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of the Drosophila obscura group
Danang Crysnanto1,2* and Darren J. Obbard1,3

Abstract

Background: RNA interference (RNAi) related pathways provide defense against viruses and transposable elements,
and have been implicated in the suppression of meiotic drive elements. Genes in these pathways often exhibit
high levels of adaptive substitution, and over longer timescales show gene duplication and loss—most likely as a
consequence of their role in mediating conflict with these parasites. This is particularly striking for Argonaute
2 (Ago2), which is ancestrally the key effector of antiviral RNAi in insects, but has repeatedly formed new testis-specific
duplicates in the recent history of the obscura species-group of Drosophila.

Results: Here we take advantage of publicly available genomic and transcriptomic data to identify six further RNAi-
pathway genes that have duplicated in this clade of Drosophila, and examine their evolutionary history. As seen for
Ago2, we observe high levels of adaptive amino-acid substitution and changes in sex-biased expression in many of the
paralogs. However, our phylogenetic analysis suggests that co-duplications of the RNAi machinery were not
synchronous, and our expression analysis fails to identify consistent male-specific expression.

Conclusions: These results confirm that RNAi genes, including genes of the antiviral and piRNA pathways,
have undergone multiple independent duplications and that their history has been particularly labile within
the obscura group. However, they also suggest that the selective pressures driving these changes have not
been consistent, implying that more than one selective agent may be responsible.
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Background
Gene duplication is an important process in molecular
evolution, providing raw genetic material for evolutionary
innovation. The evolutionary dynamics following gene du-
plication are often described in terms of two alternative
models, ‘neofunctionalization’ and ‘subfunctionalization’
[1]. Under neofunctionalization, the functional redun-
dancy following duplication provides relaxed selective
constraint, and allows new mutations to accumulate
through genetic drift. Most such mutations will reduce
the functionality of the gene (resulting in pseudogeniza-
tion), but some paralogs can be selected for new or
derived functions. Under subfunctionalization, the

duplicates independently accumulate mutations that allow
them to specialise in a subset of ancestral functions of a
pleiotropic gene. Neofunctionalization leads to asymmet-
rical evolutionary rates among paralogs (with faster evolu-
tion in paralogs that gain derived function), whereas equal
rates are expected for the latter [2]. It has been suggested
that both processes have played an important role in the
rapid evolution of RNA interference-related pathways, in-
cluding the long- and short-term evolutionary history of
the Argonautes, the effectors of RNAi [3–5].
The RNAi-related pathways comprise a range of

small-RNA mechanisms best known for their roles in
mediating the control of gene expression, antiviral re-
sponses, and defence against mobile genetic elements.
Respectively, these include the miRNA pathway (Dicer-1
and Argonaute-1 in insects [6]), the siRNA pathway
(Dcr-2 and Argounate 2 in insects [7]), and the piRNA
pathway (piwi-family Argonaute AGO3 and Piwi/Aub in
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insects [8, 9]). In addition, RNAi-related pathways have
been implicated in a variety of other biological processes,
such as the control of dosage compensation [10–12] and
the suppression of genetic drive [13–18]. Several genes
involved in the defensive piRNA and siRNA pathways,
but not genes of the miRNA pathway, display elevated
rates of adaptive protein evolution (but see [19] for an
exception). This is best studied in Drosophila [20–22],
but is also detectable in other invertebrates [23]. It has
been hypothesized that this may be a consequence of
parasite-mediated ‘arms-race’ coevolution [21, 24], either
through conflict with parasite-encoded immune suppres-
sors—as widely seen in RNA viruses [25]—or in the case
of the piRNA pathway, through selection for ‘re-tuning’
suppression mechanisms [26].
Adaptive evolution of RNAi pathways is partly

