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Abstract: This review focuses on diaziridine, a high strained three-membered heterocycle with
two nitrogen atoms that plays an important role as one of the most important precursors of di-
azirine photoaffinity probes, as well as their formation and transformation. Recent research trends
can be grouped into three categories, based on whether they have examined non-substituted,
N-monosubstituted, or N,N-disubstituted diaziridines. The discussion expands on the conventional
methods for recent applications, the current spread of studies, and the unconventional synthesis
approaches arising over the last decade of publications.

Keywords: diaziridines; substituted diaziridines; diazirines; formation; synthesis; transformation;
reactivity

1. Introduction

An important intermediate and precursor in organic chemistry, diaziridine [1] is a
highly strained three-membered heterocycle with two nitrogen atoms [2]. The other excel-
lent properties of diaziridine include a weak N–N bond, low toxicity, hydrazine aminal
duality [3], and neurotropic activity [4]. Diaziridines, independently discovered by three
research groups (Schmitz’s, Paulsen’s, and Abendroth and Henrich’s research groups)
between 1958 and 1959, progressively achieved popularity in the field of chemistry over
the two decades following these first publications [5]. Non-substituted diaziridine (diaziri-
dine without any substituent on the nitrogen atom, 1) was developed as a reagent for a
variety of oxidative transformations [6] and employed in the synthesis of carbene-mediated
photoaffinity-labeled photophores of 3H-diazirines [7–10]. The trend of using diaziridine 1
as a precursor for the diazirine photoaffinity probe has been progressively updated until the
present day, and a series of reviews have discussed it since the 2010s [7,11–15]. Although
the chemistry of N-monosubstituted diaziridine 2 has not been studied as extensively as
that of non-substituted diaziridine 1, there are examples documenting its application as
an N-transfer reagent with α,β-unsaturated amides to form stereopure aziridines [16]. As
for N,N-disubstituted diaziridine 3, these valuable heterocycles have also been used as a
versatile reagent via selective C–N or N–N cleavage in organic synthesis, particularly their
bicyclic analogues of 1,5-diazabicyclo[3.1.0]-hexanes, which possess a strained cis-N,N-
disubstituted diaziridine fragment for 1,3-dipolar cycloaddition [17]. The advancements
in substituted diaziridine with respect to its nitrogen atom(s) synthesis and applications
have been summarized in several reviews [3–5,18–20]. On the basis of these excellent
reviews, only a few studies have been fully dedicated to investigating the potential prop-
erties diaziridine with respect to its monocyclic synthetic methods [20] or its reactivity
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towards electrophilic reagents [5]. Here in this review, the scope is limited to the current
formation and transformation of diaziridines. Then, the trends in these areas are simplified
into three categories—non-, N-mono-, and N,N-disubstituted diaziridines (Figure 1)—in
which the discussion describes recent conventional uses, the current field of studies, and
unconventional approaches that have emerged over the last decade of publications.

Molecules 2021, 26, x FOR PEER REVIEW 2 of 32 
 

 

of these excellent reviews, only a few studies have been fully dedicated to investigating 

the potential properties diaziridine with respect to its monocyclic synthetic methods [20] 

or its reactivity towards electrophilic reagents [5]. Here in this review, the scope is limited 

to the current formation and transformation of diaziridines. Then, the trends in these areas 

are simplified into three categories—non-, N-mono-, and N,N-disubstituted diaziridines 

(Figure 1)—in which the discussion describes recent conventional uses, the current field 

of studies, and unconventional approaches that have emerged over the last decade of pub-

lications. 

 

Figure 1. Structure of non-substituted diaziridine (1), N-monosubstituted diaziridine (2), N,N-di-

substituted diairidine (3). 

2. The Chemistry of Diaziridines 

Three key approaches are known for the construction of monocyclic diaziridines 4, 

and these were summarized by Makhova et al. in their previous 2008 review of diaziridine 
(Figure 2) [20]. First, the reaction of primary aliphatic amines or ammonia 5 with the con-

densation products of carbonyl compounds 6 and aminating reagents. Second, the reac-

tion of imines 7 (the condensation product of carbonyl compounds and primary aliphatic 

amines) is conducted with aminating reagent 8. Last, a three-component condensation 

reaction involving the carbonyl compound 9, primary aliphatic amines or ammonia 10, 

and aminating reagents (hydroxylamine-O-sulfonic acid (HOSA) or halo(alkyl)amine, 11). 

In addition, in their summary, Meijler et al. [7] emphasized that diaziridine synthesis as a 

precursor of 3-aryl-3-trifluoromethyl-3H-diazirine can start from the preparation of cor-

responding α,α,α-trifluoroacetophenone via oximation and tosylation (or mesylation)—

the condensation products of carbonyl compounds 6—followed by the treatment of am-

monia. In consequence, these known approaches can be described as the “conventional” 

synthesis methods that have generally been used for the synthesis of diaziridine up until 

the most recent past. The reactivity of diaziridine was then pursued in order to broaden 

the advanced applications of these three-membered heterocycles, with reactions that can 

take place with or without any ring cleavage [1], or the transformation of its unprotected 

form into respective diazirines through oxidation. Diaziridine transformation induced by 

electrophilic reagents started being studied in the early 1950s and these reactions are pri-

marily associated with the steric strain of the diaziridine ring and the presence of its two 

nitrogen atoms [5]. 

Figure 1. Structure of non-substituted diaziridine (1), N-monosubstituted diaziridine (2), N,N-
disubstituted diairidine (3).

2. The Chemistry of Diaziridines

Three key approaches are known for the construction of monocyclic diaziridines 4,
and these were summarized by Makhova et al. in their previous 2008 review of diaziridine
(Figure 2) [20]. First, the reaction of primary aliphatic amines or ammonia 5 with the
condensation products of carbonyl compounds 6 and aminating reagents. Second, the reac-
tion of imines 7 (the condensation product of carbonyl compounds and primary aliphatic
amines) is conducted with aminating reagent 8. Last, a three-component condensation
reaction involving the carbonyl compound 9, primary aliphatic amines or ammonia 10,
and aminating reagents (hydroxylamine-O-sulfonic acid (HOSA) or halo(alkyl)amine, 11).
In addition, in their summary, Meijler et al. [7] emphasized that diaziridine synthesis as a
precursor of 3-aryl-3-trifluoromethyl-3H-diazirine can start from the preparation of corre-
sponding α,α,α-trifluoroacetophenone via oximation and tosylation (or mesylation)—the
condensation products of carbonyl compounds 6—followed by the treatment of ammo-
nia. In consequence, these known approaches can be described as the “conventional”
synthesis methods that have generally been used for the synthesis of diaziridine up until
the most recent past. The reactivity of diaziridine was then pursued in order to broaden
the advanced applications of these three-membered heterocycles, with reactions that can
take place with or without any ring cleavage [1], or the transformation of its unprotected
form into respective diazirines through oxidation. Diaziridine transformation induced
by electrophilic reagents started being studied in the early 1950s and these reactions are
primarily associated with the steric strain of the diaziridine ring and the presence of its
two nitrogen atoms [5].
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The rapid improvement in the quality of analysis instrumentation for experimental
structure identification and detailed stereocenter has lead to the intensive study of the
detailed structure determination of diaziridine. Experimental data regarding the structures
of diaziridines are important for achieving deeper insight into the previously elucidated
features of the diaziridine ring structure, in particular, for the comparison of its corre-
sponding N-N or C-N bond length [21]. Recently, experimental data were obtained for the
structural determination of N,N-disubstituted diaziridine [22] and its trisubstituted form,
which possesses an additional alkyl group at position 3 [23,24], bis-diaziridine [25], and
bicyclic diaziridine [26] derivatives by the method of gas electron diffraction. Most diaziri-
dine derivatives are liquids; thus, the recent experimental determination of its structures
on the basis of X-ray diffraction studies [21,27] has only been performed in a few cases.
Investigation of conformational and configurational changes in order to understand the
effect of the interconversion barrier on the steric hindrance of the diaziridine substituent
has also been conducted using dynamic gas chromatography [28–30]. The identification of
equilibrium (molecular) structures using joint analysis of gas phase electron diffraction,
quantum chemistry, and spectroscopic data [25,26] is becoming a trend and has made
diaziridine stereochemical study more visible. Table 1 summarizes the details of recent
experimental structure identification studies of several diaziridine derivatives.

