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Abstract

Purpose of Review Mild cognitive impairment is a common feature of Parkinson’s disease, even at the earliest disease stages, but
there is variation in the nature and severity of cognitive involvement and in the risk of conversion to Parkinson’s disease dementia.
This review aims to summarise current understanding of mild cognitive impairment in Parkinson’s disease. We consider the
presentation, rate of conversion to dementia, underlying pathophysiology and potential biomarkers of mild cognitive impairment
in Parkinson’s disease. Finally, we discuss challenges and controversies of mild cognitive impairment in Parkinson’s disease.
Recent Findings Large-scale longitudinal studies have shown that cognitive involvement is important and common in
Parkinson’s disease and can present early in the disease course. Recent criteria for mild cognitive impairment in Parkinson’s
provide the basis for further study of cognitive decline and for the progression of different cognitive phenotypes and risk of
conversion to dementia.

Summary Improved understanding of the underlying pathology and progression of cognitive change are likely to lead to

opportunities for early intervention for this important aspect of Parkinson’s disease.

Keywords Parkinson’s disease - Mild cognitive impairment - Dementia

Abbreviations

MCI Mild cognitive impairment
MOCA  Montreal cognitive assessment
PD Parkinson’s disease

PDD Parkinson’s disease dementia
PD-MCI Mild cognitive impairment

in the context of Parkinson’s disease
Introduction

Mild cognitive impairment (MCI) is a concept introduced in
the 1980s to characterise mild cognitive deficits that did not
amount to a diagnosis of dementia [1], in the context of
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Alzheimer’s disease. More recently, this concept has been
used in the context of Parkinson’s disease (PD), where cogni-
tive deficits are common even at the point of diagnosis.
However, there is considerable controversy on the use, defi-
nition, assessment and prognostic value of this concept. Here,
we review current understanding of MCI in Parkinson’s dis-
ease from the point of view of epidemiology, recently de-
scribed definitions, underlying pathophysiology, detection
methods and tracking the presence of cognitive involvement
in PD and ongoing controversies in this area.

Why Does MCI Matter?

Dementia affects 50% of patients with Parkinson’s within
10 years of diagnosis [2] but the timing and severity vary
considerably between individuals. Identifying patients at risk
of dementia and those at the earliest stages of cognitive in-
volvement is important for three key reasons: (1) as new
disease-modifying treatments in Parkinson’s are emerging
[3], early intervention to slow or prevent Parkinson’s dementia
is becoming a realistic prospect; (2) earlier detection of cog-
nitive involvement offers the hope of prognostic information.
This can allow an affected individual to better plan for their
own future and enables policy makers and healthcare
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providers to plan health and social needs for the population;
(3) finding the earliest features of cognitive involvement may
provide insights into underlying mechanisms of disease pro-
gression, ultimately leading to identification of novel thera-
peutic targets.

MCI in Individuals Without PD

MCI has been defined as a syndrome of cognitive de-
cline that is greater than would be expected for an indi-
vidual’s age and level of education that does not interfere
with that individual’s ability to perform activities of daily
life [4]. It is distinct as an entity from dementia, where
cognitive difficulties are greater and have an impact on
day-to-day functioning. The concept of MCI was de-
scribed in the nineteenth century by Prichard [5] who
noted that the earliest sign of dementia was loss of recent
memories. Some degree of cognitive deficits were
thought to be a normal part of ageing and various terms
were used to describe this, including age-associated
memory impairment, age-associated cognitive decline
and benign senescent forgetfulness [6, 7]. With the ad-
vent of new scales to measure subjective and objective
cognition, such as the Clinical Dementia Rating and the
Global Deterioration Scale for Ageing and Dementia, in
the 1980s, an intermediate phase between normal ageing
and dementia became more widely recognised [8, 9]. At
that point, it was defined as the presence of subtle defi-
cits in cognition with some impairment in executive
function. Following an expert international conference,
the diagnosis and management of MCI was clarified [4]
and later revised [10].

