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Abstract: To realize a large-scale Spiking Neural Network (SNN) on hardware for mobile applications,
area and power optimized electronic circuit design is critical. In this work, an area and power opti-
mized hardware implementation of a large-scale SNN for real time IoT applications is presented. The
analog Complementary Metal Oxide Semiconductor (CMOS) implementation incorporates neuron
and synaptic circuits optimized for area and power consumption. The asynchronous neuronal circuits
implemented benefit from higher energy efficiency and higher sensitivity. The proposed synapse
circuit based on Binary Exponential Charge Injector (BECI) saves area and power consumption, and
provides design scalability for higher resolutions. The SNN model implemented is optimized for
9 × 9 pixel input image and minimum bit-width weights that can satisfy target accuracy, occupies
less area and power consumption. Moreover, the spiking neural network is replicated in full digital
implementation for area and power comparisons. The SNN chip integrated from neuron and synapse
circuits is capable of pattern recognition. The proposed SNN chip is fabricated using 180 nm CMOS
process, which occupies a 3.6 mm2 chip core area, and achieves a classification accuracy of 94.66%
for the MNIST dataset. The proposed SNN chip consumes an average power of 1.06 mW—20 times
lower than the digital implementation.

Keywords: spiking neural network; leaky integrate and fire; neuromorphic; artificial neural networks;
artificial intelligence; image classification; CMOS

1. Introduction

In recent years, neuromorphic systems, which are comparable to a biological neural
network, have been widely investigated for prospective computing systems [1]. These
neuromorphic systems consume very little energy and provide parallel signal processing [2].
Deep Neural Networks (DNN) are receiving much attention as the chosen classifier for
various machine learning and computer vision applications due to their high classification
accuracy [3]. However, for applications requiring a real environment using conventional
von Neuman computing systems, the DNNs involve an immense number of computations
and memory requirements. The bottleneck for DNN efficiency is the excessive and repeated
update of data [4], high power consumption and memory bandwidth, making them not
suitable for mobile applications where area and power are big constraints [5].

The driving force in field of computing has been to outperform the human brain
using the von Neumann architecture. However, this architecture has significant differences
with the human brain in terms of the organizational structure, computing methodology,
area, and power constraints [6]. Today’s digital microprocessors have a basic architectural
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difference with the central nervous system. The von Neuman-based microprocessors,
constituted of logic gates, have distinct computational and storage devices [7]. However,
the latter is composed of a massive parallel arrangement of neurons, densely interconnected
to one another in a vast network through links called synapses [8]. Moreover, in the central
nervous system of the human brain, the processing elements (neurons) are placed very
close to the memory units (synapses). The human brain emerges as a vast energy-efficient
network by increasing the neuron–synapse interconnection, while consuming just 20 W and
performing computations unmatched by modern computers [9]. Due to power and memory
bottlenecks of conventional computers along with inspiration from biological achievements
a new paradigm of neuromorphic architectures have evolved. Fundamentally, these are
complementary to von Neumann architectures and have shown promising results in
specific applications [10–12]. Neuromorphic architectures are not only energy efficient,
but perform parallel signal processing, fault tolerance, and can be configurable. Moreover,
they can be realized by numerous silicon-based technologies, large-scale architectures, and
computational models of neural elements [13,14].

Although Artificial Neural Networks (ANN) can offer higher efficiency in training and
inference tasks, they generally require higher complexity in hardware and power consump-
tion than SNNs. Among various ANNs inspired from the human brain, Spiking Neural
Networks aim to bridge the gap between neuroscience and machine learning. SNNs offer
massive parallel computations on hardware, mimicking the human brain. SNNs process
information via numerous neurons and communicate that information through a web of
synapses. The transfer of information in the shape of small electric currents is carried
out by a sequence of action potentials called spike trains. In light of the Shannon Theory,
some studies suggest that the information contained in spike trains in the form of temporal
codes are more energetically efficient than rate codes [15–17]. Neuromorphic architectures
based on SNN benefit from computation organization—achieving high energy efficiency
by co-locating computing (neurons) and memory (synapse) elements, and information
representation—less power consumption by event-driven spikes encoding information [18].
The power constraints of mobile applications suffer due to the exponentially increasing pro-
cessing complexity of large-scale ANN-based neuromorphic hardware and thus necessitate
energy-efficient SNN-based neuromorphic hardware [19]. SNNs process the information
by spike propagation, which enables it to accelerate the computational speed and improve
energy efficiency [20]. It incorporates biologically plausible neuron models in acquiring the
temporal dynamics of the neural membrane [21]. To realize the advantages of SNNs on a
chip, it is crucial to optimize the neuron and synapse circuits for low power and a compact
area. Therefore, to realize large-scale SNN hardware requires power and area optimized
computational (neuron) and memory (synapse) elements.

