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Background: Apathy, characterized by diminished goal-directed behaviors, frequently occurs in patients 
with Parkinson’s disease (PD). The dopamine-releasing neurons of the ventral tegmental area (VTA) have 
been closely related to this behavioral disruption and project widely to the corticolimbic areas, yet their 
functional and structural connectivity in regard to other brain regions remain unknown in patients with PD 
and pure apathy (PD-PA). This study thus aimed to characterize the alterations of functional connectivity (FC) 
of the VTA and white matter structural connectivity in PD-PA.
Methods: In this study, 29 patients with PD-PA, 37 with PD but not pure apathy (PD-NPA), and 28 
matched healthy controls (HCs) underwent T1-weighted, resting state functional magnetic resonance 
imaging, and diffusion tensor imaging scans. Patients of this cross-sectional retrospective study were 
consecutively recruited from The First Affiliated Hospital of Nanjing Medical University between April 2017 
and October 2021. Meanwhile, HCs were consecutively recruited from the local community and the Health 
Examination Center of our hospital. An analysis of covariance and a general linear model were respectively 
conducted to investigate the functional and structural connectivity among three groups. The tract-based 
spatial statistics (TBSS) approach was used to investigate the white matter structural connectivity.
Results: Patients with PD-PA showed reduced FC of the VTA with the left medial superior frontal gyrus 
(SFGmed) when compared to the patients with PD-NPA [t=−3.67; voxel-level P<0.001; cluster-level family-
wise error-corrected P (PFWE)<0.05]. Relative to the HCs, patients with PD-PA demonstrated reduced FC of 
the VTA with the left SFGmed (t=−4.98; voxel-level P<0.001; cluster-level PFWE<0.05), right orbital superior 
frontal gyrus (SFGorb) (t=−5.08; voxel-level P<0.001; cluster-level PFWE<0.05), and right middle frontal gyrus 
(MFG) (t=−5.08; voxel-level P<0.001; cluster-level PFWE<0.05). Moreover, the reductions in VTA FC with 
the left SFGmed were associated with severe apathy symptoms in patients with PD-PA (r=−0.600; P=0.003). 
However, a TBSS approach did not reveal any significant differences in fiber tracts between the three groups.
Conclusions: This study identified reduced FC within the mesocortical network (VTA-SFGmed) of 
patients with PD-PA. These findings may provide valuable information for administering neuromodulation 
therapies in the alleviation of apathy symptoms in those with PD.
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Introduction

Apathy,  charac ter i zed  by  l ack  o f  mot iva t ion  in 
accomplishing goal-directed behaviors (1,2), frequently 
occurs in patients with Parkinson’s disease (PD), with the 
prevalence ranging from 23% to 70% (3). As goal-directed 
behavior is fundamental to survival and well-being, apathy 
substantially reduces quality of life (4,5), compounding the 
overall disability substantially and increasing the burden of 
caregivers (3,4). Apathy is dissociable from cognitive decline 
and depression, although they do commonly co-occur  
(4,6-9), and is distinct from depression, as it is not associated 
with feelings of sadness, worthlessness, hopelessness, guilt, 
or self-blame (10). Recent studies have focused on pure 
apathy (i.e., without depression or dementia) to delineate 
the specific mechanism of apathy. Apathy can also negate 
efficacious PD treatments, including advanced motor 
symptom treatments (11,12) and itself lacks established 
effective treatment (13). There is therefore an urgent need 
to better understand the mechanism of this behavioral 
disruption.

According to the framework of normal goal-directed 
behavior, motivated behavior is characterized by active 
efforts exerted toward acquiring positive reinforcers 
(rewards) (14,15), which involves three fundamental 
processes (13,14). First, a value system computes the 
subjective value of events; second, a motor system produces 
behaviors to obtain high-value rewards; and third, a 
mediating system, based on value information, directs 
the motor system toward motivationally relevant goals. 
These processes are ongoing during the initiation and 
persistence of behaviors and involve a broad network of 
mesocorticolimbic areas. Among these, dopamine-releasing 
neurons of the ventral tegmental area (VTA) have been 
widely accepted to be critically involved in goal-directed 
behavior (16).

Both animal and human studies indicate that apathy, 
characterized by reduced goal-directed behaviors, has 
been closely related to the VTA in PD (17-19). In 
PD primate models treated with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), a toxin that impairs 
dopaminergic neurons, dopaminergic cell loss in the 
VTA was found to be significantly predictive of apathy 

symptoms (17,18). Among patients with PD, those who are 
apathetic exhibit bilateral dopaminergic disruption within 
the VTA (18). Moreover, patients with PD and disrupted 
glucose metabolism in the VTA are predisposed to apathy 
after undergoing deep brain stimulation operation of the 
subthalamic nucleus (20). The VTA is not isolated and 
interacts with other brain regions of the network to play 
an essential role in goal-directed behaviors. The VTA 
projects not only to the ventromedial prefrontal cortex 
(vmPFC), allowing the subjective valuation of events, but 
also to the limbic cortex and ventral striatum to enable 
the mediation of value information (15). Moreover, the 
VTA also participates in reciprocal connectivity with the 
medial superior frontal gyrus (SFGmed) (21) and has been 
implicated in reward processing (22). More specifically, 
VTA activity and dopamine release have been reported to 
modulate the activity of the SFGmed (23). 