Table 1. Recent experimental structure identification studies of diaziridine derivatives.

No.
Analysis *

Possible Conformations/Configurations
GED XRD DGC QC S

1 [22] - [28–30] [22] [28–30]
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Since the strained ring compound exhibits high detonation performance when releas-
ing a large amount of strain energy during ring opening, diaziridine properties were taken
into consideration in this study. The design and theoretical investigation of a series of
trinitromethane derivatives of diaziridines as candidates for high-energy-density materials
were conducted [31]. A computational study of several properties of diaziridines was
performed by using Density Functional Theory—B3LYP functional and the aug-cc-pVDZ
basis set with the Gaussian 09 program. The formation heat, energetic properties, stability,
impact sensitivity, and the calculation of vibrational frequency were studied, and it was
found that the trinitromethane substituent was beneficial for enhancing the detonation
properties. Among the diaziridines tested, 12 (Figure 3A) and 1-(trinitromethyl)diaziridine
(13, Figure 3B) were confirmed to possess good potential as a high-density materials,
possessing good detonation performance and higher stability.
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Figure 3. Structure of trinitromethane derivatives of diaziridine 12 (A) and 1-(trinitromethyl)
diaziridine 13 (B).

3. Diaziridine Formation and Transformation
3.1. Non-Substituted Diaziridines
3.1.1. Conventional Method for Recent Uses

The concept of using the conventional method for the advanced synthesis and appli-
cation of diaziridines that are non-substituted at their N-terminal started with the use of a
programmable batch of synthesis robots to design and develop a diazirine-based photore-
active compound [32]. This recent study mimicked the manual organic synthesis workflow
by first synthesizing the 3H-diazirine-based crosslinker that mediates the formation of
diaziridine from ketone. The automatization was constructed through the addition of
methanol-NH3 and NH2OSO3H to the ketone, filtration and evaporation of the resulting
diaziridine, all followed by the formation of 3H-diazirine by an I2-Et2O system at low
temperature, ready for the next reaction process. The feasibility of the robotic synthesis
workflow is possibly due to the convenient formation of diaziridine as an intermediate
for the synthesis of diazirine, which can be formed using commercial starting materials
and universal reagents. Therefore, the recent automatization of the conventional method
for synthesis of 3H-diazirine broadens the potential of the formation of diaziridine as an
intermediate for advanced uses.

The reactivity of non-substituted diaziridines towards oxidants for the feasible syn-
thesis of 3H-diazirines expands its applicability as an important intermediate. In a study
exploring the process of Pd(0)-catalyzed cross-coupling of diazirines with aryl halides
assisted by microwave irradiation [33], 3-methyl-3-(p-tolyl)diaziridine 14 was employed
for the Pd(0)-catalyzed cross-coupling with 4-bromotoluene 15—resulting in the product
4,4’-(ethene-1,1-diyl)bis(methylbenzene) 16—under oxidative conditions following the
addition of Ag2O as an oxidant (Scheme 1). The Pd(0)-catalyzed cross-coupling is the first
example of a transition-metal-catalyzed reaction of diazirines supported by combination
with the conventional oxidation of diaziridine, and significantly expands the chemistry of
three-membered heterocycles.
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In continuation of the oxidation of diaziridine followed by oxidation into diazirine,
it is possible to construct the 15N—15N moiety when synthesizing the three-membered
heterocycle diazirine (Figure 4). The conventional transformation of ketone 17 into diaziri-
dine 18 can result in the formation of 15N2-diazirine 19 molecular tags—hyperpolarized
heteronuclei—contained in the diazirine moiety, supporting its potential as a molecular
tag for NMR and MRI [34,35]. The readily oxidized 15N2-diaziridine 18 was possible to
synthesize using 15NH3 and 15N-labeled hydroxylamine O-sulfonic acid (15NH2OSO3H),
whereby the common I2-Et3N system was used for the formation of the final 15N2-diazirine
product. Although the overall yield achieved for the synthesized 15N2-diazirine molecular
tag was less than 50%, this is sufficient for further modification and analysis. Therefore, the
development of subsequent utilizations of this isotope-labeled compound is to be expected.
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The synthesis of spirocyclic 3H-diazirine-containing building blocks has been dis-
cussed in the literature to a lesser extent [36]; however, it can potentially be employed to
probe underexplored parts of proteome with libraries derived from structurally similar
scaffolds of the parent’s analogues [13,14,37]. Currently, spirocyclic 3H-diazirines can be
found in steroid [38–40], proline [41,42], the simplified structure of chamuvarinin [43]
analogues, and 1,5-disubsituted tetrazoles containing 3H-diazirine [44]. In a process with
fewer steps, the crude diaziridine formed using the conventional method can be used
directly for the synthesis of functionalized spirocyclic 3H-diazirine without using the chro-
matographic technique [36]. The transformation of the five- to seven-membered heterocycle
or bicycle ketone 20 (Figure 5A) into diazirine 21 via NH3 and NH2OSO3H can be used for
the formation of diaziridine 22, when subjected to an I2-Et3N system after filtration and
concentration. Despite the use of the conventional NH2OSO3H as a reagent for the forma-
tion of diaziridine as an intermediate, four-membered heterocyclic 3H-diazirine 23 can be
achieved by the sequential formation of oxime 24 from ketone 25 and O-sulfonylation for
the formation of diaziridine 26, followed by oxidation into diazirine 23 (Figure 5B). This
method is commonly used for the synthesis of 3-phenyl-3-(trifluoromethyl)-3H-diazirine
(TPD) instead of spirocyclic (aliphatic skeleton) 3H-diazirine. Both conventional methods
can be used to achieve scles of up to 50 g when synthesizing functionalized spirocyclic
3H-diazirine mediated by diaziridine formation. By using this one-pot approach, two types
of spirocyclic compounds (compound 47g–h, Table 2, Entries 7–8) can also be successfully
synthesized, and will be discussed in next section.
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Figure 5. Diaziridine-mediated functionalized spirocyclic 3H-diazirine synthesis. (A) Five- to
seven-membered heterocycle or bicycle ketone 20 as starting material. (B) Four-membered hete-
rocycle ketone 25 as starting material. Reagents: (i) NH3-MeOH then NH2OSO3H, (ii) I2-Et3N,
(iii) NH2OH·HCl and MeOH, (iv) Mesyl chloride or tosyl chloride and Et3N, (v) NH3, (vi) I2 and
NaHCO3.