reflected in the gain, loss, and functional divergence of
Argonaute-family duplications [27]. For example, within
the Drosophilidae—an important model for RNAi-re-
lated pathways of animals—Piwi has been duplicated in
the lineages leading to Phortica variegata and Scaptodro-
sophila deflexa [3], and Ago2 has been duplicated in
those leading to S. deflexa, D. willistoni, D. melanogaster
(where only one paralog remains – the canonical Ago2)
and D. pseudoobscura [4]. This is particularly striking in
the obscura group of Drosophila species [28], which has
experienced at least 6 independent duplications of Ago2
over the last 20 million years, with all but one of the
resulting duplicates becoming testis-specific, and most
displaying evidence of recent and/or ongoing positive
selection [4].
Recently it has been noted that several accessory com-

ponents of the siRNA and piRNA pathways have also

been duplicated in D. pseudoobscura, which has previ-
ously been noted to have a high rate of gene turnover,
including in some RNAi genes [29]. These include armi-
tage, asterix, cutoff, maelstrom, tejas and vreteno [23]. In
D. melanogaster, these proteins are engaged in a number
of roles in the piRNA pathway (Table 1). Here we use
publicly available data to reconfirm the history and ex-
pression of Ago2 in the obscura group, and to test
whether duplications in the other genes also show
male-specific expression, whether duplications are con-
temporaneous with those of Ago2, and whether they too
show strong signatures of adaptive protein evolution.
We find no clear pattern of these duplications being co-
incident with Ago2 duplications, but both asterix and
cutoff duplications display increased sexual dimorphism
relative to their ancestral copies, through decreased fe-
male expression. In addition, several of the gene dupli-
cates show evidence of adaptive protein evolution in D.
pseudoobscura, including both copies of cutoff, the an-
cestral copy of asterix, and the new duplicates of tejas,
maelstrom and vreteno.

Results
Obscura group Argonaute 2 genes are duplicated and
show male-biased expression
The obscura group has experienced multiple duplica-
tions of Ago2 and it has previously been shown that
these are associated with positive selection and
testis-specific expression [4]. Here we reanalyzed the ex-
pression patterns and evolutionary history of these genes
using publicly available RNAseq and genomic data, add-
itionally including newly available genomic sequences

Table 1 The details of RNAi accessory genes duplicated in the obscura group as reported by Palmer et al. [23]

Gene Involvement in piRNA
pathway

Function of the protein product Tissue expression in Dmel Reference

armitage
(armi)

piRNA biogenesis A RNA helicase which unwinds the piRNA intermediates
before loading into Piwi

ubiquitously expressed, highest
in ovary

[30]

[31]

asterix (arx) TGS (Transcriptional
Gene Silencing)

A zinc-finger protein which directly interacts with Piwi to
scan and identify the transposon transcriptions as target
for histone modifications

ubiquitously expressed, highest
in ovary

[32]

[33]

cutoff (cuff) piRNA transcription Forms a complex with Rhino-Deadlock-Cutoff (Rhi-Del-Cuff)
to protect uncapped non-canonical (dual-strand cluster)
piRNA transcript from degradation, splicing and transcription
termination

testis [34]

maelstrom
(mael)

TGS Act downstream of Piwi to establish histone modification
and prevent the spreading of the silencing marker to the
surrounding genes

brain, testis, adult female salivary
gland, ovary

[35]

tejas (tej) Secondary piRNA
production (Ping-
pong cycle)

A Tudor-domain protein which physically interact with Vas,
Spn-E and Aub for a proper ping-pong cycle in the nuage

testis, accessory glands, adult
female salivary gland, ovary

[36]

vreteno
(vret)

piRNA biogenesis A Tudor-domain protein which essential for an early
primary piRNA processing

larval brain, adult female salivary
gland, ovary, testis

[37]

The tissue gene expression in Dmel is based on the FlyAtlas2 [38]. We report tissues with enrichment > 0.4
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from D. algonquin [39], D. athabasca [39], D. bifasciata
and D. miranda [40].
In contrast to the previous qPCR analysis that failed to

