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,is article first studied the morphological characteristics of the EEG for intensive cardiac care; that is, based on the analysis of the
mechanism of disease diagnosis and treatment, a signal processing and machine learning model was constructed. ,en, the
methods of signal preprocessing, signal feature extraction, new neural network model structure, training mechanism, opti-
mization algorithm, and efficiency are studied, and experimental verification is carried out for public data sets and clinical big data.
,en, the principle of intensive cardiac monitoring, the mechanism of disease diagnosis, the types of arrhythmia, and the
characteristics of the typical signal are studied, and the rhythm performance, individual variability, and neurophysiological basis
of electrical signals in intensive cardiac monitoring are researched. Finally, the automatic signal recognition technology is studied.
In order to improve the training speed and generalization ability, a multiclassificationmodel based on Least Squares Twin Support
Vector Machine (LS-TWIN-SVM) is proposed. ,e computational complexity of the classification model algorithm is compared,
and intelligence is adopted.,e optimization algorithm selects the parameters of the classifier and uses the EEG signal to simulate
the model. Support Vector Machines and their improved algorithms have achieved the ultimum in shallow neural networks and
have achieved good results in the classification and recognition of bioelectric signals. ,e LS-TWIN-SVM algorithm proposed in
this paper has achieved good results in the classification and recognition of bioelectric signals. It can perform bioinformatics
processing on intensive cardiac care EEG signals, systematically biometric information, diagnose diseases, the real-time detection,
auxiliary diagnosis, and rehabilitation of patients.

1. Introduction

,e biological body exhibits electrical changes during
physiological activities, which are caused by the potential
difference between the inside and outside of the corre-
sponding cell membrane, which reflects the excitement
changes of the corresponding parts, and is an important
basis for biomedical clinical diagnosis. Bioelectric signals
mainly include electrocardiogram (ECG), electroencepha-
logram (EEG), electrooculogram (EOG), and electromyo-
gram (EMG) [1]. ,e bioelectric signal has the
characteristics of small amplitude, low frequency, strong
noise, and strong randomness, and has the characteristics of
chaos, nonlinearity, and multichannel [2]. ,erefore, useful
signals are easily submerged in noise interference. For ex-
ample, the ECG signal is in the order of mV, and the

equipment collection must ensure the amplitude of
0.1–8mV and the frequency range of 0.05–100Hz. ,e
amplitude of the ECG of a normal person is generally within
5mV, and the energy is mainly concentrated in 0.5–45Hz.
,e EEG signal is of the order of mV, and the frequency is
below 60Hz. ,e relative frequency of myoelectric and
neuroelectric signals is relatively high, the frequency is
0–10 kHz, the amplitude of the myoelectric signal is below
5mV, and the neuroelectric signal is of the order of mV [3].
,e interference sources of bioelectric signal acquisition
mainly include power frequency interference (50Hz or
60Hz), baseline drift, and interference from other compo-
nents of biological signals [4]. Moreover, the signal is easily
affected by the environment, psychology, and physiology
and is a nonstationary random signal. ,e electrical signals
are taken from the body surface, and the potential changes
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presented by different body surface positions are different. In
order to detect the changes in the body surface potential in
an all-round way, the measurement of bioelectric signals is
often multichannel. For example, the standard ECG signal
commonly used in clinical practice is 12 leads, while the EEG
signal is 22 leads or more.,erefore, the processing methods
of bioelectric signals are complex and diverse, and it is
necessary to pay attention to signal processing algorithms
that combine the time domain, frequency domain, and space
domain [5]. Bioelectric signal recognition emphasizes ro-
bustness, accuracy, and repeatability, especially medical
monitoring equipment, which requires real-time perfor-
mance. ,erefore, real-time effects must be considered on
the premise of ensuring diagnostic accuracy. As the control
center of the human body system, the brain directs various
tissues, organs, and activities of the human body. ,e usual
research methods for the brain include EEG, nuclear
medicine imaging, MRI, cerebrovascular angiography, and
other microscopic nerve detection method. Compared with
other methods, EEG has the advantages of simple experi-
ment, low cost, and relatively low requirements for the
experimental environment.,erefore, from a practical point
of view, EEG is very promising in brain research and the
development of related products.