An ambient light stabile-favored photoaffinity labeling probe comprising 3-pyridyl-
and 3-pyrimidyl-substituted 3-trifluoromethyl-diazirines 27 [45] was synthesized from
alcohols 28, which directly transformed into an important scaffold representative, ketone 29
(Scheme 2). The replacement of the phenyl group with an electron-withdrawing pyridine
or pyrimidine ring indicates that there were no obstacles during the sequential process
of oxime formation and O-sulfonylation for diaziridine 30 formation. The conventional
methods offered by the study showed that the 3-pyridyl- and 3-pyrimidyl-substituted
3-trifluoromethyl-diaziridines were stable and could be readily oxidized into diazirine 27
with Ag2O-ether system.
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Scheme 2. Syntheses of 3-pyridyl- and 3-pyrimidyl-substituted 3-trifluoromethyl-3H-diazirines 27.
Conditions: (i) 1. TBS-Cl or TBDPS-Cl, imidazole, DCM, RT, 16 h, 2. n-BuLi, ether, 3. methyltriflu-
oroacetate, ether, 4 h; (ii) 1. NH2OH.HCl, AcONa, ethanol, reflux, 16 h, 2. pyridine, DMAP, Ts2O,
DCM, 0 ◦C to RT or DIEA, DMAP, TsCl, DCM, −50 ◦C to 0 ◦C; (iii) liquid NH3, ether, 16 h; (iv) 1.
Ag2O, ether, 2–16 h, 2. TBAF, THF, RT, 2 h.

The novel asymmetric synthesis of trifluoromethyldiazirine-based lactisole derivatives
31 occurs as a result of the preparation of trifluoroacetyl modified on the aromatic ring of
lactisole, which then introduces the diazirinyl three-membered ring on the trifluoroacetyl
group [46]. However, to synthesize the starting material, advanced methods are required;
since the 2-, 3-, and 4-trifluoroacetyl lactisole derivatives 32 (Scheme 3) need to consider
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the optical retention of the protected lactate counterpart, the conventional diazirine 31
construction via diaziridine 33 formation can be easily conducted, starting with oximation
with hydroxylamine hydrochloride, tosylation for the hydroxyl group of oxime, diaziridine
formation with liquid ammonia, and a final step of oxidation with activated MnO2 to obtain
diazirine. The chiral center configuration was checked for every step, and asymmetric 2-,
3-, and 4- trifluoromethyldiazirine-based lactisole 31 were able to be synthesized with fine
yields.
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Scheme 3. Synthesis of 2-, 3- and 4-trifluoromethyl diazirinyl lactisole derivatives 31. Conditions: (i) NH2OH-HCl, pyridine,
EtOH, 60 ◦C, 12 h then tosyl chloride, DMAP, CH2Cl2, rt, 45 min; (ii) NH3 (l), Et2O, rt, 12 h; (iii) MnO2, CH2Cl2, rt, 2 h.

3.1.2. Diaziridine as an Intermediate for “Minimalist” into “All-in-One” 3H-Diazirine

The term “minimalist” aliphatic diazirine-based probe for photoaffinity labeling was
popularized by Yao’s group in 2013 [47], and while it was describes as “minimalist” di-
azirine linkers in a recent review [48]. The first generation [47] of so-called “minimalist”
diazirine-based linkers was able to minimize the interference towards target binding and
was built upon an alkyl diazirine and a terminal alkyne connected by short aliphatic
chains [47,49,50]. These “minimalist” linkers 34 were made possible by synthesized repre-
sentative aliphatic ketone containing alkyne 35, which had previously been transformed
from ethyl acetoacetate 36 as the starting material (Scheme 4A). The minimum length
was limited to 2 carbons on both sides of the diazirine moiety in the linker in order to
enable the linker to possess different functional groups and to prevent any side reaction
during the requisite NH3/NH2SO3H step in diaziridine 37 formation. Subsequently, the
first-generation “minimalist” diazirine linker’s 34 alkyne terminal was changed into cy-
clopropenes, which are similar in size, by rhodium-catalyzed reaction of α-diazo esters
with alkynes, which have since been claimed to be the second generation of minimalist
linkers [51,52].
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HCl, pyridine or ethanol, (v) tosyl chloride, pyridine or CH2Cl2 or DMAP, then NH3, Et2O or CH2Cl2, (vi) Ag2O-Et2O,
(vii) (COCl)2, DMSO, CH2Cl2, then Et3N.
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The strategy for the adjustment of fluorine into the “minimalist” aliphatic diazirine
linker can be initiated by the reaction of ester 38 and monobromodifluoroalkyne 39 in
order to form an equimolar mixture of difluoroketone 40 along with in situ formation of its
hydrate 41, depending on the electrophilicity of the difluoroketone (Scheme 4B). This 1:1
mixture is then treated with hydroxylamine, followed by tosyl chloride in pyridine and
ammonia in sequence [53], thus forming difluorodiaziridine 42 as an intermediate prior to
oxidation with the I2-Et3N system, which results in 3H-diazirine 43. From this approaches,
the trend of “minimalist” diazirine-based compounds has shifted towards: (1) the synthesis
of aliphatic 3H-diaziridine via activation of tosyl oxime formation, in contrast to the
conventional methods; and (2) addition of difluoro moiety into the “minimalist” diazirine-
based compounds as an approach to mimicking the superior stability and selectivity [54]
of 3-phenyl-3-(trifluoromethyl)-3H-diazirine (TPD).

The compact, “all-in-one” structure of the diaziridine-mediated radioisotope-free
photoaffinity labeling probe can be categorized as a “minimalist” aliphatic 3H-diazirine
that includes the aromatics, as well as the addition of the fluorine moiety. The parts of
the “all-in-one” photoaffinity labeling probe comprise a diazirine as a photo-crosslinker (a
carbene-generating group), a fluorinated carbon at the aliphatic 3H-diazirine side chain of
the aromatics for mimicking TPD, and an alkyne [55] or azide [56] as a tag for the attachment
of a detectable group via bioorthogonal click chemistry. “All-in-one” 3H-diazirine 44
containing both alkyne and azide are constructed from representative ketone 45 containing
aromatics, fluorine moiety, and alkyne or azide terminal in advance, before transformation
into the diaziridine 46 intermediate via tosyl oxime formation. The Swern oxidation—
dimethylsulfoxide and oxalyl chloride followed by the addition of triethylamine—can be
used for the oxidation of the diaziridine 46 intermediate instead of Ag2O-Et2O, resulting in
the “all-in-one” 3H-diazirine 44 (Scheme 4C).

Table 2. Diaziridine in-situ formation in one-pot aliphatic 3H-diazirine 48 syntheses.
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3.1.3. In Situ Formation of Diaziridines in One-Pot Synthesis of 3H-Diazirine

The dehydrogenation of the NH–NH bond in aliphatic diaziridine is a crucial trans-
formation for generating the N=N double bond that acts as the main skeleton of aliphatic
3H-diazirine [57]. In the conventional method, different oxidants, including silver oxide or
iodine in the presence of triethylamine, are introduced in order to transform diaziridines
into 3H-diazirine following the removal of the ammonia [14,58–60]. Diaziridines are basic
and form salts, and in several cases, the pure form of diaziridines can be difficult to iso-
late [59]. During the synthesis of 3H-diazirine as a photoaffinity labeled-based photophore,
3H-diazirine can be readily used for the further post-functional synthesis of the correspond-
ing probe [8], and “bypassing” the prior synthesis steps of 3H-diazirine is the ideal way
to run. Thus, the strategy for the current development of 3H-diazirine synthesis is the in
situ formation of diaziridine, and approaches for one-pot synthesis of 3H-diazirine take
advantage of this more comprehensive method.

