic memory and the

type of response elicited by the task. Other word-picture

matching and associative tasks (e.g. category membership

of pictures/words) have reported a CSSD for animate

objects.25,88,89 In a semantic sorting task aimed to assess

fine-grained dissociations among animate entities, greater

categorical impairment for animals than tools and kit-

chenware but a lesser impairment of fruits and vegetables

was reported in SD that was not modulated by con-

founds like frequency.24 In these studies, variability exists

in the focus of category selectivity (e.g. within animate

category versus animate/inanimate dissociation), types of

stimuli employed (e.g. pictures versus words), psycholin-

guistic variables that were controlled for (e.g. word

length versus representativeness), and the response

required (e.g. verbal versus non-verbal). Our motivation

to employ a word-picture matching task was influenced

by (i) a single world comprehension deficit characteristic

of svPPA5,6; (ii) unbiased loading of verbal and non-ver-

bal processing to account for the differential contribu-

tions of the left and right anterior temporal lobes (ATLs)

in semantic processing23,90,91; and (iii) the comparative

advantage of using a standardized test with associated

psycholinguistic confounds.

Previous discrepant findings may also reflect differences

related to the characteristics of the patient sample. Most

prior group studies have smaller sample sizes and

examined a CSSD for animate objects among samples of

SD patients18,20,24,88; only a handful of studies have

restricted their analysis to a sample of svPPA patients

meeting strict diagnostic criteria when investigating a

CSSD for animate objects.92 While often used synonym-

ously with svPPA, individuals with SD can have a heter-

ogenous clinical presentation including impairments

outside of language, such as visual agnosia, prosopagno-

sia, loss of empathy, behavioural rigidity, a variety of

preoccupations, or executive dysfunction.3,4,93–97 Many

studies have neither reported the details of the patient

characteristics nor presented individual patient data to

examine within-group between-subject variability of

clinical and neuroanatomical features, which might con-

tribute to discrepant findings of the CSSD for animate

objects.

A CSSD for animate objects is
associated with atrophy in the right
temporal regions and left anterior
fusiform gyrus

We found a strong association between cortical thickness

in the right perirhinal cortex and animacy index scores in

our sample. To our knowledge, this has not been previ-

ously reported within a group of svPPA/SD cases, but

this finding is consistent with results in other patient pop-

ulations. In patients with a broad range of neurodegener-

ative diseases including SD, Brambati et al.22 reported a

correlation between gray matter volume in the right

anteromedial temporal pole at the level of the entorhinal

cortex and naming performance for animate objects. In

mild Alzheimer’s disease dementia patients, Kivisaari

et al.70 found perirhinal cortex atrophy to be associated

with a disproportionate difficulty in naming animate

compared to inanimate objects. Similarly, patients with

herpes simplex virus encephalitis with lesions in the ante-

romedial temporal structures including the perirhinal

cortex have also been found to present with a CSSD for

animate objects,7,22,98–102 but these patients often have

lesions that cover a relatively large territory of the anter-

ior temporal lobe.

Debate continues about the functional role of the peri-

rhinal cortex in semantic processing and why damage to

the perirhinal cortex may lead to a CSSD for animate

objects. An important putative function associated with

the perirhinal cortex is high-level visual object processing.

According to the hierarchical account of object process-

ing, the complexity of neural representations increases

from posterior occipital to the anterior and the anterome-

dial temporal regions, and the bilateral perirhinal cortex

is thought to be crucial in the processing of the distinct

characteristics of animate objects that require more com-

plex feature computations (which are not thought to be

as important for inanimate objects).103–106

In this study, an association between left perirhinal cor-

tical thickness and the magnitude of the CSSD for ani-

mate objects was not found. One potential explanation

for the null finding may be a floor effect, such that the

left ATL regions including the perirhinal cortex are so

atrophic that it is no longer possible to find a relation-

ship with this behavioural measure, although there still

appears to be a reasonable amount of variance in this

anatomical measure (Supplementary Fig. 1). Since the

perirhinal cortex is involved early in the course of svPPA/

SD, typically starting in the left hemisphere before

spreading bilaterally, this account would predict the pref-

erential degradation of semantic representations for
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animate objects early in the disease course. Patients with

the mildest impairment in this study did not consistently

show a CSSD for animate objects, but further investiga-

tion with more sensitive tasks is warranted. It is possible

that the degeneration of the left perirhinal cortex relates

to loss of conceptual and lexical knowledge of animate

objects and the degeneration of the right perirhinal cortex

relates to the loss of visual object knowledge of animate

objects,107–109 but this too deserves further study.

