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ABSTRACT
The barrier function of epithelia and endothelia depends on tight junctions, which are formed by
the polymerization of claudins on a scaffold of ZO proteins. Two differentially spliced isoforms of
ZO-1 have been described, depending on the presence of the α domain, but the function of this
domain is unclear. ZO-1 also contains a C-terminal ZU5 domain, which is involved in a mechano-
sensitive intramolecular interaction with the central (ZPSG) region of ZO-1. Here we use immuno-
blotting and immunofluorescence to map the binding sites for commercially available monoclonal
and polyclonal antibodies against ZO-1, and for a new polyclonal antibody (R3) that we developed
against the ZO-1 C-terminus. We demonstrate that antibody R40.76 binds to the α domain, and
the R3 antibody binds to the ZU5 domain. The (α+) isoform of ZO-1 shows higher expression in
epithelial versus endothelial cells, and in differentiated versus undifferentiated primary keratino-
cytes, suggesting a link to epithelial differentiation and a potential molecular adaptation to
junctions subjected to stronger mechanical forces. These results provide new tools and hypoth-
eses to investigate the role of the α and ZU5 domains in ZO-1 mechano-sensing and dynamic
interactions with the cytoskeleton and junctional ligands.
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Introduction

Tight junctions (TJ) are critically important for the
development and physiology of vertebrate organisms.
By generating semipermeable barriers to ions, water,
and solutes, they allow tissues to separate different
compartments of the extracellular space, modulate
absorption of nutrients, and prevent pathogen entry
into the body.1–4 TJ are localized at the apico-lateral
border of polarized epithelial cells, where they form
a continuous circumferential belt, placed immediately
apical to the cadherin-based zonula adhaerens .5 TJ
are also present in endothelial tissues and cells,
although here they are molecularly intermixed with
adherens junctions.6,7 The barrier function properties
of endothelial and epithelial tissues are highly variable,
depending on the physiological requirements of the
tissue, and can be altered in disease states.1–3,8,9

At the molecular level, the barrier is formed
by a network of intramembrane strands gener-
ated by the trans-association of cis-polymers of

claudins.4,10–12 The polymerization of claudins
into strands critically requires the assembly of
a cytoplasmic scaffold formed by ZO
proteins.13,14 ZO proteins (ZO-1, ZO-2, and
ZO-3) were discovered in the 80s and 90s,
thanks to the development of monoclonal anti-
bodies raised against semi-purified junctional
membrane fractions of epithelial tissues, and
through co-immunoprecipitation studies.15–18

The molecular structure of ZO proteins com-
prises three N-terminal PDZ domains (PDZ1,
PDZ2, PDZ3), a central region that contains
SH3 and GUK domains, and a C-terminal region
of different length.19,20 In ZO-1 and ZO-2, the
C-terminal domain contains an actin-binding
region (ABR).21,22 Indeed, ZO-1 and ZO-2 are
fundamentally important for the linkage of TJ
transmembrane proteins to actin filaments, 23–25

and for the organization and contractility of the
cortical and junctional actomyosin
cytoskeleton.26–30 The C-terminus of ZO-1 also
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contains a ≈ 100 residue ZU5 domain, that was
first identified in ZO-1 and in the netrin recep-
tor UNC-5.31,32 FRAP studies have shown that
ZO-1 dynamically exchanges between cytoplas-
mic soluble and junction-associated soluble and
stable pools, and its dynamics depends on inter-
actions with the actomyosin cytoskeleton.33,34