Aliphatic diaziridine is generally synthesized from ketone treated with liquid ammo-
nia to form the imine, followed by reaction with hydroxylamine-O-sulfonic acid (HOSA,
NH2OSO3H), enabling intramolecular cyclization to the diaziridine. The addition of a
base to the synthesis process of conventional aliphatic diaziridine from aliphatic ketone
can provide the direct dehydrogenation of the in situ formed diaziridine into 3H-diazirine.
The alternative method for dehydrogenation of hydroazobenzene, combining the least
expensive bulk chemicals of liquid NH3 as a solvent and the readily available tBuOK
system as a base, could be applied for the dehydrogenation of diaziridine [57]. Following
this improvement, the use of base that can be easily handled and stored, as well as being
highly available, such as KOH could enable gram-scale production [58]. Table 2 (Entries
1–8) shows the representative in situ formation of diaziridine 47a–h for the synthesis of
3H-diazirine 48. Kinetic study of the KOH-mediated direct transformations of diaziridine
47f into 3H-diazirine 48 (Table 2, Entry 6) based on 1H-NMR analysis indicated that di-
aziridine possessed appropriate reactivity for ready transformation into 3H-diazirine [58].
When adding HOSA to liquid ammonia in ketone at room temperature for 12 h, the cor-
responding diaziridine 47f (Table 2, Entry 6) was detected, as well as a trace amount of
its 3H-diazirine form. Upon further treatment with KOH for 2 h, the 3H-diazirine was
dramatically improved, indicating that diaziridine, as a precursor, can be converted directly,
with the detection of no other by-products.

A carbene precursor, 3-phenyl-3-(trifluoromethyl)-3H-diazirine (TPD) derivatives are
known for their ability to not promote cell death in the generation of active species in
in vitro photoaffinity experiments [8]. Unlike the conventional synthesis of 3H-diazirine
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from diaziridine as an intermediate, the multistep reaction of TPD derivatives is performed
from a phenyl trifluoromethyl ketone, which is transformed into the active species tosyl
oxime, which is treated with an ammonia-Et2O solution at −78 ◦C, then brought to room
temperature to allow the formation of diaziridine, which is oxidized with the I2-Et3N
system as a final step to result in TPD [7,14,54]. Since the treatment of TPD after oxidation
is time-consuming and yield-diminishing, the inevitable isolation of diaziridines can be
skipped by using an alternative one-pot synthesis starting from tosyl oxime [61].

The treatment of tosyl oxime 49 with conventional reagents, depending on the temper-
ature and the reaction time, can result in the formation of diaziridine 50 and/or its direct
transformation into 3H-diazirine 51 [61]. The proposed mechanism for the transformation
of tosyl oxime into diaziridine in past decades described the formation of the intermediate
gem-diamine [62] following attack by NH3, and by removing the tosyl group and the
proton, diaziridine is formed [61]. The current developments suggest that the neceesity of
using liquid ammonia for the generation of NH2

− species can elongate the deprotonation
of diaziridine to form diazirine. The self-ionization of liquid NH3 into NH2

− species seems
crucial for this reaction, as demonstrated by the search for additives to increase this species,
which has determined in studies that LiNH2 is superior to the inhibitor of NH4Cl (Figure 6).
It should be noted that diaziridine formation is crucial, and the aim to achieve diaziridine
isolation by removing the ammonia from the reaction, in terms of the conventional method,
overlooks the important involvement of ammonia in the transformation of diaziridine 50
into 3H-diazirine 51 using tosyl oxime 49 as the starting material.
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Figure 6. Diaziridine 50 formation in one-pot approaches for synthesis of 3-phenyl-3-(trifluoromethyl)
-3H-diazirine (51, TPD) from tosyloxime 49.

In order to broaden the applications of diaziridine-intermediated 52, and the one-pot
synthesis TPD 54 from tosyl oxime 53, there are several viable substituents in the aromatic
moiety of the starting material. Optically pure (trifluoromethyl)diazirinylphenylalanine
((Tmd)Phe) has been used as important building block in synthesis involving tosyl oxime
as a precursor following the one-pot reaction method [61]. Method A prolongs the optical
retention of (Tmd)Phe 55 and 56, while the addition of LiNH2 in Method B results in
the racemization of the product 55. (Tmd)Phe 57, deuterated at the aromatic moiety,
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was synthesized via Method A, and its optical activity was retarded. Furthermore, the
synthesis of 3-nitro 58 or 3-aminol 59 and 3-/4-methyl TPD 60–61 for the construction
of phenylthiourea derivatives [63] and saccharin derivatives [64], respectively, using a
one-pot (method A or B) system resulted in an almost quantitative yield compared with
the conventional stepwise Method C (Figure 7).
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3.1.4. Improved Method for the Synthesis of 3-[3-(Trifluoromethyl)-3H-diazirin-3-yl]aniline
Derivatives

The needs of the aniline skeleton as a precursor for the multistep synthesis of the 3-
phenyl-3-(trifluoromethyl)-3H-diazirine-based photoaffinity labeling probe faces an obsta-
cle with respect to obtaining high overall yields. Studies describing the synthesis methods
employed in previous decades [65–68] provide limited experimental details or analytical
data; thus, it has become necessary to improve on these methods. In a brief (Figure 8),
recent study has successfully synthesized 3-[3-(trifluoromethyl)-3H-diazirin-3-yl]aniline
62 with excellent yield through the reduction of nitrobenzene derivatives following the
formation of 3H-diazirine 63a–b [63] or the protection of the amino group from undergoing
3H-diazirine formation, followed by its deprotection, resulting in 63c–e [63,69]. This new
improvement showed that it is preferable to protect the amino group at the 3-position with
—Boc (63c), enabling convenent acidic deprotection after 3H-diazirine formation [63,69].
Meanwhile, the amino group at the 4-position can be subjected to two types of protecting
group (—Boc 63d or —phthalimide 63e), and in the case of —phthalimide group (63e), this
protecting group can be directly oxidized in conjunction with the diaziridine 64 moiety
by MnO2-CH2Cl2 into a final product of 3-[3-(trifluoromethyl)-3H-diazirin-3-yl]aniline
derivative 62 [63].
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Figure 8. Improved method of NH2-substituted 3-phenyl-3-(trifluoromethyl)-3H-diazirine 62.
Reagents: (i) 1. NH2OH-HCl, pyridine or EtOH; 2. TsCl, Et3N, acetone or DMAP; 3. NH3, Et2O or
CH2Cl2, (ii) MnO2, CH2Cl2 or Et2O, or with I2-Et3N, MeOH, (iii) TFA, CH2Cl2, or Fe, EtOH, HCl, or
NaSH, EtOH, or HCl, dioxane, or PPh3, THF-H2O, (iv) Na2S2O4/THF, EtOH, H2O.