identify substantial or easily detectable expression of the
ancestral copy in D. pseudoobscura (Ago2d [4]), we
found the expression of all Ago2 homologs in D. pseu-
doobscura was detectable at a high level in RNAseq data,
and that all show significant male-bias (Fig. 1). The
Ago2d expression detected here is unlikely to be an arte-
fact of cross-mapping between paralogs as we observed
the reads that mapped uniquely across the gene. The
male bias was largest for Ago2e, where expression in
males is approximately 1000-fold higher than females
(pMCMC< 0.001; Fig. 1), and smallest in Ago2c and the
ancestral copy Ago2d, consistent with the ca. two-fold
enrichment of the single copy of Ago2 in male D. mela-
nogaster. We also confirmed that D. miranda, a close
relative of D. pseudoobscura that has not previously been
analyzed, displayed a qualitatively similar pattern among
those paralogs represented (Fig. 1). In D. obscura, we
found the ancestral copy (Ago2a) again showed slightly,
but marginally significant higher expression in males
(pMCMC = 0.014), but that other Ago2 proteins showed
a strong male biased expression, with the largest effect
for Ago2f, where male expression was 2000-fold higher
(Fig. 1; pMCMC< 0.001).

Six piRNA pathway genes are duplicated, and asterix and
cutoff duplicates show increased male-bias in their
expression
Palmer et al. [23] recently identified six accessory piRNA
pathway genes that have also experienced duplication in
the obscura group (Additional file 1: Table S1). We
could locate the duplicates for all genes in D. pseudoobs-
cura, except for armitage where we instead identified a
duplicate in the affinis subgroup but not in the pseu-
doobscura, obscura or subobscura subgroups. At the
time of analysis, assembled genomic resources were not
available for the obscura and subobscura subgroups, and
our analysis of transcriptomic data did not identify du-
plications in those genes. Following submission, draft
genome assemblies became available for D. obscura [41]
and D. subobscura [42]. A search of these genomes con-
firmed that duplicates are undetectable for all genes
except vreteno, but that two copies of vreteno are detect-
able in D. obscura (not shown).
Where chromosomal locations of the new duplications

could be determined by synteny in D. pseudoobscura, we
found that cutoff, maelstrom and vreteno were duplicated
from an autosome to the X chromosome, asterix dupli-
cated from the X chromosome to an autosome, and tejas
duplicated between autosomal locations. Two duplicates
(asterix and tejas) lack introns, suggesting they are

Ago2a3 Ago2b Ago2c Ago2d Ago2e Ago2f

pseudoobscura
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Fig. 1 Expression profile of Argonaute 2. Plots show the difference in expression between female (red) and male (blue) flies, based on public
RNAseq data, normalized to rpL32 and plotted on a natural log scale. The significance of differences between the sexes was assessed using a
linear model fitted with MCMCglmm and is denoted by asterisks: * 0.001 < pMCMC < 0.05; ** pMCMC <= 0.001). Sample size (n) represents the
number of RNAseq datasets used (combined across tissues). Ago2d is the ancestral copy in Dpse and Dmir, Ago2a is the ancestral copy in D.
obscura and Ago2a is recently duplicated in Dpse become Ago2a1 (Ago2a) and Ago2a3
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retro-transcribed copies created through an mRNA
intermediate.
Using public RNAseq data from D. pseudoobscura and

D. miranda, we found that all of the gene duplicates
were expressed (Fig. 2). Armitage, which was not dupli-
cated within the newly examined lineages for which
RNAseq data were available, did not show strong
sex-biased expression. Similarly, maelstrom, tejas, and
vreteno were not strongly differentially expressed be-
tween the sexes, and nor were their duplicates in D.
pseudoobscura and D. miranda. In contrast, both asterix
and cutoff duplicates displayed substantially reduced ex-
pression in females and slightly increased expression in
males relative to the ancestral copy (Fig. 2). For example,
as previously reported from qPCR analysis [43] the para-
log of asterix in D. pseudoobscura displays ca. 1000-fold
higher expression in males than females. In both D.
pseudoobscura and D. miranda those genes with overall
strongly increased male-biased expression (Argonaute-2,
asterix, cutoff, and their paralogs) had the highest ex-
pression in testis, and had reduced expression in ovaries
(Additional file 2: Figure S1).