Recent work from our laboratory showed that
ZO-1 exists in extended and folded conformations,
which show different ligand-binding properties
in vitro and in cells, depending on actomyosin-
generated force and heterodimerization.35 In the
extended/stretched conformation, the N-terminal
and C-terminal ends of ZO-1 are physically sepa-
rated, and the molecules are arranged in a regular
array with respect to the junctional membrane.
The folded/autoinhibited conformation of ZO-1
is observed in cells depleted of ZO-2, when acto-
myosin-dependent force has been disrupted either
by drugs or by growth on soft substrates.35 The
folded conformation of ZO-1 results from
a mechano-sensitive intra-molecular interaction
between a C-terminal fragment of ZO-1, that con-
tains the ZU5 domain, and the ZPSG (PDZ3-SH3-
GUK-U6) central region. In the folded conforma-
tion, ZO-1 cannot bind to its ligands ZONAB/
DbpA and occludin, leading to downstream mod-
ulation of nuclear signaling and barrier function,
respectively.35 Although the function of the ZU5
domain is not well understood, FRAP studies sug-
gest that it is important for the dynamics of ZO-1
and for barrier function.36 Another domain of ZO-
1 whose function is not completely understood is
the α domain, which is localized between the
ZPSG and the ABR. This domain was identified
as a differentially spliced domain, which defined
two isoforms of ZO-1, α(+) and α(-),37 which are
differentially expressed in early mouse
development38 and in different tissues.39

Monoclonal and polyclonal antibodies against
ZO-1 have been described and are available from
commercial providers. However, the binding site
for monoclonal R40.7640 is not known, and to our
knowledge, no antibody has been described against
the C-terminal ZU5 domain of ZO-1. Here we
used immunoblotting and immunofluorescence
to map the binding sites of anti-ZO-1 antibodies.
We show that monoclonal antibody R40.76 binds
to the α domain of ZO-1, and a new R3 antibody,

that we developed, specifically recognizes the ZU5
domain. Neither domain is required for the junc-
tional localization of ZO-1. Furthermore, we
examine the expression of the (α+) and (α-) iso-
forms of ZO-1 in different cell lines and experi-
mental conditions, and on the basis of our results
and data from the literature we propose that the
ZO-1 (α+) isoform is a marker of epithelial differ-
entiation and is tuned to junctions subjected to
higher mechanical force.

Results

R40.76 and R3 bind to the α and ZU5 domains,
respectively

The mouse monoclonal antibody (33–9100) and
the rabbit polyclonal antibody (61–7300) were
raised against antigens that comprise sequences
within the N-terminal half of human ZO-1
(Figure 1(a)). Specifically, 61–7300 was generated
against a 69 kD fusion protein corresponding to
amino acids 463–1109 of human ZO-1,19 which
comprise the PDZ3, SH3, U5, GUK, U6 and α
domains (Figure 1(a)). Mouse antibody 33–9100
was raised against a human recombinant ZO-1
fusion protein encompassing amino acids
334–634, which comprises PDZ3, SH3, U5, and
part of the GUK domains (Figure 1(a)). However,
no information is available regarding the localiza-
tion of the epitope recognized by the rat mono-
clonal antibody R40.76, which was generated
against a junction-enriched preparation of
mouse liver canalicular membranes and was
used in the early characterization of ZO-140

(Figure 1(b)). Polyclonal antibody R3 was gener-
ated in our laboratory against a 22-residue pep-
tide coding for amino-acids 1673–1695 of mouse
ZO-1, which lies within the ZU5 domain (Figure
1(b)). All these antibodies recognize human ZO-
1, except for R40.76, which recognizes ZO-1 from
mouse and dog, but not human ZO-1.

Tomap the antibody binding sites, we expressed in
HEK cells GFP-tagged forms of either full-length
mouse ZO-1 α(+) and α(-) isoforms, or C-terminal
and N-terminal truncations of both isoforms, or myc-
tagged constructs of human ZO-1 with and without
the ZU5, domain, or a GFP-tagged construct com-
prising the ZU5 domain (Figure 2(a)). The HEK
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lysates were analyzed by immunoblotting with the
anti-ZO-1 antibodies (Figure 2(b–c)). Antibodies
against either GFP or myc were used to verify the
expression of the transgene, and antibodies against β-
tubulin were used to normalize protein content
(Figure 2(b–c)). The monoclonal R40.76 antibody
labeled only the full-length ZO-1 and truncated con-
struct that contained the 80-residue α motif (α(+)
isoform) (Figure 2(b)). In contrast, the full-length α
(-) isoform and the truncated N-terminal and
C-terminal fragments lacking the α motif showed no
reactivity with R40.76 (Figure 2(b)). Antibody R3
recognized both α(+) and α(-) full-length and
C-terminal mouse constructs, but not the
N-terminal constructs (Figure 2(b)). The rabbit
(61–7300) and mouse (33–9100) antibodies recog-
nized both α(+) and α(-) full-length and N-terminal
constructs, but not the C-terminal constructs (Figure
2(b)). The R3 antibody labeled the myc-tagged full-
length humanZO-1 and theGFP-tagged isolated ZU5
domain, but not the full-length human ZO-1 lacking
the ZU5 domain (ΔZU5, 1–1619) (Figure 2(c)). In
summary, immunoblotting analysis defined the
amino-acid stretches recognized by the different anti-
bodies (Figure 2(d)).