In addition to the right perirhinal cortex, our results

revealed the right inferior, middle, and superior temporal

gyri, as well as the bilateral anterior fusiform gyrus, as

regions where atrophy was greater in individuals with a

more prominent impairment for animate than inanimate

objects. Damasio et al.110 first reported that a CSSD for

animate objects was associated with damage to the left

temporal lobe in Brodmann Area 20/36 in subjects with

lesions caused by cerebrovascular disease, herpes simplex

virus encephalitis or temporal lobectomy.7,8 Since then,

the anterior fusiform gyrus has been widely cited as a

critical region for semantic processing.111–113 Our results

complement previous findings by further supporting a

critical role of the anterior fusiform gyrus (Brodmann

Area 20/36) in semantic processing114 and support the

preferential involvement of the right and left anterior fu-

siform gyri in linking visual feature information for ani-

mate objects to the words that represent them.88,115

These results are convergent with those of Libon et al.,25

who reported that a CSSD for animate objects in svPPA

(using a category membership judgement task) was asso-

ciated with atrophy in ventromedial temporal lobe

regions, including a left inferior temporal/fusiform cluster

(MNI: �34, �22, 28) in close proximity to that reported

here (MNI: �36.45, �34.56, �20.49).

Evidence is converging from studies of patients with di-

verse lesions that right temporal lobe lesions may be

associated with a CSSD for animate objects. In patients

with unilateral lesions due to stroke, herpes simplex en-

cephalitis or temporal lobectomy, Tranel et al116 found

dissociable patterns of categorical impairment specific to

persons, animals, and tools, and laterality of lesion.117

They found a strong association between impaired recog-

nition of animals with lesions in the right ventral tem-

poral and mesial occipital region. Similarly, a greater

naming deficit for animate than inanimate objects has

been reported in patients with focal lesions in the right

occipitotemporal lobe, including the anterior fusiform

gyrus (cases 1 and 2118), and in temporal lobe epilepsy

patients who underwent right (but not left) temporal lobe

resection, including the superior, middle, inferior tem-

poral and fusiform gyri.119 In patients with bilateral,

right or left temporal lobe necrosis due to cranial irradi-

ation therapy, Chan et al. found greater impairment in

naming and attribute judgement of animate relative to in-

animate objects in patients with right temporal lobe

lesions (than that seen in those with left temporal lobe

lesions). Lesion sites specifically related to animate object

knowledge loss included the right fusiform gyrus, inferior

and superior temporal gyri—regions that directly overlap

with our findings.114,120

While individuals diagnosed with svPPA/SD typically

show an asymmetric, left-lateralized pattern of atrophy,

for a proportion of patients (roughly estimated around

30%) atrophy may be more prominent in the right tem-

poral lobe.93,121 The relationship between laterality of at-

rophy and the emergence of a CSSD for animate object

is largely debated, with some reports suggesting the

prevalence of the right ATL atrophy/lesions in individuals

with a CSSD for animate objects22,88,91, and others

stressing the role of the left ATL in the semantic repre-

sentation and recognition of animate items.101,122,123

Woollams et al.23 investigated whether asymmetry of at-

rophy underpins the likelihood of a category effect across

patients with SD and found a larger CSSD for animate

objects in SD patients with R>L ATL atrophy than

those with L>R ATL atrophy. To our knowledge, our

study is the first to show a CSSD for animate objects in

a cohort of svPPA patients with L>R ATL atrophy and

strong associations between the magnitude of a CSSD for

animate objects and the magnitude of atrophy in right

ATL regions. Our findings contribute to this controversial

issue of laterality and suggest that right temporal lobe

regions may play a critical role in the representation and

semantic processing of animate objects, even in svPPA

patients with the prototypical left-lateralized ATL

atrophy.

The lateral posterior fusiform gyrus was another a pri-
ori ROI in this study. Our hypothesis was developed

based on the differential activation patterns often found

for animate versus inanimate objects.33–38 Previous func-

tional MRI studies of healthy subjects have shown

enhanced activity in the lateral posterior fusiform gyrus

using naming, basic level categorization, or semantic deci-

sion tasks with animate pictures and/or their written

names.33,39–46 Contrary to our hypothesis, our results did

not reveal any relationship between atrophy in the lateral

posterior fusiform gyri and animacy index scores. This

may be related to differences in the task we used com-

pared to those functional activation studies or because

our sample of patients did not include individuals with

atrophy localized so posteriorly.