A few studies have performed the final step of forming the 3-[3-(trifluoromethyl)-
3H-diazirin-3-yl] aniline derivatives from nitrobenzene derivatives through the reduction
of the nitro moiety in sodium dithionite [68,70]. During the synthesis of photoreactive 2-
propoxyaniline derivatives as artificial sweeteners [71], the reduction by sodium dithionite
after 3H-diazirine formation did not take place, and the diazirinyl moiety was unable
to tolerate this condition, causing decomposition to occur. A possible route for this was
diaziridine 65 formation following reduction with sodium dithionite (Figure 8). A moderate
yield was obtained without breaking the diaziridinyl moiety, and validated the essential
aspects of diaziridine formation, enabling a better understanding of the improved method
for NH2-substituted 3-phenyl-3-(trifluoromethyl)-3H-diazirine 62.

3.1.5. Expansion of Fluorous 3H-Diaziridine as a Basis for 3H-Diazirine Application

A new fluorous 3H-diazirine-based photoaffinity labeling probe taking advantage
of fluorous chromatography and fluorous solid phase extraction was developed. These
techniques aim to retard fluorinated compounds on fluorinated silica gel, while all other or-
ganic material is washed off the column with the appropriate organic mobile phase. A new
fluorous 3H-diaziridine-based photoaffinity labeling probe, with a longer perfluoroalkyl
residue substituted for the trifluoromethyl group in the non-radioactive photoaffinity la-
beling probe, can be synthesized starting from the transformation of perfluoroalkylated
ketone 66 (perfluorobutyl and perfluorooctyl (Figure 9A) [72]) into diaziridine 67 through
the conventional approach of oxime formation, tosylation, and treatment with liquid am-
monia. The temporary silylation of the diaziridine moiety of compound 68 was performed
by means of trimethylsilyl triflate, bromide–lithium exchange, and carboxylation with
carbon dioxide for the conversion of benzoic acid. The final product was observed after the
oxidation of diaziridine 68 into diazirine 69 with I2−Et3N. Prior to the study reporting the
perfluoroalkylated 3H-diaziridine-based photoaffinity labeling probe, the perfluoropropyl
and perfluorohexyl [73] residues had also been studied using the conventional approach,
starting from the modification of perfluoroalkylated ketone 70 to result in diaziridine 71,
which can readily be oxidized to 3H-diazirine 72 (Figure 9B).
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Figure 9. Perfluoroalkylated aryldiazirine synthesis: (A) perfluorobutyl and perfluorooctyl residue
69. (B) perfluoropropyl and perfluorohexyl residue 72. Conditions: (i) 1. NH2OH.HCl, pyridine,
EtOH, 60 ◦C or 85 ◦C, 2. p-TsCl, DMAP, Et3N, CH2Cl2, 0 ◦C to r.t., 3. NH3(l), CH2Cl2 or EtOH,
−78 ◦C to r.t., 16 h; (ii) Me3SiOTf, Et3N, CH2Cl2, −78 ◦C to r.t.; (iii) 1. nBuLi, THF, 2. CO2, −78 ◦C to
r.t., 3. H2O, (iv) I2, Et3N, MeOH, r.t., (v) TBAF, THF, rt, 1 h.

Diazirine-based crosslinkers (synthesized from the counterpart diaziridine) have
been explored due to their ability to act as carbene-generating reagents. Since the 3-
trifluoromethyl 3H-diazirine can be photoreactivated with light at 350 nm to generate
carbene, this photophore is categorized as a high reactive species, and is able to rapidly
form crosslinks to biomolecules with short photoirradiation times [8]. This universal
crosslinker for aliphatic polymers, the simple bis-diazirine reagent, contains the known
compound 1,3-bis(3-(trifluoromethyl)-3H-diazirin-3-yl)benzene or its pyridyl analog 73,
which is volatile, and is prone to explosion (Figure 10A) [74]. Thus, the bis-diazirine
crosslinker was improved by the addition of an electron-deficient linker at the para position
of diazirine compound 74 [74], which can be handled under ambient conditions, preventing
any self-reaction due to the absence of any aliphatic C-H bonds (Figure 10B). The so-called
second-generation bis-diazirine 75 is an elongated perfluoroalkylated chain inspired by
the first-generation bis-diazirine 74 [75]. The highly fluorinated bis-diazirines designed
in the study can be developed into a flexible covalent adhesive (Figure 10C). The simple
1st-generation and 2nd-generation bis-diazirines are highly useful as crosslinkers for a
broad range of feasible synthesis applications applications starting from representative
ketone 76–78 into diaziridine 79–81, which can be directly oxidized by the I2−Et3N system.
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Figure 10. Fluorous 3H-diazirine-based crosslinker: (A) Simple bis-diazirine 73, (B) 1st generation bis-diazirine 74, (C) 2nd-
generation bis-diazirine 75. Conditions: (i) 1. NH2OH.HCl, EtOH, reflux, 2 h, 2. NaOH(aq), reflux, 2 h, (ii) 1. TMSCF3, TBAF,
DCM, 2. NH2OH.HCl, NaOH, EtOH/H2O, reflux, 2 h, (iii)TsCl, NEt3, DMAP, DCM, 0 ◦C, then NH3(l), DCM, −78 ◦C to r.t,
(iv) I2, NEt3, DCM, 0 ◦C, (v) 1. TMSCF3, TBAF, THF, −10 ◦C to r.t. 2. NH2OH.HCl, EtOH, reflux, 2 h, (vi) 1. NH2OH.HCl,
2. p-TsCl, NEt3, 3. NH3(l), −78 ◦C to r.t.
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3.1.6. Unconventional Non-Substituted Diaziridine Synthesis Approaches

Recently, there have been two methods that have taken advantage of the conventional
concept and turned it into brand new approaches to developing diaziridine synthesis. The
first is the use of resin-bound sulfonyl oximes for the synthesis of 3-trifluoromethyl-3-
phenyldiaziridine [76]. A commercially available polystyrene–sulfonyl chloride 82, used
as an equivalent to replace the common reagents mesyl or tosyl chloride, was previ-
ously reacted with oxime 83 to provide the desired solid-supported sulfonyl oxime. The
conventional-like active species sulfonyl oxime 84–86 were then transformed by ammo-
nia/dioxane solution to obtain a set of substituted diaziridines 87. The presence of the
trifluoromethyl group has a role in the cleavage of the immobilized sulfonyl oxime precur-
sors from their solid supports, therefore allowing good results for diaziridine 87 formation.
The compatibility of the immobilization and cleavage protocols in this method was tested
with several aromatic building blocks and alkyne groups (Figure 11). An optical retention
study of the optical active-aromatic substituents or building blocks remains to be performed
for this method in the future.
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Figure 11. Synthesis of diaziridines 87 via unconventional resin-bound sulfonyl oxime 82 reagent.
Reagents: (i) NH3-dioxane; (ii) R2-N3, CuI, DIPEA, DMF, H2O; (iii) R3-COCl, Et3N or R3-CO2H, DIC,
HOBt.