When Carver Mead coined the idea of implementing neural networks in hardware, a
new paradigm in neuromorphic engineering was established. The neural characteristics
can be captured on hardware by the integration of robust and less power-hungry analog
components [1]. Confronting challenges in the field of neuromorphic engineering requires
a multidisciplinary approach, as the next generation VLSI technology can realize better
hardware [22]. Implementing neuromorphic hardware requires numerous transistors to be
integrated on the chip. This can be achieved to some extent by the scalability feat of the
CMOS technology, although still incomparable with the integration density of the brain.
Therefore, hybrid techniques that have merged conventional robust CMOS with newly
developed technologies like memristors are attracting interest in research [23,24]. However,
memristor crossbar architectures still require additional process requirements and are
currently under study for simpler problems with discrete devices, whereas conventional
CMOS, by virtue of its robustness and scalability has clear advantages for realizing large-
scale neuromorphic hardware [25].

Since the emergence of neuromorphic architecture, several studies have been per-
formed considering different large-scale architecture, technologies, and neuronal models.
Neurogrid [26], a mixed signal and system, employs subthreshold circuits to model neu-
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ronal elements. This allows for a compact neuron area, but with all neurons sharing the
same parameters and therefore becoming less configurable and power hungry. In Brain-
ScaleS [21], a mixed signal approach was adopted where all the neurons have dedicated
parameters. This allows high tunability, reconfigurability, and reliable parameter mapping
at the cost of higher power consumption. The analog–digital neural network classifier [5]
consists of an analog core with a current multiplier and environmental noise compensation
circuits; it achieves area efficiency due to its recurrent operations. However, its excessive
read and write operations via the digital controller makes it less energy efficient.

This paper presents the implementation of a large-scale SNN Artificial Intelligence
(AI) hardware based on analog CMOS for real time IoT applications. The SNN hardware,
optimized for area, power, and accuracy, is realized on a chip based on the preliminary
prototype design [27]. The choice of SNN model is dictated by the analog design constraints
for hardware. A four-layer fully connected SNN model is optimized for a reduced number
of neurons, input image size, and weight resolution which can achieve targeted classifi-
cation accuracy along with a minimal chip area. The proposed SNN comprises synapse
and neuron circuits optimized for power and area using a 180 nm process design kit.
Furthermore, a fully digital implementation of SNN is replicated to analyze and compare
the power consumption and estimated chip area with the analog counterpart. This work
elucidates our SNN model and design methodology, elemental circuit designs, simulations
and calibrations, and measurement results from the test chip on board. Section 2 describes
the overall SNN model architecture and design pre-considerations. In Section 3, the un-
derlying analog CMOS circuits design and implementation is explained and validated by
simulation results along with a description of its digital implementation. In Section 4, the
measurements and performance result of analog and digital SNN are analyzed. Finally, a
discussion and comparison of results achieved with other state-of-the-art large-scale neural
networks is performed in Section 5, before concluding the paper in Section 6.

2. Architecture and Design
2.1. Spiking Neural Network Model

The choice of neural network on chip for this work is SNN, regarded as the third-
generation neural network, due to its biological feats and efficiency in the spatial–temporal
signal coding [28]. In SNN, a web is weaved by the interconnections of neurons and
synapses to perform inference and training tasks. Contrary to the continuous behavior of
ANN, SNN works by making use of discrete events called spikes, which appear at spe-
cific time intervals. The occurrence of a spike event (0/1) mirrors the biological-chemical
process of information delivery between different neurons. The neuron (post-synaptic) in
a layer receives an input spike train from another neuron (pre-synaptic) in the previous
layer, which are interconnected through synapses. The Figure 1a demonstrates a simple
model of an SNN with a neuron, connected to a multitude of input synapses that receive
input spike trains from pre-synaptic neurons. These input spike trains are modulated
according to the respective synaptic strength (weight) and converted into current. The
proportionate charge from all the synapses is then accumulated on the neuronal mem-
brane as membrane potential. When membrane potential accumulates up to a predefined
threshold value then the neuron emits or fires an output spike [29]. Thus, neurons act as
an accumulation and comparison processing unit, while synapses are formed as memory
with a communication interface.
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Figure 1. (a) Spiking Neural Network Model with a single neuron connected to multiple input synapses; (b) Leaky Integrate
and Fire Model of the CMOS neuron cell.