Body surface physiological electrical signals such as
ECG, EEG, and EMG have the characteristics of flexible
collection; being noninvasive, economical, and convenient;
and so forth and have been widely used in intelligent disease
monitoring, diagnosis, and rehabilitation [6]. ,e charac-
teristics of the bioelectric signal itself determine the com-
plexity and diversity of its processing methods. ,e new
intelligent auxiliary diagnosis and treatment system based
on bioelectric signals integrates biomedicine, Internet
technology, and artificial intelligence technology, and its
processing process is a typical pattern recognition process. It
generally consists of four parts: bioelectric signal acquisition,
signal transmission and processing, intelligent identifica-
tion, and information feedback or control [7]. ,e collection
of bioelectric signals includes sensors and microprocessor
units, which are responsible for signal collection, prelimi-
nary preprocessing, and format conversion. In the trans-
mission stage, the signal is sent to the information center or
the microprocessing unit, and then the signal filtering and
other processing and intelligent auxiliary diagnosis are
performed, and finally, the information is output or feedback
to control the actuator. ,e key technology of intelligent
auxiliary diagnosis system is signal processing and intelli-
gent recognition algorithm, which determines the degree of
intelligence and clinical application value.

With the development of advanced sensor technology
and artificial intelligence technology, intelligent auxiliary
diagnosis and treatment systems that integrate wearable
devices, the Internet of ,ings, and wireless Internet have
promoted pioneering changes in smart medicine. Auxiliary
diagnosis and treatment technology based on bioelectrical
signals started from the discovery of bioelectrical signals and
experienced digitization and networking to the integration
of the Internet of ,ings and wireless networks [7]. ,e
corresponding collection equipment developed from

digitization to portable and wearable, and the identification
method of bioelectrical signals. It also includes advanced
artificial intelligence algorithms from simple threshold
judgment, statistical analysis.

,is paper firstly studies the morphological character-
istics of ECG and EEG signals, respectively; that is, based on
the analysis of disease diagnosis and treatment mechanisms,
it constructs signal processing and machine learning models
and studies signal preprocessing, signal feature extraction
methods, new neural network model structures, training
mechanisms, and optimization algorithms and efficiency
and for experimental verification of public data sets and
clinical big data. In the second part, we study the principle of
EEG in intensive cardiac care and the mechanism of disease
diagnosis, the types of arrhythmia, and the characteristics of
typical ECG; the rhythm performance, individual variability,
and neurophysiological basis of EEG signals in intensive
cardiac care are studied. ,e third part studies the signal
automatic recognition technology. In order to improve the
training speed and generalization ability, several multi-
classification models based on the Least Squares Twin
Support Vector Machine (LS-TWIN-SVM) are proposed,
and the computational complexity of several model algo-
rithms is compared. In addition, a variety of intelligent
optimization algorithms are used to select the parameters of
the classifier, and the EEG signal is used to simulate the
model. Support Vector Machines and their improved al-
gorithms have achieved the ultimate in shallow neural
networks and good results in the classification and recog-
nition of bioelectric signals.

1.1. Analysis of Algorithm for Feature Extraction of ECG and
EEG Signals. ,e bioelectric signal has the characteristics of
multichannel and frequency band rhythm individual vari-
ability, and its feature extraction method involves multiple
signal processing theories such as time domain, frequency
domain, transform domain, and space domain [8].

1.2. ECG Signal Feature Extraction Method. ,e American
Heart Association revised its opinions and was later pro-
moted by the International Electrocardiology Society,
forming a standard 12-lead ECG that is currently interna-
tionally recognized and used in various countries. According
to the relationship of the ECG lead vector, the compression
limb leads can also be derived from other leads.,e standard
12-lead ECG includes limb leads I, II, III and compression
limb leads VR, VL, and VF, and 6 chest leads Vl, V2, V3, V4,
V5, and V6; each lead reflects the different parts of the
potential change. According to the theory of limb leads
proposed by Einthoven, any limb lead can be deduced from
the other two, namely, I + III� II. According to the rela-
tionship of the ECG lead vector, the compression limb leads
can also be derived from other leads.