The second unconventional method is the ammonia-free synthesis of 3-trifluoromethyl-
3-phenyldiaziridine 88 [77]. The study started with the preparation of trifluoromethyl
phenyl imines 89 using lithium bis(trimethylsilyl)amide [78] into trifluoromethyl phenyl ke-
tone 90, resulting in N-TMS-ketimine 91 (Figure 12). The solvolysis of this N-TMS-ketimine
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with methanol provides the representative imine for direct diaziridine formation. Since
the use of the conventional reagent HOSA, which acts as the O-sulfonyl hydroxylamine
source, did not yield the desired diaziridine product due to the reduced nucleophilic-
ity of the amine function of the formd zwitterions, this study therefore then reacted
p-toluenesulfonyl hydroxylamine with trifluoromethyl phenyl imines 89 as an advanced
ammonia-free methodology for the synthesis of diaziridine 88 (Figure 12). The ammonia-
free synthesis was carried out in significantly fewer reaction steps and with less purification
of the intermediate compared to the multiple overnight steps of the conventional method.
Various 3-trifluoromethyl-3-phenyldiaziridine derivatives can be explored for further study
based on ammonia-free methods, despite the difficulty of synthesizing the imine intermedi-
ate. In addition, both of the unconventional methods described here successfully oxidized
the resulting 3-trifluoromethyl-3-phenyldiaziridine into representative diazirine using the
common oxidation reagents MnO2 [76] or Ag2O [77].
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Figure 12. Synthesis of diaziridine 91 via unconventional reagents in an ammonia-free method.
Reagents: (i) LiN(TMS)2 in THF, toluene; (ii) methanol; (iii) p-toluenesulfonyl hydroxylamine in THF;
(iv) piperidine.

3.2. N-Monosubstituted Diaziridines
3.2.1. Conventional Method for Recent Uses

In general, conventional methods for the synthesis of diaziridines with HOSA have
been performed in various solvents, such as water [79], methanol [80], or pure liquid ammo-
nia [81]. When conventional methods were used for the reaction of cyclooctanone 92, ben-
zylamine 93, and HOSA, the corresponding bicyclic diaziridine, 1,2 diazaspiro[2,7]decane
94 (Figure 13), was produced with quite a low yield (~20%) [81]. In order to achieve a
better understanding of this, the solvent dependency of the N-monosubstituted diaziri-
dine 94 yield was studied by means of GC–MS [82]. The highest yield of the product
N-monosubstituted diaziridine 94 (~42%) corresponded to the use of an apolar aprotic
solvent, such as cyclohexane or toluene.
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Figure 13. Solvent dependency of N-monosubstituted diaziridine 94. Conditions: (i) HOSA, rt,
3 h, solvent (pentane, hexane, dichloromethane, cyclohexane, toluene, acetonitrile, diethyl ether,
tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, methanol, ethanol, isopropyl alcohol, 1-butanol,
1,4-butanediol).

The reactions of nucleophilic diaziridines with electrophilic alkynes were established
decades ago [83], and by means of the 15N-labeling experiment, it was shown that the
mechanism of the reaction could be assumed to involve the initial addition of an alkylated
nitrogen atom (N-monosubstituted diaziridine counterpart) to provide an intermediate
that could subsequently undergo ring-opening and proton transfer, resulting in the adduct
product [84]. The trapping reaction resulted in thermally generated benzyne species 95a–f
with heteroatom-rich diaziridine 96 leading to N-arylated hydrazones 97a–f in a single
step, while these could be converted into fused-ring indole derivatives 97c–e in some
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cases (Scheme 5). The conventional method for the synthesis of diaziridines has been used
in recent years to form N-ethyl diaziridine 98a in quantitive yield from the reaction of
2-adamantane-2,3-[3H]-diazirine 99 with alkyl Grignard reagents (Scheme 6). Despite this
success, the use of aryl Grignard reagents did not lead to N-phenyl diaziridine, and the
expected diaziridine 98b was obtained only upon the addition of phenyl lithium. The
direct reaction with acetylacetone was then conducted from the pure resulting N-phenyl
diaziridine 98b, allowing pyrazole 100 and adamantanone 101 to be obtained with excellent
yields (Scheme 6) [85].
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Scheme 6. Diaziridine 98a–b synthesis from Grignard reaction of diazirine 99 and its reaction,
resulting in pyrazole 100 and adamantanone 101. Condition: (i) EtMgBr or PhLi, Et2O, 0 ◦C or
−78 ◦C, 2 h; (ii) acetylacetone, p-TsOH, EtOH, 80 ◦C, 24 h.

3.2.2. Base Addition for Enhancement of N-Monosubstituted Diaziridine Formation

It is known that the formation of monocyclic diaziridine the three-component conden-
sation of carbonyl compounds, primary aliphatic amines, and HOSA in protic medium is
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substantially dependent on pH value. A possible pathway for this is through the genera-
tion of carbenium-iminium cations, which subsequently react with the aminating reagent
(HOSA) to form an intermediate compound of an aminal type. The presence of base would
rapidly cyclize this intermediate to result in diaziridine [20]. The addition of base to the
process was followed by diastereoselective synthesis of N-monosubstituted diaziridines
coupled with neurotransmitter amino acid 102 [86]. The pH can be adjusted with the
simultaneous addition of HOSA (1 equiv.) and 30% aqueous NaOH in order to neutralize
the H2SO4 that formed during the reaction, and the requirement vary depending on the
substrate. Moreover, the new hybrid structure of N-monosubstituted diaziridine 102 can
be prepared from the reaction of aldehydes or ketones 103 and amino acid ethyl esters 104
under mild conditions, with the major diastereomer corresponding to the racemic mixture
of two meso-forms, 1R*, 2R*, 3S* (Scheme 7).
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The use of N-monosubstituted diaziridines as N-transfer reagents to α,β-unsaturated
amides to form stereopure aziridines has been reported [16]. Taking advantage of the reactiv-
ity of diaziridine as an essential precursor, diastereoselective synthesis of N-monosubstituted
diaziridine 105 can be conducted from simple aldehydes or ketones 106 with amines
107 [87]. The reaction takes place in the presence of hydroxylamine O-sulfonic acid (HOSA),
a conventional aminating reagent. The addition of NaHCO3 results in a major product of N-
monosubstituted diaziridine 105, suppressing the formation of N-monosubstituted imine
(108, Figure 14). This weak inorganic base also showed high product yield compared with
K3PO4 or Et3N, and can be used to replace an excess of amine counterparts. The method
provides the resulting N-monosubstituted diaziridines 105 with a single diastereomer and
a wide variety of aromatic and aliphatic aldehydes or ketones 106 and amines 107.
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3.2.3. Unconventional N-Monosubstituted Diaziridine Synthesis Approach