The prevalence of MCI is estimated to be 3—19% in the
elderly population [11]. Conversion rates to dementia vary
depending on the setting [12], with 11-33% conversion over
2 years. Notably, in a community setting, 44% of people with
MCI were shown to return to normal after 1 year [11]. In
contrast, higher rates of conversion to dementia are seen in
patients tested in memory clinics, with estimates of 16-18%
per year [13, 14]. Memory-led or amnestic MCI is particularly
predictive of dementia, with rates as high as 41% after 1 year
and 64% after 2 years for amnestic MCI [8, 15, 16].
Impairment of delayed recall is a strong predictor of progres-
sion to Alzheimer’s disease in longitudinal studies [17, 18].
Patients with MCI in this context show quantitative differ-
ences from patients with no evidence of cognitive impairment,
with reduced medial temporal lobe volumes [19, 20] and
changes on PET imaging [21, 22]. In the field of
Alzheimer’s research and therapeutics, there is now pressure
to intervene early to prevent the development of dementia and
to start treatment in patients with MCI. However, clinical trials
thus far have been disappointing [23].
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MCl in PD

Cognitive deficits are common in PD, even early in the disease
when there may be no cognitive complaints [2]. The concept
of mild cognitive impairment in Parkinson’s disease (PD-
MCI) is therefore emerging as an intermediate stage between
normal cognition and dementia, similar to amnestic MCI in
AD.

Epidemiology

Epidemiological studies report prevalence rates of MCI in PD
of 25-50% of patients [24-26], depending on the population
and clinical setting. It is estimated to be as high as 20-42% at
the time of diagnosis [25, 27, 28ee].

PD-MCI Phenotypes

PD-MCI is a heterogeneous entity in phenotype, timing and
progression, with a range of cognitive domains affected
[28e¢]. Characteristically, where a single domain is involved,
this is mostly a non-amnestic subtype [29, 30+]. However,
subtypes with predominant deficits in attention, memory, ex-
ecutive function, psychomotor speed and visuospatial abilities
have also been described [24, 26, 27, 31], and it frequently
involves deficits across multiple domains [32-34].

One influential model for the pattern of cognitive deficits in
PD was framed by Barker and colleagues as the dual syn-
drome hypothesis [35]. In their longitudinal CamPalGN study
[2, 36], they observed two distinct patterns of cognitive in-
volvement in PD: a fronto-striatal/executive group and a pos-
terior cortical/visuospatial cognitive phenotype [36]. One
challenge, when comparing performance across cognitive do-
mains, is maintaining the same level of difficulty across do-
mains. Indeed, the relative preservation of visuospatial abili-
ties in patients in some studies [27, 32] may be a result of the
lack of sensitivity of the tests used, compared with more dif-
ficult tests of memory.

PD-MCI—New Proposed Definition

The definition of PD-MCI has varied between different stud-
ies, prompting a task force from the International Parkinson
and Movement Disorder Society (MDS) to provide a unified
definition based on a literature review and expert consensus
[28ee].

According to these new criteria (see Table 1), in patients
with a diagnosis of PD, PD-MCI is defined as an insidious
decline in cognitive abilities reported by patient or informant
or observed by the clinician, not caused by other
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Table 1 Criteria for the diagnosis of PD-MCI

Inclusion criteria:
Diagnosis of Parkinson’s disease as based on the UK PD
Brain Bank Criteria
Gradual decline, in the context of established PD, in cognitive ability
reported by either the patient or informant, or observed by the clinician
Cognitive deficits on either formal neuropsychological testing or a
scale of global cognitive abilities
Cognitive deficits are not sufficient to interfere significantly with
functional independence, although subtle difficulties on complex
functional tasks may be present

Exclusion criteria:
Diagnosis of PD dementia based on MDS Task Force proposed criteria
Other primary explanations for cognitive impairment (e.g. delirium,
stroke, major depression, metabolic abnormalities, adverse effects of
medication or head trauma)
Other PD-associated comorbid conditions (e.g. motor impairment or
severe anxiety, depression, excessive daytime sleepiness or psychosis)
that, in the opinion of the clinician, significantly influence cognitive
testing