2.2. Leaky Integrate and Fire Model

The choice of neuronal model for our large scale SNN is influenced by the pre-
considerations of optimizing the design for area and power consumption, along with
capturing the biological and temporal dynamics of the neuronal membrane. This requires
that the neuronal model to be imitated replicates most of the computational studies, along
with its simple design, which can unify a multitude of neurons on a chip. Therefore, for
the implementation of large-scale SNN, our choice of model is the Leaky Integrate and Fire
(LIF). This model possesses refractoriness and adaptation features to effectively mimic the
biological computational features of neurons with good accuracy and adopts simpler circuit
designs [30,31]. Contrary to other models [32,33], the LIF model for large scale neuromor-
phic architectures still draw the interest of researchers by virtue of the robustness of the
CMOS design and its compact silicon implementation. Figure 1b models the LIF, where the
neuron is represented by simple CMOS devices. The evolution of the neuronal membrane
potential Vmem can be modeled by a Resistor–Capacitor circuit, which is composed of a
membrane capacitor Cmem and a membrane resistance Rmem (leakage path). A spiking
neuron receives input spikes from the several pre-synaptic neurons interconnected via
synapses. Each synapse acts a current source and injects a current equivalent to its strength
called weights (W). The state (potential) of Cmem is updated by injecting current through
multiple current sources. Upon reaching a predefined threshold value, the comparator
decides to evoke an output spike and resets the Vmem.

The parallel combination of Cmem and Rmem can be defined by Kirchhoff’s current
law [21] and is modeled by Equation (1). When an input current I(t) flows into a neuron, it
will charge the Cmem with IC(t) and discharge through the resistance with the current IR(t).

I(t) = IR(t) + IC(t), (1)

I(t) =
Vmem − Vreset

Rmem
+ Cmem

∂Vmem

∂t
, (2)

Cmem
∂Vmem

∂t
= I(t)− Vmem − Vreset

Rmem
. (3)

When Vmem ≥ Vth, then Vmem = Vreset. In Equation (3) above, Vmem is the membrane
potential, Vreset is the resting potential, and Vth is the predefined threshold potential. When
there is no input current, then the capacitive charge will decay by leaking through the
resistance until it reaches the resting potential. In the resting state without any input current,
the Vmem stays at the resting potential Vreset. In Equation (3), the I(t) is the summation of
the excitatory and inhibitory input synaptic currents and is expressed as:

I(t) = ∑
i

∑
f

Wi × Ire f , (4)
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where Wi denotes the weight strength of the ith synapse and ‘f ’ is the number of the
spike. Iref is the external reference current to be injected upon each input spike activity. To
exhibit the inhibitory behavior of the synapse, the weights may have negative values, thus
discharging the Iref upon each input spike activity.

3. SNN Implementation and Circuit Design

Learning in the neuromorphic systems can be categorized into on-chip [34,35] and
off-chip learning [36,37]. The former mimics the biological neural systems, while the latter
can benefit from the use of pretrained weights for achieving the same performance results
as that of a software-based ANN [38]. Some SNN implementations employ their SNN
architecture equivalent to an ANN, to determine trained weights using the ANN model in
software and map the weights into the SNN hardware implementation [39]. Other works
such as the STBP method in [40] have proposed direct training techniques that propagate
spiking signals through the synapse and neuron models of the target SNN iteratively
while converging the weights of each synapse for higher accuracy. Our proposed SNN
architecture is based on the latter technique.

3.1. BSRC-Based SNN Architecture

For the SNN implementation proposed in this paper, the SNN model for the MNIST
dataset is first optimized using a low-cost spike signal representation technique called
Binary Streamed Rate Coding (BSRC), which was presented in our previous work [41].
While the proposed SNN employs the off-chip training technique, it determines the SNN’s
floating point weights by propagating sequences of spikes through an accurate model of the
target SNN chip, instead of an ANN counterpart as in most other SNNs. It then quantizes
the floating-point weights into integer values of minimum bit-width while satisfying the
target accuracy goal. In this paper, the target accuracy of 94% or higher is chosen, which
leads to 4-bit quantized weights for our SNN chip implementation. The equivalence
between our BSRC-based SNN model and its hardware implementation enables us to train
the SNN with very high accuracy while allowing for a very small chip size.