Adaptive amino-acid substitutions are generally more
common in the duplicates
Using population genetic data from D. pseudoobscura,
with D. miranda as an outgroup, we used the
McDonald-Kreitman framework and a maximum-likeli-
hood extension to estimate the rate of adaptive substitu-
tion in protein sequences, and to test whether this rate
differed between the ancestral and duplicated copies [44,
45] . Treating genes individually, we found evidence for
positive selection acting on at least one paralog for each
of the genes except asterix and Ago2c (p < 0.05; Add-
itional file 3: Table S2). Among the ancestral copies, only
cutoff displayed evidence of positive selection. We then
tested whether the paralogs generally showed a different
pattern of selection to the ancestral copies by dividing
the genes into two classes (6 ancestral copies and 8 para-
logs) and comparing the likelihood of models that
allowed the classes to differ in the adaptive rate α
(Table 2) [45]. The best-supported model allowed α to
differ between ancestral and duplicate copies (Akaike
weight: 0.81), and the second-best supported model was
that in which ancestral copies experienced no ongoing
positive selection (i.e. α = 0; Akaike weight: 0.19), provid-
ing overall evidence that the paralogs have experienced
more adaptive protein evolution. In the best-supported
model, the α value was estimated to be 0.68 for the du-
plicate group, which more than three times larger than
the α value of the ancestral group (0.20). In case segre-
gating weakly-deleterious variants led to a downward
bias in estimates of α, we repeated this analysis exclud-
ing all alleles with a minor allele frequency < 0.125 [46],

although this reduced power to the extent that few genes
remained individually significant (Additional file 4: Table
S3). We also repeated the analysis with a larger dataset
PRJNA326536 [47] (Additional file 4: Table S3), and ob-
tained qualitatively similar results (R2 = 0.946 for α esti-
mates between the analyses; the second dataset, while
larger, is less suitable for analysis as only the third
chromosome is a direct sample from a wild population).

Gene duplications were unlikely to be contemporaneous
Given the multiple duplications of Ago2 and the piRNA
pathway components in the obscura group, we hypothe-
sized that some duplications may have occurred
near-simultaneously, duplicating whole components of a
pathway together. We therefore used relaxed-clock
phylogenetic methods to estimate the relative timings of
each duplication. In agreement with the previous ana-
lysis of Ago2 [4], we found that the duplications giving
rise to Ago2e and Ago2f predated the split between the
obscura and pseudoobscura subgroups, with a subse-
quent loss of Ago2f from the pseudoobscura subgroup
(Fig. 3). In contrast, we found that duplications in five of
the other six genes unambiguously occurred after the
obscura/pseudoobscura split, with the timing of duplica-
tion in maelstrom being uncertain. Briefly, armitage dis-
played a single duplication shared by members of the
affinis subgroup, asterix and tejas a single duplication
each in the lineage leading to D. pseudoobscura (which
were subsequently lost in the affinis subgroup), cutoff a
single duplication recently in the pseudoobscura sub-
group, and vreteno a single duplication at the base of the
obscura group (Fig. 4). For maelstrom, the maximum
clade credibility tree suggests duplication occurred very
slightly prior to this split, followed by subsequent loss of
one paralog the obscura subgroup (Fig. 4). However, this
was poorly supported, and a duplication that post-dates
the split between the affinis and pseudoobscura sub-
groups, and so does not require a hypothetical loss of
one paralog from the affinis subgroup, may be more par-
simonious. We used the posterior distributions of split
times, relative to the divergence time of the obscura and
pseudoobscura subgroups, to infer whether or not dupli-
cations occurred at approximately the same time (Fig. 5).
Although the small amount of information available
from single genes made relative timings highly uncertain,
it is clear that few of the Ago2 duplications could have
been concurrent with the piRNA-pathway duplications
(Additional file 5: Figure S2). However, the recent and
rapid duplications within the piRNA pathway could
have been concurrent, with vreteno, tejas, maelstrom
and asterix not differing significantly, all having dupli-
cated very close to the split between D. obscura and
D. pseudoobscura (posterior overlap > 0.1 in each
case; Additional file 5: Figure S2).
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Discussion
Although four of the six piRNA pathway duplicates did
not display altered tissue specificity compared to the an-
cestral copy, asterix and cutoff both became significantly
more male biased, as did each of the Ago2 duplicates [4];
Fig. 1, Fig. 2). In each case, this was due to higher (or ex-
clusive) expression in the testis. The duplicated genes
also showed higher rates of adaptive amino acid substi-
tution, together and individually, whereas only two
(asterix and armitage) displayed evidence of positive se-
lection when single-copy in D. melanogaster (Additional
file 4: Table S3).
This new tissue specificity and the rapid evolution of