PD-MCI level guidelines:
A. Level I (abbreviated assessment)

+ Impairment on a scale of global cognitive abilities validated for use
in PD

or

* Impairment on at least two tests, when a limited battery of
neuropsychological tests is performed (i.e. the battery includes less
than two tests within each of the five cognitive domains, or less than
five cognitive domains are assessed)

B. Level II (comprehensive assessment)

* Neuropsychological testing that includes two tests within each of
the five cognitive domains (i.e. attention and working memory,
executive, language, memory and visuospatial)

* Impairment on at least two neuropsychological tests, represented
by either two impaired tests in one cognitive domain or one impaired
test in two different cognitive domains

+ Impairment on neuropsychological tests may be demonstrated by
any one of the following:

o Performance approximately 1 to 2 SDs below appropriate norms
o Significant decline demonstrated on serial cognitive testing
o Significant decline from estimated premorbid levels

Subtype classification for PD-MCI (optional, requires two tests from each
of the five cognitive domains assessed and is strongly suggested for
research purposes):

PD-MCI single-domain—abnormalities on two tests within a single
cognitive domain (specify the domain), with other domains unimpaired
or

PD-MCI multiple-domain—abnormalities on at least one test in two or
more cognitive domains (specify the domains)

From Litvan et al. (2012, with permission

comorbidities. In contrast to dementia, cognitive deficits are
present on testing but do not interfere with functional inde-
pendence of the patient [28e¢].

In view of the varying availability of neuropsychological
testing in different clinical settings, the Task Force proposed
two levels of definition: level I uses a pragmatic approach that
allows for the diagnosis of PD-MCI based on an abbreviated
cognitive assessment, either with a global scale such as the
Montreal Cognitive Assessment (MoCA) or a limited range of

neuropsychological tests. Within this level of definition, im-
pairment must be present on a scale of global cognitive abil-
ities or at least two out of alimited battery of neuropsycholog-
ical tests.

Level II definition of PD-MCI is based on a more compre-
hensive assessment with at least two tests for each of the five
cognitive domains (attention and working memory, executive,
language, memory and visuospatial) and allows more accurate
assessment. A range of suitable standard neuropsychological
tests can be used for this assessment [28¢¢]. Deficits need to be
detected on at least two tests for each of the five cognitive
domains. This can be either two tests within one cognitive
domain or two tests across different cognitive domains.
Impairment is defined as 1 to 2 standard deviations below
population norms, a significant decline from previous testing
or a significant decline from the individual’s estimated
premorbid level.

Further subtyping of PD-MCI by the task force is designed
to enable future research into whether impairments in specific
cognitive domains have distinct neurobiological substrates.
Using this framework, PD-MCI can be divided into single or
multiple domains, according to involvement of deficits on two
tests within or across cognitive domains, respectively.
Importantly, the task force recommended reporting exactly
which cognitive domains are affected to enable differences
between the subtypes to be studied.

Conversion from MCI to Parkinson’s Disease
Dementia

Generally, the presence of PD-MCI predicts the development
of PD dementia (PDD) [28¢¢], but longitudinal studies show
heterogeneity in patterns of conversion to PDD and a notable
proportion of patients with PD-MCI will revert to normal cog-
nition during follow-up. In longitudinal studies, rates of con-
version from PD-MCI to PDD are broadly similar: 62% after
4-year follow-up [37], compared with only 20% in patients
without cognitive involvement; 50% at 5 years in a
community-based Swedish study [38]; and 39% at 5-year fol-
low-up in the Norwegian ParkWest study [39¢]. Notably, rates
of reversion back to normal cognition were 11% in the
Swedish study [38] and 28% in the ParkWest study [39e].
The variability of these results is likely to reflect differences
in study populations, assessment methods and definitions. The
level 11 MDS PD-MCI definition as a predictor of PDD was
recently validated in a longitudinal study, where conversion
rates from PD-MCI to PDD varied depending on degree of
cognitive deficit at baseline [40]: patients scoring between 1
and 1.5 SD below the mean in at least two cognitive tests had
12% rate of conversion to PD dementia during follow-up,
compared with patients who fell below 2 SD from the mean
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(in two tests) at baseline, of whom 50% developed PD demen-
tia after follow-up.