,e feature extraction of the ECG signal is the key to
guarantee the subsequent classification. ,e feature ex-
traction method of the ECG signal can be divided into the
direct extraction of the time domain waveform, the ex-
traction of the frequency domain, or the feature extraction of
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the transform domain. ,e time-domain features are di-
rectly derived from the shape of the ECGwaveform, which is
more in line with the clinician’s diagnostic habits. ,e time-
domain features include the main wave amplitude, ST
segment offset, QT interval, PP interval, RR interval, and RR
interval ratio. Frequency domain features are signal values
after frequency domain transformation, such as Discrete
Fourier Transform (DFT) [9] and Power Spectral Density
(PSD). Transform domain feature extraction is generally to
extract the transform result or the coefficient of the trans-
form domain function as the feature after the ECG signal is
transformed in the transform domain, such as the statistics
of the ECG signal [10], variance, discrete wavelet transform,
wavelet packet decomposition, matching tracking algorithm,
Hermite function, AR model parameters, and principal
component analysis (PCA) [11]. ,e transform domain
features do not need to rely on basic medical knowledge and
the position information of each ECG wave but use
mathematical methods to automatically analyze and cal-
culate them, which is widely used in intelligent auxiliary
diagnosis.

1.3. Status of Intelligent Classification and Recognition
Methods. According to the pattern characteristics of the
ECG or EEG signal, it is the ultimate goal to complete
automatic classification and recognition, explain the inner
meaning reflected by the signal, and then output diagnostic
information or control the actuator to perform auxiliary
treatment [12]. ,e pattern classification methods of bio-
logical signals mainly include automatic knowledge mod-
eling, statistical classification, traditional machine learning,
and neural networks. ,e method of automatic knowledge
modeling is based on knowledge expression and reasoning
and is classified through logical reasoning according to the
characteristic knowledge base such as signal shape, for ex-
ample, fuzzy logic, expert system, and Markov model. ,is
kind of method knowledge expression is intuitive and easy to
understand, but it relies too much on knowledge expression;
that is, it relies on expert experience, and the degree of
intelligence is not high. Since the 1990s, statistical classifi-
cation and machine learning techniques have gradually been
used in biomedical signal classification, becoming the main
branch of ECG and EEG signal classification methods. For
example, Bayesian model (Bayes), K-Nearest Neighbor
(KNN) [13], decision tree, and Linear Discriminant Analysis
(LDA) [14]. Classical pattern classification methods have
achieved certain results in the automatic identification of
bioelectric signals, but the classification results and response
speed are not satisfactory. With the development of neural
network technology, especially deep learning technology in
recent years, new breakthroughs have been made in bio-
medical assisted diagnosis. ,e following is a detailed
analysis of the application status of neural network tech-
nology in the recognition of ECG and EEG signals.

1.4. Traditional Neural Network Algorithm. In 1986, DE
Rumelhart and GEHinton et al. proposed a neural network
error backpropagation (EBP) [15] training algorithm, which

solved the “exclusive OR” problem of the “perceptron” and
reduced the neural network. After the 1990s, neural network
methods have gradually been applied to the automatic
classification and recognition of biological signals [16], and
certain results have been achieved. Caricato et al. [17]
proposed a neural network classification method based on
the time characteristics of the EEG signal. Katheria et al. [18]
extracted the time interval of the ECG signal, the high-order
cumulant of the QRS complex, and other characteristics and
used a fuzzy neural network to analyze the 7 types of ECG.
,e signal classification result reached 96%. Felze: et al.
proposed a probabilistic neural network classification model
for EEG signal classification and recognition. Das et al. [19]
used modular neural networks to classify large-scale EEG
signals and achieved good results. Dereymaeker et al. [20]
used wavelet transform to extract features, and the accuracy
of the classification of the four types of ECG signals by the
multilayer perceptron network was 94%.

Traditional neural networks are difficult to find the
optimal network structure and have limited fitting capa-
bilities. In practical applications, in the face of data with large
variability, the recognition accuracy fluctuates greatly, and
the generalization ability is poor, which limits the clinical
application of neural network automatic recognition
technology.

1.5. Support Vector Machine and Its Extended Algorithm.
Another popular and effective ECG and EEG signal clas-
sification algorithm is the Support Vector Machine. Support
Vector Machine (SVM) is a supervised machine learning
method proposed by Claessens et al. [21]. ,e algorithm is
based on the minimum structural risk. ,e principle of
transformation is to obtain the segmentation hyperplanes of
different types of data and then classify and recognize the
distance between the sample and the hyperplane. Claessens
et al. proved that SVM can minimize the structural risk and
is superior in the classification of small samples.,e artificial
neural network (ANN) method that can only minimize the
empirical risk is flawed. Compared with traditional ANN,
SVM has shown better generalization ability in solving small
sample, nonlinear, and high-dimensional learning. Support
Vector Machine, Least Squared Support Vector Machine
(LS-SVM), and SVM combined with various intelligent
optimization algorithms are widely used in the classification
and recognition of EEG, ECG, and other biological signals.
However, SVM needs to solve a large quadratic program-
ming problem when solving the hyperplane. ,e increase in
sample size leads to too much computational complexity,
and the classification effect of SVM is not good when solving
cross data.