Next, we examined the reactivity of the R40.76 and
R3 antibodies against full-length and mutated ZO-1
constructs expressed in the background of ZO-1-KO
Eph4 cells35,41 (Figure 3). In agreement with the
immunoblotting data, immunofluorescent signal for
ZO-1 was detected by the R40.76 antibody only when
KO cells were rescued with the α(+), but not the α(-)
mouse ZO-1 isoform (Figure 3(a)). Similarly, to con-
firm the specificity of the R3 polyclonal antiserum, we

rescued ZO-1-KO cells either with full-length human
ZO-1, or with a construct lacking the C-terminal ZU5
domain (ΔZU5) (Figure 3(b)). Only cells that
expressed the full-length construct, but not the cells
expressing the construct lacking the ZU5 domain,
showed junctional labeling (Figure 3(b)). The locali-
zation of the α(-) and ΔZU5 constructs at junctions
showed that these domains are not required for the
localization of ZO-1 at junctions, in agreement with
previous studies showing that sequences in the
N-terminal half of ZO-1 are necessary and sufficient
for ZO-1 junctional localization.24

ZO-1 α(+) expression is higher in epithelial than
endothelial cells, and is induced by keratinocyte
differentiation

To assess the expression of the α(+) and α(-) isoforms
of ZO-1, we examined by immunoblotting lysates
from different epithelial and non-epithelial cells from
dog, mouse, and human origin (Figure 4). The two
isoforms of ZO-1 can be identified through their
slightly different electrophoretic mobility.37 Both α
(+) and α(-) isoforms were detected by antibodies
R3, 61–7300, and 33–9100 in lysates of mouse kidney
collecting duct (mCCD), human umbilical vein
endothelial cells (HUVEC) mouse brain microvascu-
lar cells (bEnd.3), mouse endothelial cells (H5V),
mouse aortic endothelium-derived cells (meEC),
human lung carcinoma cells (Calu-I), and mouse
mammary epithelium cells (Eph4) (Figure 4(a)).
Monoclonal R40.76 only labeled the more slowly
migrating, upper polypeptide, in agreement with the
observation that R40.76 only binds to the isoform that
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Figure 1. Antigens for anti-ZO-1 antibodies.
Schematic diagrams of human (a) and mouse (b) ZO-1, with numbers indicating the position of different structural domains along the
respective sequences. Continuous black lines indicate antigens used for the production of the respective antibodies ((a): 33–9100, 61–7300;
(b) R40.76 and R3). The dashed line in (b) indicates that the localization of the mouse ZO-1 epitope recognized by R40.76 is not known.
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contains the α(+) motif (Figure 4(a)). In MDCK
lysates all the antibodies labeled one major polypep-
tide, which was also recognized by the R40.76 anti-
body, demonstrating that MDCK cells only or
predominantly express the α(+) isoform
(Figure 4(a)). In lysates of human lung carcinoma
cells (A427), human myeloblastic-derived cells
(Hap1) and human keratinocytes (HaCaT) there was