When an excess of the mixture of CS2 and KOH was added to hydrazide 109 spirit
boiling solution, the hydrogen sulphide evolved in the reaction. As a result of the elim-
ination of hydrogen sulphide, three-membered diaziridine 110 was formed, along with
another product, 1,3,4-thiadiazolidine [2]. Although the amounts of CS2 and KOH were
varied, the same substances were formed, with the amount of CS2 affecting only the
yield of the final product. The maximum reaction yield was observed when hydrazide,
CS2, and KOH were taken in a molar ratio of 1:1.7:2.0, indicating that diaziridine 110
had been formed, while for thiadiazolidine cycle formation, an excess CS2 of more than
double is required. At first, it is possible to form potassium salt, which is then con-
verted into diaziridine derivative under the action of hydrochloric acid. Using this un-
conventional method, compound 110 can be either thion or thiol tautomeric (Figure 15A).
Using the described method, the 1-(4-methoxy-6-methyl- pyrimidin-2-yl)-diaziridine-3-
thion 111 can also be established from hydrazide 112 (Figure 15B). As for the influence
of the carbonyl group on the reaction, similar interactions were carried out using 4,6-bis-
dimethylamino- [1,3,5]triazine-2-carboxylic acid hydrazide 113 (Figure 15C) and 3,4-di-
methyl-2-thioxo-2,3-dihydro-thiazole-5-carboxylic acid hydrazide 114 (Figure 15D). The
N-monosubstituted diaziridine of (4,6-bis-dimethylamino-[1,3,5]tria- zine-2-yl)-(3-thioxo-
diaziridin-1-yl)-methanone 115 and (3,4- dimethyl-2-thioxo-2,3-dihydro-thiazole-5-yl)-(3-
thioxo- diaziridin-1-yl)-methanone 116 can be obtained (Figure 15C,D).
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3.3. N,N-Disubstituted Diaziridines
3.3.1. Conventional Method for Recent Uses

N,N-disubstituted diaziridines containing trifluoromethyl at the 3-position 117 can be
synthesized using conventional conditions. Various trifluoromethyl imines 118 have been
used in amination reactions with NsONHCO2Et as the aminating agent [88]. A twofold
excess of NsONHCO2Et in CH2C12 without any addition of base at room temperature can
give the corresponding N,N-disubstituted diaziridines 117 (Scheme 8A). N,N-Disubstituted
diaziridines 119 were also successfully synthesized by the reaction of trifluoromethyl imines
120 with NsONHCO2t-Bu, a carbamate, which is known to give amination reactions only
by an ionic pathway involving the corresponding aza-anion (Scheme 8B). The advantage
of using conventional methods for the synthesis of N,N-disubstituted diaziridines was
also observed when synthesizing bidiaziridine 121 from α-diimines 122 [89]. A two-phase
H2O/CH2Cl2 system and the portion-wise addition of both amination agent and base
(NsONHCO2Et and CaO) is considered to favor the formation of the monodiaziridine (E)-3-
(iminomethyl)diaziridine-1-carboxylates 123, rather than its bidiaziridine 121 (Figure 16A).
Further functionalization of this monodiaziridine, 123a,c,d, can be performed to obtain
a hybrid compound containing an diaziridine and oxaziridine ring in one molecule of
3-(diaziridin-3-yl)oxaziridines 124 (Figure 16B) [89].
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NsONHCO2t-Bu (molar ratio to imine 2:1), CH2Cl2, rt, 12 h.
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Figure 16. Synthesis of monodiaziridine 123 and bidiaziridine 121 from α-diimines 122 (A) and
further substitution for 123 (B). Conditions: (i) NsONHCO2Et, H2O/CH2Cl2, CaO, rt; (ii) m-CPBA,
CH2Cl2, 0 ◦C.

In line with the synthesis of the hybrid compound, a diastereoselective method for the
synthesis of diaziridines with N- and/or C- cyclopropyl substituents (125 and/or 126) was
developed [90] using the conventional methods. A one-pot, three-component condensation
of cyclopropyl-containing carbonyl compounds 127, primary aliphatic amines, including
cyclo propylamine 128, and N-chloroalkylamines 129 was conducted in the organic sol-
vents. This typical reaction was carried out under mild conditions and in the presence of
bases (Scheme 9), resulting in the predominance of diaziridine product 125 and/or 126,
with the major diastereomer being the racemic mixture of two meso-forms, and the racemic
mixtures of two enantiomers for the minor diastereomer. The use of K2CO3 as a base, and
an aprotic solvent (CHCl3) obtained from equimolar amounts of aldehyde, cyclopropy-
lamine, and pre-synthesized N-chloroalkylamines can provide access to compounds with
cyclopropyl substituents on the nitrogen atom of the diaziridine ring. As for the enantio-
and diastereoselective synthesis of diaziridines 130 via aziridination of N-tosyl aldimines
131 while applying modified hydroxylamine 132 under asymmetric phase-transfer catal-
ysis 133, it was recognized that K2CO3 was too weak to mediate this reaction [91]. Thus,
K2PO4 was then utilized, and the reaction rate was significantly enhanced, and gave diaziri-
dine with similar selectivity. By taking advantage of a phase-transfer catalyzed nitrogen
insertion into the π-system of N-tosyl aldimines 131 and the use of N-transfer agent of
N-benzyl-O-benzoyl hydroxylamine 133, the afforded N-tosyl-N′-benzyl-diaziridines 130
can be synthesized as a single diastereomer in up to high yields with high to excellent
enantioselectivity (up to 96% ee, Scheme 10).
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3.3.2. The Green Transformation of 6-Aryl-1,5-diazabicyclo[3.1.0]hexanes

Green chemistry is leading the development of ionic liquids as alternative solvents that
possess useful physicochemical properties, such as non-inflammability, low vapor pressure,
and ease of regeneration. These trends have led to the transformation of N,N-disubstituted di-
aziridines under ionic liquid solvent-based reaction. The 6-aryl-1,5-diazabicyclo[3.1.0]hexanes
134 can be thermally (by refluxing in toluene or xylene) or catalytically (by the addition
of 20 mol % Lewis acid (BF3·Et2O)) transformed into active species of azomethine imines
135 (Figure 17). In [92,93], mild conditions were represented by the use of ionic liquid
medium, and it was found that the reaction could be managed by ionic liquid, rather
than the organic solvent, of MeCN [94]. In some case, heating was required (40 ◦C or
50 ◦C) to to initiate the reaction with olefins 136, which resulted in the [3 + 2] cycloaddi-
tion products of 1,5diazabicyclo[3.3.0]octane derivatives 137. High diastereoselectivity
can be achieved through the [3 + 2] cycloaddition of azomethine imines derived from
6-aryl-1,5-diazabicyclo[3.1.0]hexanes to acrylonitrile and 4-nitrophenyl vinyl sulfone in
ionic liquid of [emim][OTf] [93]. The transformation of diaziridine 134 into active species of
azomethine imines 135 showed different reactivity when reacted with arylidenemalonon-
itrile 138 (Figure 17). The presence of an electron-withdrawing NO2 substituent in the
aromatic ring of arylidenemalononitrile, as the starting material, resulted in pyrazoline 139,
and the isolation of arylidenemalononitriles containing aromatic fragments of the starting
bicyclic diaziridines 140 was also achieved [95]. The annulations of azomethine imines
135, derived from the representative diaziridine 134 with 1H-indole-2,3-diones 141, can
occur on the basis of the reaction between azomethine imines and carbonyl compounds.
There are two types of product introduced in the ionic liquid of [bmim][BF4] systems:
pyrazolines 142, which are proposed to be proced by the induction of a formal 1,4-H shift
in azomethine imine; and pyrazoles 143 (Figure 17), which are most likely to emerge as a
result of the oxidation of pyrazolines by air oxygen [96]. Moreover, the reaction between
6-aryl-1,5-diazabicyclo[3.1.0]hexanes and 1,3-diarylpropenones was also conducted under
microwave irradiation (110 ◦C), which is compliant with the principles of green chemistry
in organic synthesis [97]. The [3 + 2] cycloaddition products of perhydropyrazolopyrazoles
were formed in fine yields as single diastereomers.
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3.3.3. Metal Catalysis of Diaziridines Ring Opening