duplicated copies broadly suggest that gene duplication
in these pathways may be associated with functional di-
versification through neofunctionalization, for example
by testis-specific selective pressure. Three main selective
pressures seem likely candidates to have driven this
process. First, given the role of Ago2 in Drosophila anti-
viral defense [7], and the role of the piRNA pathway in
antiviral defense in mosquitoes [49], it is possible that
these duplications have specialized to a virus that is active
in the male germline, such as D. obscura and D. affinis
Sigmaviruses [50]. Second, given the role of all of these
genes in the suppression of transposable elements (TEs),
their evolution may have been shaped by the invasion of
TEs that are more active in testis, as seen for Penelope
[51] and copia [52]. Such a ‘duplication arms-race’ in re-
sponse to TE invasion is thought to occur in mammals,
where repeated duplications of KRAB-ZNF family are se-
lected following the invasion of novel TEs, and subse-
quently provide defence [53, 54]. Alternatively, duplicates
may quantitatively enhance the pre-existing response to
TEs, as suggested for another rapidly-evolving piRNA-
pathway component, Rhino [55].
The third, and arguably most compelling, hypothesis is

that selection is mediated by conflict between meiotic
drive elements and their suppressors, such as sex ratio dis-
torting X-chromosomes [56, 57]. Most directly, meiotic
drive elements are common in Drosophila, and
RNAi-related pathways have been widely implicated in
their action and suppression [15, 16, 18]. In addition,
sex-chromosome drive is widespread in the obscura
group: X-chromosome drive was first described in D.
obscura, has also been reported in pseudoobscura,
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Fig. 2 Expression profile of RNAi-accessory protein genes. Plots
show the difference in expression pattern between sex (male: blue,
female:red) for genes other than Ago2; ‘anc’ ancestral copy, ‘dup’
duplicate copy as inferred by synteny. The y-axis is the natural log
of normalized expression. The significance between sexes is denoted
by * (0.001 < pMCMC < 0.05) and ** (pMCMC < 0.001). Sample sizes
are the same as Fig. 1. Note that armitage, asterix, cutoff, maelstrom,
tejas and vreteno are not duplicated in the obscura subgroup
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persimilis, affinis, azteca, subobscura and athabasca [56],
and is mediated through a testis-specific function (Y-bear-
ing sperm have reduced function). Finally, a testis-specific
class of hairpin (endo) siRNAs is required for male
fertility in D. melanogaster [58], testes-restricted clus-
tered miRNAs show rapid evolutionary turnover and
are represented in large numbers in D. pseudoobscura
[59], and suppression of sex-specific duplicates of
S-Lap1 via a small-RNA mechanism has recently been
implicated in the meiotic drive mechanism of D. pseu-
doobscura [17]. In this context, it is also interesting to
note that Ago2 is involved in directing heterochroma-
tin formation in Drosophila dosage compensation
[10–12], and that in D. melanogaster sex-ratio distort-
ing Spiroplasma achieve male-killing through the dis-
ruption of dosage compensation (although this acts at
the embryonic stage [60]). Nevertheless, in the ab-
sence of mechanistic studies, the link with meiotic
drive remains speculative, as testis is generally more
permissive to gene expression and testis-specific ex-
pression may be a transient state (i.e. the “Out of
Testis Hypothesis” [61]).