very low or undetectable labeling for the α(+) isoform,
indicating that these cells mostly express the α(-) iso-
form (Figure 4(a–b)). In contrast, the signal for the α
(-) isoform was stronger than the signal for the α(+)
isoform in lysates of endothelial cells that express VE-
cadherin42 (HUVEC, bEnd.3, H5V) (Figure 4(a)).
Significantly, roughly equal labeling for both isoforms
was detected in lysates of meEC cells, which are
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Figure 2. The rat monoclonal R40.76 and the rabbit polyclonal R3 bind to the α and ZU5 domains of ZO-1, respectively.
(a). Schematic diagrams of mouse and human ZO-1 constructs expressed in HEK cells, used for the mapping of antibody epitopes. The
N-terminal tags, either GFP or myc, the amino-acid residues of ZO-1 included in each construct, and the presence or absence of the α domain
(α+) or (α-) are indicated. (b). Antibody R40.76 binds to the α domain. Immunoblotting analysis of HEK cell lysates expressing the mouse ZO-1
constructs. FL, N-term and C-term constructs, the presence (+) or absence (-) of the α domain, and amino-acid residues of each construct are
indicated on top. Numbers on the left indicate the migration of pre-stained molecular weight markers (kDa). Antibodies used for IB are
indicated on the right. Antibodies against β-tubulin were used to normalize lysates. (c). Antibody R3 binds to the ZU5 domain.
Immunoblotting analysis of HEK cell lysates expressing the human FL, ΔZU5, and ZU5 constructs, using antibodies against ZO-1 (R3) and
GFP and myc tags. (d). Schematic diagram summarizing experimentally determined the reactivity of antibodies against indicated regions/
constructs of mouse ZO-1 (green lines above the scheme), and position of antigens (black lines below the scheme)
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derived from endothelium, but have lost VE-cadherin
expression and acquired E-cadherin expression, and
contain a continuous junctional circumferential belt42

(Figure 4(a–b)). In summary, these observations indi-
cate that the α(-) isoform is predominant in endothe-
lial cells (see also39) whereas epithelial cells express
roughly the same amount of α(+) and α(-) isoforms,
except for MDCKII cells, where the α(-) isoform is
very low or undetectable.

Differentiating agents such as histone deacety-
lase inhibitors up-regulate the expression of TJ
proteins,43 and increased extracellular calcium
concentration drives terminal differentiation of
keratinocytes and junction formation both
in vitro and in vivo.44–47 Thus, we examined the
expression of ZO-1 α(+) and α(-) isoforms in
primary cultures of undifferentiated and calcium-
differentiated primary keratinocyte cultures from
wild-type and CGN-KO mice.48,49

Immunoblotting analysis with antibodies 61–7300
and 33–9100 showed that undifferentiated kerati-
nocytes express both isoforms (Figure 4(c)), but
the α(+) isoform was expressed at low levels
(Figure 4(d)). In contrast, upon calcium-induced
differentiation, there was an increase of the expres-
sion of the α(+) isoform (Figure 4(c–d)), which

was also detected using the R40.76 antibody
(Figure 4(c)). The increase in the immunoblotting
signal for the α(+) isoform was similar in CGN
WT and KO keratinocytes (Figure 4(c–d)), indi-
cating that cingulin, which is recruited to TJ by
ZO-141,50 does not influence the relative levels of
expression of ZO-1 isoforms.

Discussion

Antibodies are essential tools to characterize the
cellular and subcellular distribution of proteins
and their isoforms, and can also be used to identify
and modulate intramolecular interactions in vitro
and in vivo.35,51–53 Recently we showed that anti-
body labeling can be used in combination with
high-resolution microscopy, to define the spatial
relationship between N-terminal and C-terminal
ends of ZO-1, and to study the effect of mechan-
ical force on ZO-1 conformation.35 Here we report
that the epitope recognized by the monoclonal
antibody R40.76 lies within the ZO-1 α domain,
and we describe a new polyclonal antibody (R3)
against the ZU5 domain of ZO-1. These results are
useful to advance our knowledge about the expres-
sion and functions of the α(+) and α(-) ZO-1
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isoforms and to investigate the spatial localization
and function of the ZU5 domain in different
experimental contexts.