1.6. Analysis of the Diagnosis and Treatment Mechanism of
ECG and EEG Signals. ECG is a technology that uses bio-
sensor measuring electrodes to record the electrical activity
pattern of the heart during each cardiac cycle from the body
surface. It is one of the most commonly used examinations
for clinical heart disease. It can not only help diagnose
arrhythmia, myocardial ischemia, myocardial infarction,
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and location; evaluate the effect of drugs on the heart;
monitor after cardiac surgery; determine the condition of
pacemakers; and so forth but also be a must for routine
surgical procedures and intensive care units (ICU).

1.7. Principles of Medical ECG. Electrical activation occurs
when the heart is active. ,is electrical activation can cause
changes in the body surface potential. According to the time
sequence of cardiac activation, this body surface potential is
recorded to form a continuous curve, which is called ECG.
,e abscissa of the standard ECG paper represents time, and
each cell of 1mm represents 0.04 s; the ordinate represents
the amplitude, and each cell of 1mm represents 0.1mV.
Figure 1 shows the principle of the electrocardiogram. A
complete EGG cycle includes atrial depolarization, ven-
tricular depolarization, and ventricular repolarization. ,e
complete cardiac process produces P wave, QRS complex
wave, and T wave and PR interval, QT interval, and ST
interval.

Several key interval indicators include the PR interval.
,e PR interval represents the time required for the ex-
citement generated by the sinoatrial node to reach the
ventricle through the atrium, the atrioventricular junction,
and the atrioventricular bundle and causes the ventricle to
start to excite; the QT interval is the time for the ventricular
depolarization and repolarization process, which represents
the heart. ,e ST segment represents that all parts of the
ventricle have entered a depolarized state. At this time, there
is no potential difference between the parts of the ventricle,
so the ST segment curve is basically a horizontal state.

At present, the commonly used clinical ECG is 12-lead,
which is called “standard lead.” ,e Dutch physiologist
MacDarby et al. [22] proposed the concept of leads and the
naming of ECG waveforms in 1903. In 1933, Wilson created
unipolar limb leads VR, VL, and VF and precordial leads
(thoracic leads) V1–V6, Akiyama et al. [23] modified the
central electrical terminal and designed the compression
limb leads. It is more practical and becomes themain body of
clinical ECG.

When the heart has arrhythmia or is damaged due to
ischemia, or even necrosis, the changes in the electrical
activity of the heart will be clearly reflected on the ECG,
showing abnormal changes in the shape of each waveform;
that is, the amplitude, shape, and time of the ECG signal
features such as interval can reflect the underlying diseases of
the heart and provide a reliable basis for doctors to diagnose
various heart diseases. According to the standards of the
American Association for the Advancement of Medical
Devices (AAMD), more than a dozen common arrhythmias
can be divided into 5 categories, namely, normal heartbeat
(N, including normal heartbeat, left and right bundle branch
block, etc.), supraventricular beats (S, including atrial pre-
mature beats, borderline premature beats, etc.), ventricular
different beats (V, including ventricular premature beats and
ventricular escape beats), ventricular fusion beats (F), and
unknown beats (Q, pacing heartbeat, uncategorized heart-
beat, etc.). Figure 2 lists several common ECG signal time-
domain waveforms of arrhythmia.

2. Experimental Design

2.1. Based on LS-TWSVM-Based Intensive Cardiac Moni-
toring EEG Amplitude Recognition. Scalp electrodes collect
electroencephalogram (EEG) signals. ,is method has the
characteristics of simple collection, noninvasiveness, high
time resolution, low cost, convenience, and flexibility and is
especially suitable for wearable systems. From the analysis in
the first chapter, it can be seen that although advanced
artificial intelligence technologies such as machine learning
have greatly promoted the development of BCI technology
of motor imagination, the current medical rehabilitation
training system based on motor imagination BCI still has
certain difficulties in its practical application. ,e main
problems are that the accuracy of EEG source signals needs
to be improved; the system response speed is limited; the
recognition accuracy of EEG signals is not high; EEG sen-
sorimotor rhythm is specific to different individuals, and
even the same individual has greater variability at different
times and different physical conditions.