Conclusions
In this study we have built on previous work that
showed Drosophila RNAi-pathway genes evolve rapidly
and adaptively [20–23]—including multiple duplications
of Ago2 in the obscura group [4]—to identify duplicates
of several other RNAi-pathway genes in these species.
We have shown that some of these gene duplicates have
altered sex-biased expression, and that some have expe-
rienced positive selection following duplication. We sug-
gest that this may have been driven by selection
mediated through meiotic drive. Very recently, after sub-
mission of this article, improved sequencing of the D.
miranda neo-Y and neo-X chromosomes identified a
large number of previously undetected RNAi-pathway
duplications (including homologs of Argonaute 2,

Dicer-2, shutdown, cutoff, and Panoramix) within this
species that also display testis-bias in their expression,
further supporting a role for meiotic drive in shaping
their evolution [62].

Methods
Sequence collation and paralog identification
The full-length sequences for 7 RNA inteference genes;
Argonaute 2 (Ago2), armitage (armi), asterix (arx), cutoff
(cuff ), tejas (tej), maelstrom (mael), and vreteno (vret)
from 12 obscura group species were identified using
tBLASTn (BLAST+ 2.6.0) [63] with a local BLAST data-
base (see below for the details of the construction of
local genomic database). Known gene sequences from D.
pseudoobscura and D. melanogaster were used as a query
with a stringent e-value threshold (1e-40). Genes were
inferred to have been duplicated when BLAST indicated
that there were multiple full-length hits located in differ-
ent genomic regions. The sequences were manually
inspected, introns removed and the coding frame identi-
fied using Bioedit v 7.2 [64]. Genes in D. pseudoobscura
were classified as ancestral or duplicate copies based on
the syntenic orthology with D. melanogaster using Fly-
base Genome Browser [65]. High quality genomes are
not available for other members of the obscura groups,
and in those cases ancestral/derived status was assigned
based on homology with D. pseudoobscura. To provide a
comprehensive overview of the evolution of the RNAi
paralogs, we included 24 Drosophila species outside of
obscura group with assembled genomes already available
in public databases. The Flybase and NCBI tblastn on-
line portal were used to identify the target genes with
queries from D. melanogaster or closely related species.
Five obscura group species had assembled genomes at

the time of this study: D. pseudoobscura (assembly
Dpse_3.0 [66]), D. miranda (assembly DroMir_2.2 [40]
[67]), D. persimilis (assembly dper_caf1 [68]), D. affinis
(Drosophila affinis Genome Release 1.0 [69]) and D.

Table 2 Joint estimates of adaptive evolution across genes

Model Model description LnL AICc Akaike weight
(wi)

Maximum likelihood estimate of α

Ancestral Duplicate

M0 α-anc = 0, α-dup = 0 −300.61 633.221 4 × 10−12 0

M1 α-anc > 0, α-dup > 0 −284.105 602.209 2.6 × 10− 5 0.539

α-anc = α-dup

M2 α-anc > 0, α-dup = 0 −301.857 637.713 5.1 × 10− 13 0.047 0

M3 α-anc = 0, α-dup > 0 − 275.249 584.498 0.186 0 0.618

M4 α-anc > 0, α-dup > 0 − 272.774 581.547 0.813 0.2 0.676

α-anc ≠ α-dup

Maximum-likelihood extension of MK test model fitted with different constraints on α [45]. LnL is the log likelihood of the model, AIC is the Akaike Information
Criterion with corresponding relative probability as Akaike Weight (wi). The most supported model is in bold
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lowei (Drosophila lowei Genome Release 1.0 [69, 70])
and in these cases the genome was directly used for local
BLAST database. For four species (D. obscura, D. subobs-
cura, D. subsilvestris, D. tristis) we used de novo assem-
bled transcriptomes based on paired RNA-seq reads data
from wild-collected males [71] (Accession: PRJNA3
12496). Assembly was performed using Trinity [72] with
‘--trimmomatric’ and otherwise default parameters, and
the assembled transcriptome was searched locally using
BLAST. For three other species: D. athabasca [39], D.