ZO-1 is a key protein of vertebrate TJ, because of its
role in the clustering and polymerization of claudin-
based strands, and in the organization and junctional
anchoring of the actomyosin cytoskeleton.
Determining the role of the different structural
domains of ZO-1 is crucially important to understand
its mechanisms of functioning in epithelial and
endothelial cells and tissues. Recently we showed
that ZO-1 is a mechano-sensor, since its conforma-
tion in cells can either be extended/stretched or
folded/autoinhibited, depending on mechanical force
and heterodimerization with ZO-2.35 The autoinhib-
ited conformation is mediated by an intramolecular
interaction between the ZU5 domain (C-ter35), and
a central region of ZO-1, comprising the PDZ3, SH3
and GUK domains (ZPSG,35). Little information is
available on the function of the ZU5 domain. FRAP
studies indicate that the ZU5 stabilizes ZO-1 and
contributes to the regulation of barrier function.36

The ZU5 domain of ZO-1 was also reported to inter-
act with MRCKβ, a Cdc42 effector kinase that mod-
ulates cell protrusion and migration at the leading
edge of migrating cells.54 The activation of Cdc42
primes the kinase to be in a conformation that allows
interaction with the ZU5 domain, and this interaction
promotes the accumulation of the kinase at the lead-
ing edge of migrating cells.54 The ZPSG region of ZO-
1 binds to several ligands, including DbpA, occludin,
afadin, and α-catenin,14 and we showed that when
ZO-1 is in the folded/autoinhibited conformation, the
binding of DbpA and occludin is blocked by the
intramolecular interaction between the ZU5 and the
ZPSG.35 In the extended conformation, a tag down-
stream from the ZU5 domain can be resolved from an
N-terminal tag of ZO-1.35 Thus, an antibody specific
for the ZU5 domain can be useful to study the
mechano-regulation of endogenous ZO-1, by estab-
lishing its position relative to the N-terminal region
and/or its ligands. Previous studies established that
the molecular environment of the N-terminal and
C-terminal ends of ZO-1 is distinct,55 in agreement
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with our observations about the spatial separation of
the two ends of ZO-1 when it is in the extended/
stretched conformation.35

Here we also report the mapping of the epitope of
the R40.76 rat monoclonal antibody40 within the α
domain of ZO-1. The α domain is an 80-residue
stretch that was detected in some, but not all initial
ZO-1 cDNAs isolates,37 resulting in two isoforms
can be distinguished on the basis of their electro-
phoretic migration.37,39,40,56 Based on the abundant
literature where the use of R40.76 is
described,35,37,40,57–62 it appears that essentially all
cultured and/or native epithelial cells, for example,
from intestine, liver, lung, mammary gland, and
skin, express the α(+) isoform. However, the relative
ratios for the two isoforms vary depending on cell
types, from 0.5:1 to 20:1 (α(-)/α(+)).37 Using affinity-
purified antibodies that reacted exclusively with
either the α(+) or the α(-) isoforms of ZO-1, it was
indeed shown that the two isoforms are differentially
expressed in cultured cells and mouse embryos and
tissues.38,39,56 For example, using an affinity purified
polyclonal antibody specific for the α domain, the
signal for the α(+) isoform was missing from the
filtration slits diaphragms of rat kidney glomeruli,
but the same structure was labeled by antibodies that
recognize both α(+) and α(-) isoforms,56,63 suggest-
ing that only ZO-1 α(-) is expressed in glomerular
slits. Using affinity purified antibodies against the
two isoforms, the α(+) isoform was detected in sto-
mach epithelial cells, and the α(-) isoform in capil-
lary endothelial junctions, Sertoli cells, and
glomerular slits.39 Maternal mRNA coding for the
ZO-1 α(-) isoform was detected in unfertilized
mouse oocytes and in all preimplantation stages,
whereas α(+) transcripts were first detected after
the 8-cell stage.38 ZO-1 α(+) protein was detectable
at TJ at the 16–32-cell stage, immediately before TJ
become functional, and blastocoele fluid accumula-
tion begins.38 Here we show that in MDCK cells the
α(-) isoform is essentially undetectable, suggesting
that it is either not expressed or expressed at very low
levels, whereas in Hap1 and HaCaT cells the α(+)
isoform is not detectable. We also show that epithe-
lial and endothelial cells show a lower α(+)/α(-) ratio,
in agreement with previous results.39 Interestingly,
meEC cells originated from endothelial aortic cells,
but have differentiated into an epithelial phenotype,
as detected from the switch in expression from VE-

cadherin to E-cadherin.42 In these cells, there is
a higher α(+) to α(-) ratio than in endothelial cells
(bEnd.3, H5V, HUVEC) that have retained expres-
sion of VE-cadherin (bEnd.3, H5V, HUVEC).42