MCI in Prodromal PD

Recent reports show that cognitive deficits, especially in flu-
ency, can already be detected in the prodromal phase of PD,
even before the onset of motor symptoms. Poor cognitive
function, measured using letter-digit substitutions, Stroop col-
our test, verbal fluency and 15-word list learning tests, is as-
sociated with increased risk of developing PD [41e°].
Cognitive deficits are even seen in people who do not yet have
Parkinson’s disease but are known to be at risk (e.g. due to
hyposmia or REM sleep disorder [42, 43] and in the
Parkinson’s at Risk study, unaffected relatives of people with
Parkinson’s disease who had hyposmia and abnormal DaT
scans also showed impaired performance in tests of attention,
verbal fluency and processing speed [44].

How to Determine Who Is at Risk
Demographic and Clinical Risk Factors

Clinical factors associated with a higher risk of cognitive in-
volvement in PD include the following: older age [38, 39] at
diagnosis (age over 70 associated with odds ratio (OR) 5.2 in
one study [45], akinetic rigid phenotype (freezing and/or falls,
OR 1.8 [45], poor performance on verbal fluency tests and
higher rates of comorbidity [2]. REM sleep behavioural dis-
order (OR 5.4 [45] and dysautonomia (OR 5.3 for systolic
blood pressure drop [45]) are also associated with higher risk
of developing dementia in PD [45, 46]. Other associated fac-
tors include male gender (OR 4.1 [45] and non-motor symp-
toms including depression and anxiety [47]. Lower apathy
scores and higher Epworth Sleepiness scores were relatively
protective, being associated with reversion to normal cogni-
tion at follow-up [39¢]. Conversely, other studies have shown
increased risk of PDD with excess daytime sleepiness [48].
Whether those that reverted to normal cognition had other
causes of cognitive deficits will need to be tested in longitu-
dinal studies.

Higher rates of conversion from PD-MCI to dementia are
associated with, older age, depression and a non-tremor dom-
inant phenotype [2, 37, 39¢]. Consistent neuropsychological
profiles of PD-MCI associated with higher conversion rates to
dementia are non-amnestic MCI (affecting domains other than
memory) [37] including deficits in fluency, mental flexibility
and visuospatial domains, although memory deficits are also
reported [2, 38]. The two groups defined by Barker et al. also
differed in their rates of conversion to dementia: those with a
frontal-executive phenotype had a higher rate of reversion to
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normal cognition than those with visuo-perceptual deficits [2,
35]. As definitions of PD-MCI are increasingly refined and
improved, more accurate predictions of the risk of develop-
ment of dementia in PD based on cognitive profiles of PD-
MCI are likely to be developed.

Biomarkers

Biomarkers, such as CSF proteins and imaging, are not cur-
rently part of the definition of PD-MCI, although they do form
components of criteria for non-PD MCI [10]. They may be-
come important in the future as our understanding of PD-MCI
increases and as clinical trials to slow the progression of de-
mentia in PD are developed.

CSF

Lower levels of CSF amyloid beta may reflect brain amyloid
deposition [49]. Decreased CSF amyloid beta is found in pa-
tients with PDD and PD [50, 51] and correlates with scores in
verbal learning and Stroop word colour tests [52]. CSF amy-
loid beta also correlates with risk of developing dementia in
PD [53-55]. Importantly, lower levels of CSF amyloid beta
are also seen in patients with PD before they develop PD-MCI
and are therefore predictive of cognitive involvement in PD
[54]. However, levels of amyloid beta are not lower in patients
with PD-MCI than those with normal cognition in PD [55,
56]. This may reflect the wide definition of PD-MCI and its
relative lack of specificity for future conversion to PDD.