A single reagent that is able catalyze multiple mechanistically distinct processes in a
chemical reaction known as an auto-tandem catalyst [98], and the transition metal used
for this process is gold(I). The ring opening of diaziridines [99] is started by the synthesis
of N-monosubstituted diaziridine by the conventional method of reacting ketone 144,
benzyl, and the aminating reagent NH2OSO3H. A minimal modification at the free N-
terminal of diaziridine resulted in 1-benzyl-1,2-diazaspiro[2,5]octane 145, which was then
used as the starting material for an auto-tandem catalysis reaction mediated by gold(I).
The model reaction was conducted by reacting diaziridine 145 with phenylacetylene 146,
and it was found that the product 3-pyrazoline 147 was preferentially obtained using
Ph3AuNTf2 as the catalyst, rather than other catalysts. The alkyne insertion product 146
was possibly an intermediate in the process, since it can be directly transformed into the
product 3-pyrazoline 147 by the use of Ph3AuNTf2. Taken together, gold(I) as an auto-
tandem catalyst is capable of being used to pursue the typical subsequent ring opening of
diaziridine 145 and the cyclization of 148 (Figure 18).
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to alkynes 146. Conditions: (i) 10 mol % Ph3AuNTf2, toluene, rt or 70 ◦C, 12 h or 18 h; (ii) 10 mol %
AgOTf or AuCl3 or Zn(OTf)2 or Cu(OTf)2, toluene, 70 ◦C, 18 h; Cbz = carbamate group.

The [3+3]-annulation of bicyclic diaziridines 149 with N-substituted aziridines 150a,b
in iron salt can be processed into [1,2,4]-triazines 151a,b as a single diastereoisomer by
using FeCl3 (Scheme 11). The chelation of aziridines with FeCl3 can lead to stereospecific
ring opening using azomethine imine intermediate derived from diaziridine and the dias-
teroselectivity potentially obtained by the steric factors during the approaches of aziridine
with the azomethine imine. Diaziridine 149 was tested using optically active aziridine
150b, demonstrating the stereoselectivity of this typical iron-catalyzed reaction [100]. The
one-pot reaction of bicyclic diaziridines 152 and (2-bromo-2-nitrovinyl)arenes 153 result-
ing in bicyclic cationic 154 (2,3-dihydro-1H-pyrazolo[1,2-a]pyrazol-4-ium as cation and
[Ce3+(NO3)6]3− as anion) can only be conducted under the action of ceric ammonium
nitrate (CAN) and MeCN (Figure 19). CAN as the catalyst can trigger in situ diaziridine
ring opening of bicyclic diaziridines or metathesis of azomethine imine, the occurrence of
[3+2] cycloaddition of (2-bromo-2-nitrovinyl)arenes, followed by the aromatization of the
formed pyrazolidine ring [101]. This metal catalysis of diaziridine ring opening approaches
(Scheme 11 and Figure 19) provides the advantage of simplicity, and is a powerful tool for
the synthesis of hydrazine bicyclic compounds.
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Figure 19. CAN-mediated synthesis of bicyclic cationic 154 with 2,3-dihydro-1H-pyrazolo[1,2-
a]pyrazol-4-ium core.

3.3.4. Diaziridine Reaction with Donor–Acceptor Cyclopropanes/Cyclopropenes

The first [3+3]-annulation of two different three-membered rings of bicyclic diaziridines
154a–n and donor–acceptor cyclopropanes 155 was reported in 2018 [102]. The reaction
afforded perhydropyridazine derivatives 156 in high yields and diastereoselectivity under
mild Lewis acid catalysis of Ni(ClO4)2·6H2O (Figure 20). Under the same conditions, the dif-
ference of alkyl substituent(s) at the C(6) atom of bicyclic diaziridine 154k,o–u can prevent
(3+3)-annulation. The spiro-[cyclohexane-1,6′-(1,5-diazabicyclo[3.1.0]hexane)] and other
bulky substituents at the C(3) atom of the diaziridine ring of 1,5-diazabicyclo[3.1.0]hexanes
(154k,o–u,v) did not produce the corresponding hexahydropyridazine 156 and afford
1-alkylated 2,3-dihydropyrazoles 157 or 158 in the reaction with donor–acceptor cyclo-
propanes 155 [103]. The reaction possibly proceeds via the alkylation of a diaziridine
derivative with a Lewis acid-activated cyclopropane, followed by hydration of the formed
1,6-zwitterion, producing hemiaminal. Following this process, the elimination of the
carbonyl compound and the air oxidation of the formed pyrazolidine accomplishes the
synthesis of 1-alkylated 2,3-dihydropyrazole derivatives (157 or 158, Figure 20).
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Since diaziridine is a strained ring system that can undergo N–N bond cleavage, the
ring opening of bicyclic diaziridine 159 was continued for its reaction with enoldiazoac-
etates 160, which resulted in the cycloadduct 161 (Scheme 12). The metallo-enolcarbenes
was initially generated to undergo the novel [3 + 2]-cycloaddition. The asymmetric syn-
thesis process is able to produce the cycloaddition product 161 with 31% ee or 95% ee,
depending on the isomeric mixture of the starting material. The metallocarbene source
of donor–acceptor cyclopropene 162 is also able to form the cycloaddition product 161
in 95% ee (Scheme 12), suggesting that the initially generated cycloaddition of metallo-
enolcarbenes is possible at a faster rate than the formation of the corresponding donor–
acceptor cyclopropene 162 [104].
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3.3.5. Unconventional N,N-Disubstituted Diaziridine Synthesis Approach

An unconventional nonmetallic and photocatalytic approach to N,N-disubstituted
diaziridine synthesis was developed [105], excluding hydroxylamine-O-sulfonic acid [20]
and ethyl nosyloxycarbamate [18] for the mediation of condensations of carbonyl com-
pounds, amines, or ammonia. A blue LED, an organic photocatalyst (rose Bengal 163),
and a Lewis acid such as the oxidant PhI(OAc)2 164 were used to generate functionalized
diaziridines with excellent reaction rates and yields that also showed high stereoselectivi-
ties for the synthesis of diaziridines 165 with chiral substituents. The reaction proceeded
through the in situ formation of nitrene 166 and an imine 167 intermediate, whereby their
formation involved the light-activated Rose Bengal in order to convert related species
from the combination of PhI(OAc)2 164, amine 168, with 1,2-diol 169 or the simultaneous
combination of PhI(OAc)2 directly with amine. The typical N,N-disubstituted diaziridine
165 synthesized using this novel and extraordinary method is summarized in Scheme 13.
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4. Conclusions

The non-, N-mono-, and N,N-disubstituted diaziridines are attractive skeletons as
building blocks in the synthesis of important intermediates and precursors with excellent
stereochemical properties. The trend of diaziridine formation is still following the conven-
tional concept, wherein valuable synthesized diaziridine derivatives are added together
with various substituents. More unconventional approaches are limited to the period of the
last decade, and further studies aiming to extend these unconventional methods remain
to be performed. The study of diaziridine transformation in the field of organic and phar-
maceutical chemistry—especially to become a precursor in diazirine-based photoaffinity
labeling probes for drug design—as well as its stereochemistry, offer great opportunities
for further exploration.
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