These results indicate that epithelial differentiation
and expression of E-cadherin correlate with
increased expression of the α(+) isoform, in agree-
ment with previous studies on Caco2 cells.64

The function of the α domain is not known. The α
domain is located immediately downstream of the U6
ZO-1 domain, which has been implicated in themod-
ulation of the interaction of theU5-GUKdomainwith
occludin, and the TJ localization of ZO-165 (Figure 1).
An early hypothesis was that the α domain contributes
tomodulating TJ barrier function and that the expres-
sion of the α(-) isoform reflects a “leaky” TJ.56

However, the observation that the α(+) isoform is
detected in both leaky and tight epithelia was not
consistent with this idea.56 It is now known that TJ
leakiness to ions depends on the tissue-specific expres-
sion of claudins4,66 and that the actomyosin cytoske-
leton modulates the paracellular permeability barrier
both to ions and solutes (reviewed in1,67).
Interestingly, it was recently demonstrated that TJ
positioning in the stratified skin epithelium depends
on EGFR- and E-cadherin- integrated mechano-
transduction in the uppermost layer (SG2) of the
stratum granulosum.68 In this latter study ZO-1 was
labeled for immunofluorescencewith the R26.4C anti-
body, which also recognizes only one polypeptide in
lysates of MDCK cells and mouse tissues,40 indicating
that, as R40.76, it is specific for the α(+) isoform. It was
found that ZO-1 is expressed in all skin layers, in
a punctate pattern, but is highly enriched at circum-
ferential cell-cell contacts of the SG2 layer.68 This same
layer also displayed highly enriched staining for vin-
culin, and for the mechano-sensitive epitope of α-
catenin, indicating higher mechanical tension.68

Knock-out of E-cadherin resulted in a reduction in
tension across intercellular contacts and reduced junc-
tional ZO-1 labeling. Importantly, the formation of
circumferential zonulae adhaerentes and TJ is asso-
ciated with the establishment of a highly contractile
peri-junctional ring of actomyosin that connects the
cytoskeletons of adjacent cells.69 Here we show that
primary keratinocyte differentiation, which recapitu-
lates differentiation from the lower to upper layers of
the epidermis, correlates with increased levels of ZO-1
α(+) isoform, as detected by immunoblotting.
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Collectively, these observations and the correlation
between increased E-cadherin-mediated junctional
tension in the apical layers and junctional accumula-
tion of ZO-1 α(+) suggest that the α(+) isoform is
specifically adapted to junctions subjected to stronger
mechanical forces, such as those generated in the
upper skin layer. Similarly, the expression of the α(+)
isoform just prior to blastocoele formation38 may be
related to the increased hydrostatic pressure resulting
from the accumulation of apical fluid in the blasto-
coele. Finally, when comparing ZO-1 isoform expres-
sion in cells derived either from the proximal kidney
tubule (MDCK) or from kidney collecting ducts
(mCCD), the higher expression of the α(+) isoform
in MDCK cells, with respect to mCCD cells, may be
related to the fact that intratubular fluid hydrostatic
pressure and flow rate are much higher in the prox-
imal segments of the nephron .70 Taken together, these
observations indicate that the α(+) domain is required
for ZO-1 to function at junctions that are subjected to
higher mechanical stresses. Whether this is through
modulation of intramolecular ZO-1 interactions, or
through modulation of interactions with other junc-
tional ligands remains to be established. It will be very
interesting to test these ideas, and explore the role of
the α domain in the mechano-sensing, dynamics, and
molecular interactions of ZO-1.