The story is less clear for tau. Higher CSF tau is correlated
with impaired performance on cognitive tests of naming and
memory when tested in mixed groups of patients with PD and
PDD [50, 53], and CSF tau is slightly higher in patients with
PD and cognitive involvement (33/36 of whom had PD-MCI)
[56]. But other studies in patients at earlier disease stages have
showed no associations between CSF tau and cognition in PD
[57].

Radioligand Imaging

Radioligand imaging can provide insights into mechanisms of
cognitive involvement in PD-MCI and may have a potential
role as a clinically useful biomarker of MCI in PD. Patients
with PD-MCI show hypometabolism in posterior brain re-
gions compared with PD patients with no evidence of cogni-
tive involvement [58] and reduced metabolism is seen using
FDG-PET in posterior cortical regions in PD patients who
later developed PD dementia after 6 years of follow-up [59,
60].

Reduced dopamine transporter uptake correlates with ex-
ecutive function [61, 62], but executive dysfunction does not
always progress to dementia in PD [63]. More recently, re-
duced caudate uptake on DAT-SPECT imaging was shown to
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predict cognitive decline in PD, especially when combined
with other measures including age and CSF [64]. Finally, li-
gands binding to amyloid may have a role in detecting PD-
MCI as amyloid binding negatively correlates with cognition
in PD [65, 66] and increased amyloid binding at baseline
increases the likelihood of cognitive involvement in PD [65].

MRI

MRI structural differences in grey matter between patients with
PD-MCI and patients without cognitive involvement show
varying patterns of atrophy involving all cortical brain areas
[67-69], as well as subcortical regions [68, 70, 71]. These
differences are likely to be partly due to variation in MRI meth-
odology to assess cortical thickness as well as differences in
cognitive tests. However, a more fundamental reason for dif-
ferences in findings is due to the low sensitivity of grey matter
atrophy in detecting cognitive involvement in PD. Grey matter
atrophy indexes neuronal cell death which is a relatively late
event in PD dementia. Therefore, in order to detect the earliest
signs of PD-MCI, measures that are sensitive to earlier patho-
logical events are needed. These are likely to be techniques
such as diffusion tensor imaging that detect axonal and synaptic
changes [72] which occur at earlier stages in PD-MCI.
Diffusion-weighted imaging MRI techniques [73, 74] that
provide information about white matter integrity are sensitive
to axonal damage. Estimates of mean diffusivity (MD) and
fractional anisotropy (FA) index the overall displacement of
molecules and the pattern of restriction of diffusion of mole-
cules, respectively. Indeed, white matter changes increase as
cognition worsens in PD, as measured using FA and MD
[73-75]. When measured concurrently, white matter alter-
ations are seen in patients with PD before changes in grey
matter atrophy [72, 74, 76]. New techniques for quantification
of structural change across the entire network are emerging
that are likely to show sensitivity for changes in PD-MCI [77].

Underlying Pathophysiology of MCI-PD
Alpha Synuclein

The precise pathophysiological mechanisms underlying cog-
nitive involvement in PD are still not fully understood. There
is only scarce data specific to PD-MCI, rather than dementia
in PD. This is partly due to the fact that PD-MCI occurs
relatively early in the disease, with only limited series of
PD-MCI cases seen at post mortem (see [78] for review). It
is becoming clear that PD-MCl is likely to be characterised by
a combination of underlying pathologies [79, 80]. Lewy bod-
ies (intracellular inclusions made up of alpha synuclein) are
classically associated with PD and PDD [81, 82]. However, it
is the combination of Lewy bodies with Alzheimer’s pathol-
ogy (fibrillary beta amyloid and intraneuronal tangles of

hyperphosphorylated tau) that is most strongly associated with
dementia in Parkinson’s disease [83—85]. Indeed, there seems
to be synergistic effect between alpha synuclein and beta am-
yloid pathology. For example, a recent study showed a strong
correlation between the extent of neurofibrillary tangles and
alpha synuclein [86¢], and this observation is supported by
mouse studies and in vitro model systems [87, 88].