algonquin [39] (Accession: PRJNA274695) and D. bifas-
ciata (Accession: PRJDB4817), only unassembled genomic
reads were available. For these species we applied a tar-
geted assembly approach as follows: (i) reads that had
local similarity with all known duplicated RNAi proteins
were identified using Diamond [73] with relaxed e-value
of 1; (ii) hits from Diamond were then retained and used
for assembly using Spades v3.10.1 [74]; and (iii) scaffolds
produced by Spades were then used as references in local
BLAST database.
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Phylogenetic analysis and the relative timing of
duplications
Bayesian relaxed clock trees were used to infer the
evolutionary relationship among paralogs. First, the
sequences were aligned as translated nucleotide in
Clustal W [75] with default parameters. Regions with
ambiguous alignment were identified and removed
manually by eye. A total of 7 gene trees were then in-
ferred using Beast v1.7.0 [76]. Inference used a re-
laxed clock model with an uncorrelated lognormal
distribution among branches, and an HKY substitu-
tion model with empirical base frequencies and rate
variation among sites was modelled as a gamma dis-
tribution with four categories. The site model allowed
for third codon position to have different substitution
model from the other positions.
The trees were scaled by setting the time to most re-

cent common ancestor of the obscura group to have log-
normal distribution with a data-scale mean of 1, and a

very small standard deviation of 0.01. This had the ad-
vantage of scaling all duplications to the same relative
timescale, while allowing different genes and different
paralogs to vary in their rate. To record the posterior
ages of duplication, we specified the ancestral and dupli-
cated genes as a distinct taxon set. The Monte Carlo
Markov Chain analysis was run for at least 100 million
states and posterior sample was recorded every 10,000
states. Log files were then inspected in Tracer v1.6 [77]
for parameter stationarity, and adequate sampling as in-
dicated by an effective sample size over 200. Finally, 25%
of initial trees were discarded as burn-in, and maximum
clade credibility trees were summarized using Tree An-
notator. Parameter MCMC files were processed using a
custom R script [78] to infer the posterior distribution
the age of duplication for each gene and to quantify the
degree overlapping between these age distributions. To
provide a reference species tree (Fig. 3, in-set), we cre-
ated a concatenated dataset from the ancestral copies of
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each duplicated gene, and inferred the gene tree in the
same way.

Differential expression analysis of the duplicated RNAi
genes
For this analysis, we used obscura group transcriptome
datasets available in EBI ENA (European Nucleotide
Archive, http://www.ebi.ac.uk/ena) and DDBJ (DNA
DataBank of Japan, http://www.ddbj.nig.ac.jp/) that in-
cluded the sex and tissue annotation. The datasets com-
prised 163, 42 and 34 RNA-seqs datasets of D.
pseudoobscura, D. miranda and D. obscura respectively;
Bioproject: DRA004463, PRJEB1227 [79], PRJNA226598,
PRJNA219224 [80], PRJNA326536 [47], PRJNA74723,
PRJNA321079, PRJNA291085 [81], PRJNA268967 [82].
Since our main interest was the comparison expression
between sex, but not its absolute expression value, we
performed a simple read-counting analysis. In outline,
each RNA-seq dataset was mapped to the full-length
CDS using Bowtie2 v2.3.2 [83] with mode ‘--very sensi-
tive’ and otherwise default parameters. The reads
mapped to reference were counted using combination of
SAMtools view flag -F 4 and SAMtools idxstats v1.4
[84]. The count data were then normalized by gene
length and read depth, where it was then scaled relative
to the expression of RpL32. To determine the statistical
significance of difference gene expression, generalised
linear mixed models were fitted using R package
MCMCglmm [85] with sex as fixed effect and tissue as a
random effect, and log-transformed normalised expres-
sion as the response variable. The natural logarithm
transformation (loge) was used to reduce the skewness
of the distributions. To allow for zero value for

non-expressed genes, the genes with read count 0 was
replaced with 1.

Y�μþsexþtissue randomð Þþε

Where Y is loge transformed normalized expression
data (response variable), μ is mean of loge transformed
expression and ε is residual error. The random effects
(tissue) and the residual were assumed to be distributed
multivariate normal with mean 0 and uncorrelated co-
variance matrix MVN (0, Iσ2). Sex was modelled as a
factor with 2 variables (male-female) and tissue con-
tained 13 variables of different tissue.