Figure 2 illustrates the overall block diagram for the proposed SNN hardware whose
architecture is optimized using the BSRC-based SNN model. The SNN under study com-
prises four fully connected layers constituting synapses, neurons, and flipflops for weight
and image memories. In order to minimize the chip size, our BSRC SNN optimization
method reduced the input image size to 9 × 9 pixels from 28 × 28 pixels of the MNIST
dataset. This proved to be the smallest size that could satisfy our target goal for accuracy
of 94% or higher. The Input layer has 81 neurons for utilizing the 9 × 9 grayscale images as
an input to the SNN. Our BSRC SNN optimization also determined the structure of each
layer as follows: The output layer consists of 10 neurons for classifying the image, while
two hidden layers consist of 30 and 20 neurons. All the neurons in each layer are fully
connected with one another via 3311 synapses. After many iterations of the BSRC SNN
optimization process, an SNN of four layers, namely (81-30-20-10), is determined, which
consists of an input layer of 81 nodes, 1st hidden layer of 30 nodes, 2nd hidden layer of
20 nodes, and an output layer of 10 nodes.

The minimum weights are determined to be 4-bit wide, which are trained by a su-
pervised training technique based on the BSRC-based backpropagation using the MNIST
dataset. The 4-bits are stored in flip flop memories located close to the associated synapses
in each layer, which leads to a short wire design, and consequently to faster operation and
lower power consumption. The BSRC SNN optimization also chose 4-bits to represent
the sequence of spike signals, which consists of a maximum of 15 spike pulses—no spike
indicates a pixel value of zero, while 15 spikes denote a pixel value of 15. These spike
pulses are provided to the inputs of synapse circuits in each layer, and also produced as
outputs by neuron circuits of each layer. Each MNIST image is converted to an input spike
sequence consisting of 15 possible spike pulses, proportional to the 4-bit pixel value of
the image. In the output layer, a digital controller counts the number of spikes in each
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spike sequence and classifies the type of image on the measured spiking activity. The
Analog CMOS-based implementation of the SNN’s constituent circuits and a fully digital
implementation of SNNs are described in upcoming subsections.

Figure 2. Block diagram of the SNN implementation consisting of four fully connected layers.

3.2. Analog Spiking Neural Network

To realize a large-scale SNN on hardware requires not only the minimal SNN architec-
tures, but also highly optimized CMOS circuits for minimal area and power consumption.
The SNN model (81-30-20-10) in Figure 2 consist of 4 layers, where each layer has been
built up from many unit cells that are constituted from Synapse and neuron circuits. These
unit cells are designed from CMOS devices based upon the principles of the LIF model
explained earlier. Keeping in mind the aforementioned design goals and constraints, a
prototype synapse and neuron circuits were designed earlier [42], which can be integrated
in the development of a large-scale SNN hardware while replicating most of the biological
neuromorphic characteristics.

3.2.1. Neuron Circuit

The LIF-based neuron circuit design is explained in Figure 3a. The neuronal membrane
is simply modeled by a capacitor Cmem, which integrates the synaptic currents in order to
generate Vmem across it. Cmem is realized by the Metal–Insulator–Metal Capacitor (MIMCAP)
to achieve better linearity along with less power consumption. The leakage path of the
neuronal membrane is modeled by a resistor that is implemented via partially-on NMOS
transistor to save the area. The decision of a neuron to fire an output spike is performed
by a comparator for which we have implemented a Schmitt Trigger circuit as shown in
Figure 3b. The Schmitt Trigger compares the Vmem with the predefined threshold voltages.
When the Vmem exceeds the threshold voltage, the Schmitt Trigger fires an output spike,
and the feedback path resets the membrane potential to the initial resting potential (Vreset)
via a separate NMOS transistor. As an important part of a neuron circuit, it needs careful
designing in order to achieve optimum threshold voltages to ensure high speed and low
power operations. Traditional neuron circuits often employ digital comparators requiring
a global clock, which are power hungry as compared to asynchronous circuits. Analog
asynchronous circuit implementations can achieve higher energy efficiency [43]. Therefore,
the choice of asynchronous Schmitt Trigger for our neuron circuit provides a significant
advantage by consuming less power and providing higher speed. Moreover, its simpler
circuit implementation leads to small chip size, while its high sensitivity results in a highly
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accurate performance. The output buffers are implemented to provide the reshaping of the
output spike pulses and isolation from the synapse circuits of the next layer.