Materials and methods

Cell culture

MDCKII, mCCD, bEnd.3, H5V, meEC, A427, A549,
and HaCaT were cultured as previously described.42

Calu-I (human non-small-cell lung carcinoma, a kind
gift of Marco Paggi, Regina Elena National Cancer
Institute, Italy)71 was cultured in RPMI (Gibco) sup-
plemented with 10% inactivated fetal bovine serum
(FBS, PAN Biotech), 1x minimal essential medium
non-essential amino acids (MEM NEAA, PAN
Biotech), 100 units/ml penicillin and 100 μg/ml strep-
tomycin (PAN Biotech). Eph4 and Hap1 cells were
cultured as previously described35,72,73. HUVEC cell
line (a kind gift of Beat Imhof, University of Geneva,
Switzerland) was cultured in M199 medium (Gibco)
supplemented with 20% inactivated fetal bovine
serum (FBS, PAN Biotech), 15 µg/ml Endothelial
Cell Growth Supplement (ECGS), 10 µg/ml heparin
(Sigma H-3149), 100 nM hydrocortisone, 10 µg/ml

vitamin C, 1x penicillin-streptomycin-glutamine
(ThermoFisher Scientific) on tissue culture plates pre-
coated with 10 µg/ml collagen G and 0.2% gelatin
(15–30 min at 37°C). Mouse primary keratinocytes
were isolated from WT and CGN-KO newborn mice
as described.49 Differentiation was obtained by allow-
ing cells to reach confluence, and then incubating
them in medium containing 1.2 mM CaCl2 for 48
h. Cells were plated on collagen I-coated tissue culture
dishes at 1 × 105 cells/cm2. HEK293T cells were cul-
tured in DMEM, supplemented with 10% FBS, and
antibiotics (100 U/ml penicillin and 100 µg/ml strep-
tomycin (PAN Biotech)).

Antibodies

Primary antibodies were: monoclonal rat anti-ZO-1
(R40.76, 1:500 IB, 1:100 IF a gift from Prof. Daniel
Goodenough, Harvard Medical School), polyclonal
rabbit anti-ZO-1 (Thermo Fischer Scientific,
61–7300, 1:2000 IB) and monoclonal mouse anti-ZO
-1 (Thermo Fischer Scientific, 33–9100, 1:2000 IB),
rabbit anti-cingulin C532 (1:5000 IB),74 monoclonal
mouse anti-GFP (Roche Applied Science,
11814460001, 1:2000 IB, 1:200 IF), mouse anti-myc
9E10 (1:200, IF), guinea pig anti-PLEKHA7 GP2737
(1:300 IF), monoclonal mouse anti-β-tubulin
(Invitrogen, 32–2600, 1:5000 IB). The polyclonal rab-
bit anti-ZO-1 R3 was obtained by immunizing rabbits
with a peptide (CRDNSILPPLDKEKGETLLSPLV)
corresponding to residues 1673–1695 within the
ZU5 domain of mouse ZO-1 (Covalab, Lyon,
France), and was used at a dilution of 1:1000 for IB,
and 1:100 for IF. Secondary antibodies for IF were
anti-mouse and anti-rabbit Alexa Fluor 488, anti-
mouse, anti-rabbit, and anti-rat Cy3, anti-guinea pig
Alexa Fluor 647 (Jackson ImmunoResearch Europe,
Newmarket, UK, 1:300). Anti-mouse and anti-rabbit
(1:20000, Promega,W402B andW401B, respectively),
and anti-rat (1:10000, Thermo Fisher Scientific,
62–9520) IgG, HRP-conjugated antibodies were used
for immunoblotting.

Plasmids and transfections

cDNAs coding for either the α (+) (residues 8–1745)
or α(-) isoforms (residues 8–1665) of mouse ZO-1
were obtained from sequences in different clones
obtained by screening λgt11 expression libraries.18,23
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After PCR amplification, the indicated sequences
were cloned into the NotI and Acc65I sites of
a pCDNA3.1myc vector backbone, engineered to
contain GFP between the BamHI and NotI sites.75