In response to the existing problems, this chapter pro-
poses an EEG motion image signal recognition algorithm
based on adaptive frequency band selection CPS feature
extraction combined with Least Squares Twin Support
Vector Machine (LS-TWIN-SVM) classification. First, use
adaptive artifact removal technology to filter the signal to
improve the accuracy of the EEG signal, then use a band-
pass filter to generate EEG rhythm signals of different fre-
quency bands, perform CSP feature extraction, and finally
send it to the LS-TWIN-SVM classifier for adaptive selec-
tion. In the optimal frequency band, the classifiers select the
frequency band characteristics for a specific person and
perform real-time recognition. In order to improve the
accuracy of EEG signal recognition, various kernel functions
were tested, and several biointelligence optimization
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algorithms were compared to select the optimal classifier
parameters. ,e public data set is used as the test object to
verify the feasibility of the proposed algorithm. ,e fol-
lowing sections will explain in detail.

2.2. Least Squares Twin Support Vector Machine (LS-TWIN-
SVM)AlgorithmModeling. Support Vector Machine (SVM)
classification seeks an optimal hyperplane based on the
principle of structural risk minimization, which maximizes
the blank area on both sides of the hyperplane while en-
suring the accuracy of the training sample classification. For
the linear case, as shown in Figure 3, the straight line H is a
dividing line withW as the normal vector. ,is dividing line
can divide the two types of data as accurately as possible. H1
and H are the two types of samples. ,e support vector
points and the straight line parallel to the classification line
are analyzed. WhenH is in the middle ofH1 andH2, the line
meets the principle of maximizing the interval between the
two types of sample points and becomes the optimal dividing
line. ,is is converted to the problem of finding the normal
vector. Extending to a high-dimensional space, the optimal
classification line becomes the optimal hyperplane, that is,
finding the normal vector of the optimal classification hy-
perplane and classifying multiclass samples by finding the
distance.

Taking the two-classification problem as an example,
given the training sample set (αi, βi) i � 1, 2, . . . , n,
α ∈ Rn, β ∈ ± 1{ } of the two types of data, the hyperplane is
analyzed. If the sample is correctly classified and the clas-
sification interval is as large as possible, the hyperplane must
satisfy the following constraints:

wαi + b≥ βi βi � +1,

wαi + b≤ βi βi � −1.
􏼨 (1)

When combined, they can be expressed as follows:

wαi + b≥
1
βi

, i � 1, 2, ..., n. (2)

,en, the classification interval can be expressed as
follows:

min
wαi + b( 􏼁

‖w‖
􏼨 􏼩 �

2
‖w‖

+ max
wαi + b( 􏼁

||w||
􏼨 􏼩. (3)

,erefore, the goal of SVM is to maximize the classifi-
cation interval under the condition of satisfying the con-
straint formula (2), that is, to solve the problem of the
following formula [24]:

minf(w) �
1

2‖w‖
2 �

1
2

w
T
w􏼐 􏼑. (4)

When there is a linear inseparable pattern, the optimal
segmentation hyperplane is required to meet the principle of
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minimum average classification error probability for all
training samples. At this time, just relax the constraint
condition of formula (2), that is, introduce a slack variable ξi;
then, formula (2) becomes

wαi + b≥
1 − ξi( 􏼁

βi

, i � 1, 2, . . . , n. (5)

To introduce a cost function into the objective function,
that is, add a penalty component with an adjustable factor λ
to function (4), the objective function formula (4) can be
expressed as

minf(w) �
1

2‖w‖
2 + λ􏽘

n

i�1
ξi

�
1

2 w
T

w􏼐 􏼑
+ λ􏽘

n

i�1
ξi.

(6)

Among them, λ is the penalty factor, which controls the
degree of punishment for the wrong sample. ,e larger ξi,
the heavier the penalty for the error.

2.3.TwinSupportVectorMachine. Support VectorMachines
show strong generalization and promotion capabilities in
small sample and nonlinear classification problems. How-
ever, there are still some challenges. For example, when
facing a large sample, the optimal solution can be obtained
by solving a large-scale quadratic programming problem.
,e training speed is slow and it is difficult to meet certain
real-time systems. In addition, SVM is not very suitable for
processing cross-type data.