Figure 3. (a) The circuit schematic of the LIF-based neuron; (b) The circuit schematic of the Schmitt Trigger used inside the
neuron circuit.

3.2.2. Synapse Circuit

The synapse circuit for our SNN implementation is shown in Figure 4, which is based
on a Binary Exponential Charge Injector structure and uses a 4-bit value of weight for
each synapse. Each synapse circuit comprises an excitatory synapse and an inhibitory
synapse. The excitatory synapse is composed of a pull-up PMOS network, while the
inhibitory synapse consists of a pull-down NMOS network. Each network has 3 branches
to realize the 3-bits of weight and are binary exponential sized for equivalent charge
injection. The MSB of the 4-bit weight is used to switch between excitatory and inhibitory
behavior through digital gates. If the MSB is 0, then the weight is positive and thus
activates the excitatory synapse by injecting charge onto Cmem. On the other hand, if
the MSB is 1, then the weight is negative and thus activates the inhibitory synapse by
discharging Cmem. Upon receiving a spike event in each synapse branch, the weight of
each synapse determines the amount of injected current from the excitatory synapse or
the discharged current of the inhibitory synapse. The injected current of all branches is
accumulated onto the membrane potential capacitor Cmem. The BECI synapse circuit is
inspired by the efficient structure of current mirroring DACs, which provides advantages
including minimal number of transistors, minimum size for saving area, reduced power
consumption, and design scalability for higher resolutions. For storing pretrained weight
values on synapses, standard cell flip-flops collocated with each synapse circuit are used.
Using this design method, not only can area be saved but energy required for read and
write operations can also be reduced effectively.

3.2.3. Circuit Simulation

The proposed SNN chip employs two types of synapse-neuron (one neuron cell) cir-
cuits: input layer circuit and hidden layer circuit. First, the input layer circuit is introduced,
which consists of one synapse and one neuron to convert input pixels to spike sequences.
Then, the hidden layer circuit comprising of multiple synapses and one neuron is described,
which fires output spike signals based on weights and input spikes.

Figure 5 shows a circuit simulation result for one neuron cell of input layer, composed
of a synapse and neuron circuits explained in the former sections. It verifies our BSRC spike
generation mechanism upon receiving an input spiking event, which is designed based on
the LIF model using 4-bit weight values. Upon receiving an input spiking signal, the BECI
synapse circuit injects an amount of charge onto Vmem, which is equivalent to its weight
value. For this simulation, an input spike train acts as an initial enable signal, while the
synapse is configured with both positive and negative weight values. Figure 5a shows an
example of an excitatory behavior, where the synapse is configured with a positive weight
value of +1, which slowly charges Vmem with every input spike activity. Subsequently, the
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neuron fires an output spike when Vmem reaches Vth. Similarly, Figure 5b illustrates an
example of an inhibitory behavior, where the synapse is configured with a weight value
of −1, which discharges the Vmem from its resting potential and the neuron refrains from
firing an output spike. When the weight value is zero or when there is no input spike, then
Vmem discharges (leaks) towards Vreset and the neuron does not fire an output spike.

Figure 4. The circuit schematic for the BECI-based synapse with three branches and digital gates.

Figure 5. The circuit simulation results for one neuron cell of an input layer with an input spike train of 15 pulses: (a) shows
the Vmem and spike-out when the weight value is +1; (b) shows the Vmem and spike-out when weight value is −1.

Figure 6a illustrates the general structure of a hidden layer, while Figure 6b depicts a
circuit diagram of an example of a hidden layer with two synapses and one neuron. Each
synapse has its own distinguished weight value, which can be either excitatory or inhibitory.
Due to large number of input synaptic activity, the neuron and synapses parameters need
to be configured accordingly. To realize such a fully connected SNN, the circuit shown in
Figure 6b was simulated. Here, two synapses with weight values W1 and W2 are connected
to a single neuron constituting one neuron cell of hidden layers.
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Figure 6. (a) Fully connected hidden layer with a large number of synapses connected to a single neuron; (b) One neuron
cell of the hidden layers with two synapses connected to a single neuron.