Surprisingly, atrophy in the temporal pole, the pre-

sumed localization of the most prominent neurodegenera-

tion in svPPA,51 did not correlate with animacy index

scores bilaterally. While one explanation could be that at-

rophy is already maximal in this region in our sample,

previous investigations have also found the anterior fusi-

form gyrus, but not the temporal pole, to be associated

with semantic impairment.114,120

The presence of a CSSD for animate objects in svPPA

has important implications for our understanding of the

theoretical models of semantic cognition. The cognitive

mechanism underlying the dissociation between animate

and inanimate objects has been previously interpreted in

Category selectivity in svPPA BRAIN COMMUNICATIONS 2021: Page 11 of 16 | 11



the context of theoretical frameworks such as the do-

main-specific theory, where distinct neural systems for

categorical domains such as animals and plant life

formed due to evolutionary pressures.122 In addition,

while proponents of the sensory and functional theory

propose that animate objects require the processing of

more perceptual features (e.g. shape, colour, sound) than

inanimate objects which require greater processing of

functional properties (i.e. relevant to action and motor

scheme),7,123,124 other distributed semantics and corre-

lated structure theories argue in favour of a model where

animate and inanimate objects are distinguished by the

correlations between their perceptual and functional fea-

tures.125,126 Moreover, the animate–inanimate dichotomy

has also influenced theories pertaining to the neuroana-

tomical localization of semantic memory, such as embod-

ied cognition127,128 and the hub-and-spoke model.129,130

The presence of an animate–inanimate difference in this

study strengthens the proposal that specific regions within

the temporal lobes (i.e. right perirhinal cortex, bilateral

anterior fusiform gyrus, and portions of the right super-

ior and middle temporal gyri) may be more important in

the semantic processing and representation of animate

relative to inanimate entities.

Interpreting these data in the context of some of our

and others’ recent work, we suggest that in svPPA (i)

neurodegeneration begins in the temporal pole51; (ii) se-

mantic memory impairment develops as neurodegenera-

tion expands into the networks that converge on this

hub131 with heterogeneity between patients132–134; and

(iii) the nature of the early semantic memory impairment

is determined by the specific node or region that is

affected most prominently, with anterior fusiform and

perirhinal cortical involvement leading to a selective loss

of semantic memory for animate relative to inanimate

objects.

Limitations and future directions

Although we posit that a CSSD for animate objects is a

clinical characteristic found in many svPPA individuals,

our study has limitations. While we observed a CSSD for

animate objects after accounting for several psycholinguis-

tic confounds, we were unable to exhaustively examine

all possible confounds in our primary analysis. Additional

analyses to assess the effects of visual complexity, con-

creteness, imageability, and semantic neighbourhood dens-

ity were carried out post-hoc and the results are

summarized in the Supplementary materials. The main ef-

fect of animacy remained significant even after including

each of these additional variables in the model. This type

of work also points towards the value of developing

stimulus sets that better control for a wider variety of

picture and word features. To our knowledge, the dis-

criminability between targets and foils was not controlled

for between categories in the CSB. The investigation of

this question using stimulus materials that more rigorous-

ly control for these factors is warranted.

Variability in cortical atrophy exists in patients with

svPPA, with some patients having more involvement of

the ventral visual semantic or lateral language circuits

while others exhibit more involvement of the medial af-

fective/paralimbic networks.131 Like many lesion neuro-

psychology studies, this presents challenges when

attempting to compare to other reports. And while larger

than most other similar types of reports, our sample size

may not have been large enough to detect small effects.

In a post hoc power analysis with G*Power 3135 using

the observed effect size (f2¼ 1.02) and sample size

(n¼ 20) from our multiple regression model to assess the

effect of animacy, we achieved a power of 0.78. This

was clearly adequate to detect the effects reported here,

but larger single- or multi-centre studies may enable the

investigation of larger samples to replicate effects.

Future studies should include longitudinal investigations

to improve our understanding of how the localization,

magnitude, and spread of atrophy in svPPA relates to the

presence and magnitude of a CSSD for animate objects

or other categories of information, including emotionally-

charged information.136,137 These next steps will improve

our understanding of brain systems that subserve dissoci-

able categories of semantic memory and how their degen-

eration impacts patients’ understanding of the world

around them.

Supplementary material
Supplementary material is available at Brain

Communications online.
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