Location of Pathological Accumulations

As well as accumulation of pathological proteins, the morpho-
logical characteristics and location of pathological accumulations
within affected cells appear to be critical in patients with cogni-
tive involvement in PD. The synapse may be important in the
earlier stages of cognitive involvement in PD. The physiological
form of alpha synuclein localises to the presynaptic terminal, and
in both PD and DLB, alpha synuclein aggregates localise to the
synapse [89, 90]. Consistent with this, reduced levels of two
synaptic proteins (neurogranin and SNAP25) and neocortical
ZnT3, a protein involved in synaptic zinc regulation, are all as-
sociated with cognitive involvement in PD [91, 92].

Axonal involvement also appears to be an important early
feature of PD, with alpha synuclein accumulation starting in
the axonal compartment, before neuronal loss is seen [93].
Moreover, neurones that are preferentially affected in PD-
associated dementia show extreme length. For example, the cho-
linergic cells of the nucleus basalis of Meynert and the seroto-
nergic cells of the raphe nucleus are both implicated in PDD and
both show long, thin and complex branching axons [94-97].

Neurotransmitters

Changes in the levels of specific neurotransmitters may also
have an important role in PD-MCI. There is a correlation
between neuronal loss in the nucleus basalis of Meynert, cor-
tical cholinergic deficits and the degree of cognitive impair-
ment in PD [94]. Reduced choline acetyltransferase activity in
frontal and temporal regions correlates with Lewy body load
and with cognitive deficits [98]. In PD patients without de-
mentia, cholinergic denervation is associated with impaired
verbal learning and Stroop performance [99, 100]. These his-
topathological and neuroimaging findings are borne out by the
observation that anticholinergic drugs that are used to treat
motor symptoms in PD impair both memory [101] and frontal
executive function [102]. Furthermore, treatment with cholin-
esterase inhibitors, which restore levels of acetyl choline
[103], improve cognitive function in PDD and DLB, lending
further support to the role of cholinergic neurotransmission in
these conditions.

Noradrenergic pathways may also be involved in cognitive
changes in PD. As well as early loss of peripheral noradren-
ergic neurones in PD [104], noradrenaline exerts central ef-
fects, possibly by integrating activity across brain regions
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[105]. Alpha synuclein deposition is particularly heavy in the
locus coeruleus, the chief source of noradrenergic projections
in the brain [106]. This may form the basis of orthostatic
hypotension, commonly seen in PD with associated cognitive
deficits.

The relationship between dopamine and cognition is less
clear-cut. Dopamine has beneficial effects on tasks sensitive to
frontal lobe dysfunction [101, 107, 108] and uptake of dopa-
mine transporter ligands may predict change in cognitive
function in early PD [64]. However, visuospatial and memory
tasks are not affected by dopaminergic medications [109], and
a recent therapeutic trial of rasagaline that targets dopaminer-
gic pathways did not show improved cognition in patients
with PD-MCI [110].

In summary, cognitive involvement in PD-MCT is likely to
arise from a combination of mechanisms. Pathological accu-
mulation of alpha synuclein as well as tau and amyloid beta
are of importance, especially within neurones with particularly
long axons, and neurotransmitter changes especially involve
loss of cholinergic function.

Current Challenges and Controversies

DLB and PDD

There is a longstanding debate as to whether PD dementia and
dementia with Lewy bodies (DLB) are one or distinct entities
[111]. Parkinson’s disease dementia is defined as progressive
cognitive decline in the context of established PD at least
1 year after onset of Parkinsonian motor symptoms [112].
Conversely, dementia occurring before, simultaneous to or
within the first year of Parkinsonism is DLB [113]. The pres-
ence of cognitive deficits in prodromal and preclinical PD
calls into question the very definition of DLB. If cognitive
changes can be detected years before the onset of classical
PD, this suggests that a cognitive phenotype is core to the
diagnosis of PD itself and blurs the boundaries with DLB.
This issue remains unresolved, although it is acknowledged
in the current Movement Disorder Society criteria for both
DLB and PD-MCI [28e+, 113]. As our understanding of the
underlying mechanisms of cognitive involvement in
Parkinson’s disease increases, definitions of DLB, PDD and
PD-MCIT are likely to become clarified.