Figure 7 shows the circuit simulation result for the hidden layer circuit given by
Figure 6b. In the top graph of Figure 7, the spike-in signal of the current layer is the output
spike signal from the previous layer. Although individual synapses receive their spike-in
signals from different neurons’ outputs of the previous layer, in the simulation of Figure 7,
for simplicity, the same spike-in signal is applied to the two synapses of Figure 6b. The
synapses connected to a neuron in the hidden layer can have either positive or a negative
weight value. The simulation verifies in three cases with two synapses connected to a
neuron having a different combination of weight values. The first case in Figure 7a is when
one synapse has a weight value W1 = +1, and the other has a weight value W2 = 0. This
case demonstrates an excitatory behavior, where the neuron fires an output spike after
receiving a sequence of input spikes. The second case illustrated in Figure 7b is when one
synapse has W1 = −1 and the other has W2 = 0. It demonstrates an inhibitory behavior,
where the neuron does not fire any output spike. The third case is depicted in Figure 7c,
which shows the case when one synapse has W1 = +1 and the other has W2 = −1 weight
value. Here the excitatory synapse injects the charge on Vmem, while the inhibitory synapse
discharges the Vmem at the same amount. Therefore, Vmem remains at resting potential Vreset
resulting in no output spiking activity. The simulation elucidates the biological neural
behavior by the proposed circuit implementation of LIF model. The important simulation
parameters along with neuron and synapse area and power estimation are summarized in
Table 1.

Table 1. Neuron Cell Simulation Specifications.

Parameters Values

Neuron cell Area 2022.72 µm2

Neuron cell Power Consumption 25 µW
Resting potential 500 mV

Threshold Voltage 1.4 V
Resolution 4-bit
VDD/VSS 1.8 V/0 V

Membrane Capacitance 35 fF
Off-chip Bias voltages 8
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Figure 7. Circuit simulations for a neuron cell (one neuron connected to two synapses) where 15 input spikes are same for
all the three cases: (a) shows Vmem and an output spike when weight values are W1 = +1 and W2 = 0; (b) shows Vmem and
spike-out when weight values are W1 = −1 and W2 = 0; (c) shows Vmem and spike-out when weight values are W1 = +1
and W2 = −1.

3.3. Fully Digital Implementation of Spiking Neural Network

To evaluate the advantage of our analog implementation in terms of area and power,
the BSRC-based SNN model is also implemented in a full digital design. The full digital
design of SNN is verified on FPGA, while its area and power estimates are obtained using
Synopsys Design Compiler using Standard Cell Library of the same process technology as
the analog counterpart—TSMC 180 nm. The digital SNN realizes the same network shown
in Figure 2 using Verilog HDL.

The input layer converts each input pixel value to a sequence of spikes using a
design implementation of the integrate and fire (without leakage) neuron logic. The input
layer converts 81 pixel values using 81 synapses in a way similar to the analog SNN
implementation presented in Section 3.1. Figure 8 shows the detailed block diagram of a
hidden layer implementation. Each neuron logic in the SNN has a membrane potential
storage register and has a number of synapses attached as inputs. The neurons and
synapses operate at discrete events represented by the rising edge of the spike-event clock.
The spike-event clock is generated by dividing the system clock by an adjustable factor,
which is set to 3 for the measurements results provided in Section 4.2. Each synapse, upon
receiving a spike, adds its weight value to the membrane register. Whenever, the membrane
potential exceeds the threshold value, the neuron generates an output spike and reset its
membrane register value. The spikes are generated and received at the spike-event clock,
while the width of each spike is equal to the system clock period.
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Figure 8. The block diagram of the full digital implementation for the output layer. A number of synapses accumulate in
membrane register and the comparator fires the digital output spike pulses.

4. Measurement Results and Analysis

This section analyzes the performance and measurements results of analog SNN and
digital SNN implementations for determining an optimized hardware for the area and
power constraints.

4.1. Implementation of Analog SNN

The full-chip layout (including pads) of the analog SNN is described in Figure 9a.
The test chip of the analog SNN is fabricated using the 180 nm CMOS process as part of a
multiple project wafer. The fabricated chip’s micrograph with bonding wires is given in
Figure 9b. The test chip occupies an active area of 3.6 mm2 within the allocated die area of
2700 µm × 1550 µm. The layout of the chip distinguishes the four fully connected layers
of the SNN as input layer (IPL), hidden layer1 (HL1), hidden layer2 (HL2), output layer
(OPL), and a Digital Controller (DC). The compactness is achieved via the tight placement
of individual cells and smaller routing paths. The layers are placed side by side so that
interconnection between two layers is of minimal length. Moreover, decoupling capacitors
are added inside every neuron cell to allow for scalable and reliable design.