Population genetic analysis of the RNAi duplicated genes
We used the McDonald-Krietman test [44] to compare the
rate of adaptive evolution between ancestral and duplicate
genes using polymorphism data from publicly-available se-
quencing datasets: Pseudobase (12 strains of pseudoobs-
cura, Accession list: SRP007802 [70]) and 12 strains D.
miranda (Bioproject: PRJNA277849 [86]).
Genomic reads for each strain were mapped to the

genomic reference using Bowtie2 [83] with ‘--very-sensi-
tive’ mode and otherwise default parameters and reads
mapped to the genes of interest were extracted using
SAMtools view (flag -F 4). Duplicate reads were marked
using MarkDuplicates (Picard Tools [87]). To reduce the
excessive variants surrounding indel, we then applied
GATK IndelRealigner [87], which discards the original
mapping and performs local-realignment around indel.
The output was then sorted and indexed and the BAM
file was used for ‘mpileup’ variant calling (SAMtools
v1.4 [88]). The output VCF files were then filtered to
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only include SNP (GATK SelectVariants [87]), and vari-
ants that were covered by less than five reads were
masked with ‘N’ (undetermined bases, −-snpmask GATK
v3.5 [87]). The variant files were then converted to
FASTA format using GATK FastaAlternateReference-
Maker, which replaced genomic reference with variants
defined in VCF files [89] and output the heterozygous
calls with IUPAC ambiguous code. Finally, FastPHASE
[90] was used to generate pseudo-haplotypes, although
haplotype information was not utilized by the analysis.
MK tests were performed for each gene on D.

pseudoobscura-D miranda. DNAsp v5.0 [91] was used
to estimate the statistics for the MK test and Fisher’s
exact test was used to calculate the statistical signifi-
cance for single-gene analyses. Genes were then
grouped into ancestral and duplicate genes, and a
cross-gene analysis was performed using a maximum
likelihood extension of the MK test [45]. Five differ-
ent models were fitted that differed in the constraint
of α (proportion of non-synonymous subtitutions esti-
mated to be adaptive), and the relative support be-
tween models was compared using Akaike Weights.

Additional files

Additional file 1: Table S1. The detailed RNAi genes and its duplicate
in D. pseudoobscura. The genomic position is based on the D. pseudoobscura
assembly 3.0. (XLSX 10 kb)

Additional file 2: Figure S1. The expression profile of RNAi across
tissue. The normalized expression plotted across tissues. The error bars
denote the standard error for the given tissue. Blue bar indicates male
and female is indicated by red bar. The plot is shown for D. pseudoobscura
(n = 163), D. miranda (n = 42) and D. obscura (n = 34), respectively.
(PDF 131 kb)

Additional file 3: Table S2. MK test of duplicated RNAi genes in D.
pseudoobscura-D. miranda. Ds is synonymous divergence, Dn is non-
synonymous divergence, Pn is the non-synonymous polymorphisms, Ps is
the synonymous polymorphisms, α represents proportion of substitutions
that are adaptive, a is the absolute number of adaptive substitutions.
Ln is the number of non-synonymous sites, Ls is the number of
synonymous sites. Ka is the number of non-synonymous mutations per
non-synonymous sites and Ks the number of synonymous mutations per
synonymous sites from single randomly chosen strain for each species
(Li, 1993 [92] calculated using R package seqinr). Parameter ωa is identical
to Ka/Ks ratio except that the numerator only takes adaptive divergence
(α * Dn)/Ln)/(Ds/Ls). (XLSX 10 kb)

Additional file 4: Table S3. Additional MK test analysis. Table the
results of additional MK test analysis where minor allele frequency is
removed, repetition with larger dataset and results in D. melanogaster.
(XLSX 12 kb)

Additional file 5: Figure S2. The heat-map p-value of the difference
between pairwise posterior distributions. Large p-value (> 0.05) indicates
the overlapping distribution and the duplication time might be shared
(blue box). Red boxes denote comparison with p-value < 0.05 which
indicate non-overlapping posterior distribution and an asynchronous
duplication event. Pink colored box indicates the marginally significant
(0.01 < p-value < 0.05). (PDF 221 kb)
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