PD-Associated Comorbidities

Other factors commonly associated with PD may impact on
cognition as well as general levels of alertness and attention.
These include effects of medications, mood changes such as
depression and apathy, as well as sleep disorders. Motor fluc-
tuations can also influence cognition and an individual’s glob-
al abilities in day-to-day functioning. These should all be
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taken into consideration when assessing patients for potential
PD-MCI. Where possible, therapeutic interventions should be
targeted to optimise each of these factors.

Heterogeneity in PD-MCI

As currently defined, PD-MCI is a heterogeneous entity,
encompassing patients with deficits in any cognitive domain,
and with varying levels of impaired functioning. Evidence
already suggests that some sub-groups, particularly those with
deficits in visuospatial performance, are at the highest risk of
developing PD dementia [2, 35]. Maintaining wide defini-
tions, with poorly differentiated cognitive profiles, prevents
accurate comparisons across studies. Critically, whilst these
boundaries are blurred, clinically useful disease stratification
will not be possible. There is clearly a need for better cognitive
phenotyping to enable well-defined sub-groups that are more
likely to show similar rates of disease progression. In part, this
could be improved with more sensitive and more widely avail-
able measures of visuospatial function that are beginning to
emerge [114].

Therapies to Treat PD-MCI
Pharmacological

There are currently no pharmacological treatments to improve
cognition specifically in PD-MCI, although this is now an area
of active research. A recent small cross-over study of the
rivastigmine patch reported a trend for [115] improvement in
the primary outcome measure of global improvement [116].
Recent trials of atomoxetine, a selective noradrenaline reup-
take inhibitor, suggested improvement in global cognition in
patients with depression in PD [117] as well as improved
decision-making, attention and planning in patients with PD
without dementia [118] supporting the potential role for nor-
adrenergic pathways in PD-MCI.

Trials of disease-modifying therapies in Parkinson’s are
currently underway, with the ultimate aim of slowing the
disease. Targets include the lysosomal pathway [119] and
immunotherapies targeted against alpha synuclein [120] as
well as repurposing of established drugs [3]. Whether
these treatments will have specific effects on slowing cog-
nitive involvement in PD or in PD-MCI will need to be
tested.

Non-Pharmacological

Despite a large number reports of cognitive training to im-
prove cognition in PD, the impact of these interventions is still
not clear. A recent meta-analysis of seven studies, including
272 participants [121], found key methodological problems.
For example, 6 out of 7 studies suffered from bias due to lack
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of'adherence to intention to treat analyses, and two out of 7 did
not blind assessors. They concluded that the body of evidence
is small but that there may be a small overall effect on cogni-
tion. They found no improvement in scores such as the
MMSE or MoCA and that most gains were in executive skills
such as planning. Notably, memory and visuospatial domains
did not show significant improvement.

Interventions using physical exercise show more promise
in improving cognitive outcomes in PD. Across several stud-
ies, moderate intensity aerobic exercises performed 23 times
per week lead to some improvement in executive function
[122-126] as well as language function [127]. Large-scale
RCTs are now underway [128] and will be of critical impor-
tance to assess the effectiveness of these physical interven-
tions in preventing or slowing cognitive involvement in PD
and PD-MCIL.

Conclusions

PD-MCI as a clinical entity has an important role in under-
standing the progression of PD both at an individual and a
population level. Future work will require more longitudinal
studies of the progression of cognitive change in PD, with
more sensitive visuospatial measures. It is likely that defini-
tions and biomarkers will begin to incorporate multimodal
measures alongside neuropsychological tests. Recognising
the earliest stages of cognitive involvement will allow disease
stratification and personalised treatment, with the potential for
early intervention. It will enable better-powered clinical trials,
and potential outcome measures, ultimately to develop treat-
ments to prevent the progression of dementia in PD.
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