Figure 9. (a) The complete layout of the SNN implementation constituting of 4 fully connected layers
with area estimation; (b) The bonded die micrograph highlighting the fabricated SNN chip.
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Figure 10a shows a test printed circuit board (PCB) for testing the analog SNN chip
and the measurement setup. A host CPU board (Raspberry Pi in our test setup) was used
to download weight data and configuration parameters, and then provide input image to
the SNN chip via a Serial Peripheral Interface (SPI). The on-chip digital controller activates
the input layer to take pixel values from the image memory and convert them to input
spike signals for SNN. Once all the spike signals are propagated through each layer, the
output layer counts the final output spikes, while the digital controller sends back the data
to the host CPU board for an evaluation of the classification results. Figure 10b shows the
measurement setup for the fully digital implementation, which is described in Section 4.2.

Figure 10. Measurement Setups: (a) analog SNN test chip mounted on test PCB is measured using oscilloscope, function
generator, and a host CPU board (Raspberry Pi 4); (b) digital SNN implementation is measured via FPGA board interfaced
with a host CPU board (Raspberry Pi 4).

The measured results are shown in Figure 11. The spike propagation phenomenon is
achieved successfully, as observed in circuit simulations. Figure 11a is the case when one
input spike applied at the first neuron cell propagates through the first neuron cell of all the
layers. This propagation is achieved by having maximum weight (7 in our implementation)
for the first synapse of the first neuron in every layer, while all other weight values are set
to zero. With one input spike applied to the first layer and the maximum weight value in
every layer, the output layer generates one output spike. Similarly, in Figure 11b, 7 input
spikes are applied to the first layer and propagated by using the same weight configuration
as of Figure 11a. The measured results of Figure 11 verify the biological propagation of
spikes from one layer to another layer for the SNN chip under test. The MNIST data set was
applied during testing and the average on-chip current was measured for different applied
images. The measured average current was 592 µW, which gives the power consumption
of the test chip as 1.06 mW, while operating at a 10 MHz clock signal.

4.2. Implementation of Digital SNN

The aforementioned implementation of a fully digital SNN was tested using the
measurement set-up described in Figure 10b. The fully digital SNN chip was implemented
on an FPGA board (Xilinx ZYNQ Ultrascale), interfaced with Raspberry Pi 4 for the digital
SNN measurements. Similar to analog SNN, the input image, weights data, and the
configuration parameters for the digital controller are provided via SPI to the digital
SNN. The controller generates stimulus input spike signals for SNN, counts the output
spikes from the output layer, and sends back the data for further classification. The
measured results obtained via Xilinx Integrated Logic Analyzer from FPGA are illustrated
in Figure 12. The results show different input test images with respective to the classifier’s
output spiking activity for correct and failed classification. For example, when applied
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with an input image of 7, the 7th node of the output layer exhibits the maximum spiking
activity. The digital SNN has a measured area of 3.5 mm2 including routing overheads and
a power consumption of 21.2 mW. This power consumption of the fully digital SNN chip
was estimated by Synopsys Design compiler, while the power consumption of the analog
SNN chip was measured from the fabricated chip. The estimated power consumption is
accurate enough for our purpose of comparison, since the EDA tool was configured with
an accurate 180 nm CMOS process PDK database provided by the same foundry.

Figure 11. Measurement results for the spike propagation: (a) One input spike propagates through all layers; (b) seven
input spikes propagates through all layers.

Figure 12. The measurement results for Digital SNN showing the correct classification of different input images along with
the failed classification of input image ‘5’.

Table 2 compares the area and power consumption between our analog and digital
SNN implementations for the same optimized SNN model. The digital SNN implemen-
tation benefits from less design complexity and is easier to implement as compared to
the CMOS-based analog SNN implementation. However, the analog SNN finds massive
advantage over its digital counterpart in terms of power consumption while occupying
nearly the equivalent area. This makes the analog SNN design a superior choice for a
low-power implementation of SNNs for mobile applications.

Table 2. Comparison between the Proposed Analog SNN and Fully Digital SNN.

SNN Chip Area Power

Proposed Analog SNN Chip 3.6 mm2 1.06 mW
Fully Digital SNN Chip 3.5 mm2 21.2 mW

5. Performance Analysis

The classification analysis for implemented SNN is performed using MNIST—a hand-
written digit dataset comprising of 10,000 test images. Firstly, an optimized SNN model is
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implemented in the Python framework considering its analog circuit architecture and chip
size. Secondly, the SNN model is trained in the Python framework that follows the detailed
architecture of the analog SNN structure. Finally, the trained weights are downloaded
to the analog SNN chip to conduct the inference operation using the MNIST validation
dataset. Figure 13 shows the case when the applied input image is ‘7’, the SNN predicts
the correct classification result of ‘7’ by producing the maximum spiking activity at the 7th
output node. The average classification accuracy achieved for the SNN is 94.66%, which is
very close to the accuracy of 94.69% for the optimized SNN model in Python [41].