Twin Support Vector Machine (TWSVM) is proposed
on the basis of generalized eigenvalue proximal SVM
(GEPSVM). As shown in Figure 3, for the binary classifi-
cation problem, TWSVM constructs an optimal near-end
hyperplane for each class. By solving two small quadratic
programming problems, such sample points are “close” to
the hyperplane, and the other sample point is appropriately
far away from the hyperplane [25]. Compared with tradi-
tional Support Vector Machines, the learning efficiency is
improved.

3. Results and Analysis

3.1. Comparison of EEG Signal Classification Results of Twin
Support Vector Machine and Its Extended Algorithm. ,e
genetic algorithm (GA) and quantum genetic algorithm
(QGA) are widely used algorithms. ,e genetic algorithm is
a biological incentive algorithm, which has been successfully
used to solve engineering problems such as complex opti-
mization and feature extraction. Good results have been
achieved in the multiparameter optimization selection
problem. ,e genetic algorithm’s parameter search process
for the classifier is as follows:

(1) Population initialization and parameter coding.
(2) Calculate the fitness function of each chromosome.

(3) Use GA calculation steps: selection, crossover, and
mutation.

(4) ,e offspring replace the old population to form a
new population of the next generation.

(5) Obtain the classifier parameter model. When the
iterative conditions are met, the optimal chromo-
some is generated; otherwise, it returns to step 2.

,e implementation process of quantum genetic algo-
rithm is based on the basic framework of genetic algorithm,
adding concepts such as quantum states and quantum gates
in quantum theory and using qubits and superposition states
to encode chromosomes [26]. ,e typical iterative process of
QGA includes selection, mutation operation (quantum
crossover, quantum mutation, and quantum interference),
quantum measurement, evaluation, and substitution.

3.2. EEG Signal Recognition of the LS-TWIN-SVM Classifier
Based on Intelligent Optimization Algorithm. ,e biological
intelligence optimization algorithm and its improved al-
gorithm have been successfully used in the parameter ad-
justment of the neural network classifier, but the
convergence and final performance are greatly affected by
the classifier and the data set. ,is section uses PSO, CPSO,
GA, and QGA algorithms to test the proposed classifier
models, respectively. In order to achieve higher efficiency
and optimal classification results, the CPU running time,
classifier training, and testing of several optimization al-
gorithms are compared.

,e maximum iteration algebra of the four optimization
algorithms is set to 300, and the optimal classification ac-
curacy rate of 10-cv cross-validation on the training data set
is used as the fitness function. ,e population size is 40, the
individual length is 20, and the genetic algorithm generation
gap is set to 0.95. ,e crossover and mutation probabilities
are set to 0.7 and 0.01, respectively. Quantum genetic al-
gorithm combines the principles of genetic algorithm and
quantum mechanics. ,e process includes initializing
population and coding classifier parameters, calculating
fitness function, selection, mutation, evaluation, and re-
placement. ,e mutation operation of the evolutionary al-
gorithm uses the quantum revolving door strategy. For the
convenience of comparison, the population size and indi-
vidual length of QGA are the same as the GA algorithm
settings, and the quantum rotation angle is set to 0.01.

,e parameters of the particle swarm optimization
(PSO) algorithm are set as follows: the population size is 20,
and the acceleration constants are set to 1.5 and 1.70, re-
spectively. During the implementation of the chaotic particle
swarm optimization (CPSO) algorithm, two chaotic se-
quences are generated to prevent the PSO algorithm from
falling into the local maximum. In the initialization phase,
chaotic initialization is used to select the initialization po-
sition instead of random selection; in the optimization
position selection process, the global optimization position
obtained by the particle search is subjected to chaos oper-
ation, and then the particle position is determined by the
global optimization position after the chaos operation. ,e
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CPSO parameter settings are the same as PSO, and the
parameters can be randomly generated.

Use the CSP features extracted from the data set to test
the classifier algorithm. ,e experimental results are shown
in Figures 4 and 5. As can be seen from the figure, the test
results of the data set show that the classification effect of the
classifier based on PSO and GA is equivalent, and the ac-
curacy is better than the CPSO and QGA algorithms.
However, in the test results of the second data set, the PSO
and CPSO algorithms are significantly better than the GA
and QGA parameter optimization results. From Figure 6, it
is obvious that PSO has the highest operating efficiency and
simple calculation, which is convenient for real-time
hardware implementation.,erefore, TWIN-SVM is chosen
as the classifier of the MI-BCI system.