To generate N-terminal and C-terminal fragments of
the two ZO-1 isoforms, cDNAs corresponding to the
indicated residues were amplified by PCR, and simi-
larly inserted between the NotI and Acc65I sites of
pCDNA-GFP-BamH1-Not1-Acc65I. Constructs of
human full-length ZO-1 (residues 1–1748) were
described previously.35 PCR amplification was per-
formed on myc-ZO-1 (human) full-length with
appropriate oligonucleotides for generation of
depleted ZO-1 constructs, i.e., myc-ZO-1-ΔZU5 (resi-
dues 1–1619) subsequently cloned into the BamHI-
XhoI sites of previously prepared pCDNA3.1 vector.
PCR amplification was performed on myc-ZO-1 full-
length with appropriate oligonucleotides for genera-
tion of ZU5 constructs (residues 1619–1748) subse-
quently cloned into the KpnI-NotI sites of previously
prepared pCDNA3.1 vector. All constructs obtained
by PCR were verified by sequencing the entire insert.
Transfections of HEK cells were performed using
Lipofectamine2000, following the manufacturer’s
guidelines (Thermo Fisher Scientific). HEK cells
(2x106) plated in 100 mm2 dish were transfected
with 20 μg of different ZO-1 constructs, lysed 2
days after transfection. Transfections of Eph4 cells
were carried out using jetOPTIMUS DNA transfec-
tion reagent (Polyplus), following the manufacturer’s
guidelines.

Preparation of lysates, SDS-PAGE and
immunoblotting

HEK cells, used for expression of ZO-1 constructs,
were washed with cold PBS, lysed with CO-IP
buffer (150 mM NaCl, 20 mM Tris-HCl, pH 7.5,
1% Nonidet P-40, 1 mM EDTA, 5 mg/ml antipain,
5 mg/ml leupeptin, 5 mg/ml pepstatin, 1 mM
PMSF) with Roche inhibitor (1x) at 4°, and incu-
bated for 15 min with gentle agitation. Lysates
were sonicated 5 s at 66% power (3 bursts), cen-
trifuged 20 min at 13,000 rpm, and supernatants
were recovered. For the preparation of lysates and
immunoblotting from other cultured cell lines, the
procedure was as described in,42 using RIPA buf-
fer. Mouse primary keratinocytes were lysed with
250 µl RIPA buffer (150 mM NaCl, 40 mM Tris-

HCl, pH 7.5, 2 mM EDTA, 10% glycerol, 1%
Triton X-100, 0.5% sodium deoxycholate, 0.2%
SDS, protease inhibitors) for 10 min at 4°C, fol-
lowed by sonication (5 s at 33% amplitude with
a Branson sonifier). Proteins were mixed with SDS
sample buffer and incubated at 95°C for 5 min.
Protein lysates were analyzed on SDS gels (8%
acrylamide, 100 V). For immunoblots, gels were
transferred onto nitrocellulose (0.45 μm) (100
V for 80 min at 4°C), and blots were incubated
with primary antibody, followed by secondary
HRP-labeled antibody, and visualized with the
ECL (Amersham). Quantification of IB signal was
performed using Image Studio Lite (LI-COR). The
sum of signal intensities of upper band (corre-
sponding to α+) and lower band (corresponding
to α-) of immunoblots using anti-ZO-1 antibodies
was taken as 100%. Then, the relative expression of
each isoform was calculated, in relation to the sum
of their signal intensities. Data in Figure 4(b)
represent the mean of three densitometric analyses
using antibodies recognizing both ZO-1 isoforms,
carried out on two independent experimental
repeats (n = 2). Each blot was repeated two
times, and data were pooled from blots using the
three different antibodies. Data are represented as
a mean with the bars indicating standard devia-
tion. Graphs were generated using Prism 7
(GraphPad).

Immunofluorescence

Eph4 ZO-1-KO cells were seeded on glass cover-
slips in 24 well plates at a density of 100,000 cells/
well and were transfected the next day. Two days
after transfection monolayers were fixed with cold
methanol for 10 min at −20°C, incubated with
primary antibodies overnight at 4°C, and then
incubated with fluorophore conjugated secondary
antibodies for 30 min at 37°C. Coverslips were
mounted with Vectashield containing DAPI
(Reactolab) and observed with Zeiss LSM800 con-
focal microscope using a 63x objective.
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