Figure 13. The measured results on the oscilloscope for the analog SNN. The applied input image to
the SNN is ‘7’ and the 7th output classifier shows maximum spiking activity.

The performance of the SNN test chip has been compared with state-of-the-art works
previously reported, as shown in Table 3. The comparison has been made among various
neuromorphic chips to identify the optimum implementation in terms of area, power con-
sumption, and classification accuracy. As the physical dynamics of various neuromorphic
chips is different for diverse applications, the complexity of the system is therefore defined
by the total number of weights. The complexity is then divided by total occupied area, and
by the power consumed for the area, and the power efficiency (η) analysis, respectively.
The large-scale biological plausible analog Neurogrid [26] implementation benefits from
the compact neuron size (1800 µm2), which is based on the quadratic I & F model, achieves
good area efficiency. Whereas our SNN based on the LIF model neuron cell occupies an
almost similar area of 2022.72 µm2, it consumes much less power and achieves 40× higher
power efficiency. The second generation analog BrainScaleS neuromorphic systems [21],
comprised of neuronal array prototype chip with tunable parameters, has a compact area
but is power hungry. The mixed-mode neural network classifier [5], based upon the Radial
Biased Function Network (RBFN) and the Multilayer Perception (MLP), occupies less
area due to its analog core implementation but is less power efficient. In contrast, the
proposed SNN provides optimum area and power efficiencies and is thus suitable for AI
mobile applications.
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Table 3. Comparison of Performance of the SNN Chip with Other State of the Art Neuromorphic Chips.

Parameters [26] [21] [5] [44] This Work

CMOS tech. [nm] 180 65 130 800 180
Architecture Analog Analog Mixed-Mode Mixed-Mode Analog

Classifier type SNN SNN MLP/RBFN SNN SNN
Neuron Model Quad. I & F LIF Current mode LIF LIF

Chip Area [mm2] 168 3.6 0.140 1.6 3.6
Power [mW] 3100 48.62 2.20 40 µ 1 1.06

Energy/Spike [pJ] 941 2 790 - 900 900
Accuracy (%) - - 92 - 94.60
Complexity

[Total # of weights] 256 K 1024 750 256 3311

Area η

[Complexity/Area] 1523 284.5 5360 160 920

Power η
[Complexity/power] 82.5 21.06 341 - 3123

1 For one neuron. 2 Energy per synaptic operation.

The energy consumption per spike was estimated for the current SNN chip by comput-
ing the total energy consumed for processing input spiking event divided by the number
of the processed input spiking events [45]. As shown earlier in Figure 11a, for a single
input spike it takes 9 clock cycles to evoke an output spike. It therefore consumes 900 pJ of
energy per spike while operating at 10 MHz, which is different from energy per synaptic
activation calculated as 941 pJ for [26]. The energy per spike for the proposed SNN is quite
comparable with the 790 pJ energy per spike calculated for [21] and 900 pJ for [44]. Data
for the accuracy was not available for the [26] and [21] analog implementations. Compared
with the previous implementations [5], the proposed SNN implementation achieves an
optimum classification accuracy at lower cost and power consumption, which makes it a
strong candidate for mobile AI applications.

6. Conclusions

This work presents a hardware implementation of a large-scale SNN optimized for
area and power, which is aimed at real-time AI/IoT applications. The SNNs allow for
compact hardware implementation that is better suited for mobile or edge AI applications,
if compact synapse and neuron circuits are used. Area and power efficient synapse and
neuron circuits are proposed and an example SNN chip of 4 layers is constructed by
integrating the synapse and neuron circuits. The SNN chip was implemented with a
180 nm CMOS process, which occupies a die area of 3.6 mm2 and consumes a power
of around 1 mW. The analog SNN chip has an advantage over its digital counterpart in
terms of power consumption while occupying almost same area. The SNN chip achieves
a classification accuracy of 94.60%, which is comparable with its software model, while
consuming 900 pJ of energy per spike, which is 20 times lower than the digital SSN
chip. Moreover, the prototype SNN implementation can be easily expanded for higher
resolutions and number of classes. As future work, we plan to develop a large-scale SNN
chip that can be an alternative solution to ANNs for increased image size and number
of classes.
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