3.3. Analysis of Experimental Results. Since its introduction,
TWIN-SVM has been successfully applied in many fields,
and scholars have made a lot of contributions to the algo-
rithm expansion and application of Twin Support Vector
Machines, and it has also been successfully used in the
intelligent recognition of biomedical signals.

In order to improve the system response speed and
overcome the variability of individual EEG rhythms, this

chapter proposes adaptive artifact removal and adaptive
frequency band selection feature extraction methods to
enhance the classification and recognition of EEG signals.
And the TWIN-SVM classifier is used for the rapid clas-
sification and recognition of EEG. Experimental results are
shown in Table 1, which showed that the classification ac-
curacy rate, CPU operating efficiency, and other indicators
have been significantly improved.

,e proposed TWIN-SVM method shows good results
on the data set as shown in Figure 7. ,e proposed method
performs adaptive frequency band selection, which over-
comes the frequency band variability of EEG signals between
individuals. However, as can be seen from Figure 8, the
optimal cross-validation accuracy rate on the training data
set and the test accuracy rate on the test data set are quite
different, indicating that the data at different test times has
greater variability; that is, there is still variability within the
individual. We should conduct more EEG experiments. ,e
more samples are in the experiment, the closer the results are
to the essence of the facts. ,e experiment reported in this
article can be said to be a preliminary exploration of EEG
experiments under different conditions. ,e next step is to
carry out more experiments: one is to increase the samples of
existing experiments and the other is to expand the ex-
perimental projects and conduct experiments on more
states.
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Figure 4: ,e classification effect of the first data set optimization
algorithm.
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Figure 5: ,e classification effect of the second data set optimi-
zation algorithm.
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Figure 6: Comparison of running time of the optimized method.

Table 1: TWIN-SVM and common recognition algorithms results.

Testing objects PSO-LS-TWIN-SVM LDA BP PNN
1 88.19 87.24 72.43 83.45
2 64.35 57.32 62.34 61.35
3 93.42 91.34 97.53 88.24
4 65.34 63.24 71.34 70.12
5 76.35 54.87 52.34 50.35
6 67.34 70.23 74.45 65.24
7 75.23 70.43 74.14 58.33
8 88.89 83.25 87.24 91.34
9 78.34 73.42 76.35 73.24
10 67.24 70.78 66.24 70.43
Mean 76.47 72.21 73.44 71.21
SE 11.24 13.34 12.32 16.31
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4. Conclusion

EEG is combined with more analysis methods to analyze the
activities of various parts of the brain. EEG has its irre-
placeable advantages, but it also has its disadvantages. If it
can be combined with other suitable methods and learn from
each other’s strengths, the completeness and persuasiveness
of the experiment can be further strengthened, for example,
using EEG combined with functional imaging techniques
such as PET and magnetoencephalography. ,e machine
learning method is a powerful tool for the recognition of

EEG signals in intensive cardiac care, and many achieve-
ments have been made in this field. However, the rehabil-
itation system based on EEG still has not achieved large-scale
clinical application. ,e main reason is that the technology
still has the following problems: firstly, there is great vari-
ability for different individuals based on the amplitude of
EEG, and even the same individual at different times. ,ere
are also differences with the environment, which requires the
system to have stronger adaptability; secondly, there is a lot
of interference in the scalp EEG signal, and the signal source
accuracy is limited, which affects the recognition accuracy;
finally, more efficient adaptation is needed. Aiming at the
above problems, this paper proposes adaptive artifact re-
moval theory, adaptive frequency band selection feature
extraction, and a fast TWIN-SVM classification strategy
based on PSO. In order to evaluate the effect of this method,
a classifier model based on a kernel function and an in-
telligent optimization algorithm is used to optimize the
classifier. Neuroinformatics is a newly emerging interdis-
ciplinary subject. It is still in its infancy, and there is still a big
gap with the established goals. Although EEG has existed for
a long time, due to the complexity of the EEG signal itself,
much of the information still cannot be extracted. With the
development of signal processing methods, more and more
simple and efficient data processing methods have been
developed. ,is has greatly promoted the development and
application of EEG in neuroinformatics. ,rough the study
of EEG, it can further help to understand how the human
brain works in different modes and promote the develop-
ment of neuroinformatics.
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