However, it  remains unknown whether there is 
variability in the functional relationships of the VTA 
with other brain regions of the network in patients with 
PD and pure apathy (PD-PA). Resting-state functional 
magnetic resonance imaging (rs-fMRI) can probe the neural 
activity and connections in the human brain. Thought 
to indicate underlying neural activity, rs-fMRI captures 
blood oxygen level-dependent (BOLD) signals of brain 
regions. The correlations of these signals or their temporal 
patterns can be used to determine functional connectivity 
(FC) (24). According to Braak staging, degeneration of 
mesencephalic dopaminergic neurons leads to dopamine 
depletion in the mesocorticolimbic network (25), and the 
spread of α-synuclein to dopamine projection brain regions 
further impairs the functionality of the network (26,27). 
Accordingly, Alfano et al. found impaired FC within the 
planum polare and somatosensory network (28). The 
above-described research highlights the need to ascertain 
the pure apathy-related circuitry in patients with PD, 
especially the potential alterations of the VTA-FC network. 
This study thus aimed to examine the differences in VTA 
FC patterns among patients with PD-PA, patients with 
PD but not pure apathy (PD-NPA), and healthy controls 
(HCs) using rs-fMRI. In addition, as FC might be linked to 
changes in white matter structural connectivity, we further 
applied diffusion tensor imaging (DTI) to detect potential 
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white matter tract impairment. We present this article in 
accordance with the STROBE reporting checklist (available 
at https://qims.amegroups.com/article/view/10.21037/
qims-23-1673/rc).

Methods

Participants 

The participants of this cross-sectional retrospective study, 
including 29 patients with PD-PA and 37 patients with PD-
NPA, were consecutively recruited between April 2017 and 
October 2021 from The First Affiliated Hospital of Nanjing 
Medical University. All patients with PD met the diagnostic 
criteria for idiopathic PD of the Parkinson’s UK’s Brain 
Bank (29) and had at least 3 months of stable dopaminergic 
treatment. Apathy was diagnosed via semistructured 
interviews based on the criteria published by Robert  
et al. (30) and via a 14-item self-report apathy scale (AS) (a 
score greater than 14 indicated apathy) (9). The exclusion 
criteria were Parkinson-plus syndromes, secondary 
parkinsonism, major neurological and psychiatric illness, 
dementia [Mini Mental State Examination (MMSE) score 

≤26 (31)], depression [17-item Hamilton Depression 
Rating Scale (HAMD) score >7 (32)], anxiety [Hamilton 
Anxiety Rating Scale (HAMA) >7 (33)], impulse control 
disorders, the use of antidepressants or other antipsychotic 
drugs, standard contraindication for MRI examination, 
or abnormalities on brain MRI, such as tumor, infarction, 
and white matter lesions. Additionally, 28 HCs, without 
psychological and neurological disorders or imaging 
abnormalities, were enrolled from the local community 
and the Health Examination Center of our hospital. All 
participants were right-handed and matched for age, 
gender, education, and affective and cognitive performance. 
MRI scans and clinical examinations were performed during 
the off state (at least 12-hour withdrawal of drugs for PD) 
to reduce potential pharmacological effects on neural 
activity. Ultimately, the imaging data of 64 patients with 
PD and 26 HCs were finally analyzed, with 4 participants 
(2 with PD-PA and 2 HCs) being excluded due to abnormal 
head motions. The flowchart of the study is shown in 
Figure 1. This study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013) and was 
approved by the ethics committee of The First Affiliated 

Assessed for eligibility 
PD patients and HCs

PD patients (n=66)

PD-PA (n=29) PD-NPA (n=37)

PD-PA (n=27) PD-NPA (n=37) HCs (n=26)

For statistical analysis

Grouping according to the Apathy Scale

Excluded (n=4):
MRI head motions exceeded 2.5° of 

rotation or 2.5 mm of translation

HCs (n=28)

Figure 1 Flow diagram of participant inclusion in the study. PD, Parkinson’s disease; HC, healthy control; PD-PA, Parkinson’s disease with 
pure apathy; PD-NPA, Parkinson’s disease without pure apathy; MRI, magnetic resonance imaging.
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Hospital of Nanjing Medical University (No. 2016-SRFA-
094). Written informed consent was obtained from all 
participants.

Demographic and clinical assessment

Disease stage and motor symptoms were evaluated 
with the Hoehn and Yahr (H-Y) stage (34) and Unified 
Parkinson’s Disease Rating Scale, motor part III (UPDRS-
III). Apathy was assessed using AS (range, 0–42; cutoff 
value 14) (9), a widely used measure of apathy in PD (2). 
A higher AS, indicating a greater level of apathy, has been 
used to investigate the presence and severity of apathy in 
patients with PD (9). The HAMD, HAMA, MMSE, and 
Frontal Assessment Battery (FAB) (35) were used to assess 
clinically depressive and anxiety symptoms, global cognitive 
status, and executive function, respectively. Demographic 
information including on age, gender, education level, 
and disease duration was also collected. We also calculated 
levodopa equivalent daily dose (LEDD) of each patient 
according to previously described method (36).

MRI data acquisition

MRI scans were performed with a 3.0 T MRI scanner 
(Siemens Healthineers, Erlangen, Germany) with an 
eight-channel head coil. Three-dimensional T1-weighted 
images were first acquired under the following parameters: 
repetition time (TR) =1,900 ms, echo time (TE) =2.95 ms, 
flip angle (FA) =9°, slice thickness =1 mm, slices =160, field 
of view (FOV) =230×230 mm2, and matrix size =256×256. 
Subsequently, rs-fMRI was obtained with an echo-planar 
imaging pulse sequence under the following parameters: 
TR =2,000 ms, TE =21 ms, FA =90°, FOV =256×256 mm2, 
matrix size =64×64, slices =35, slice thickness =3 mm, no 
slice gap, and total volumes =240. In addition, DTI images 
were collected using a spin echo planar imaging sequence 
under the following parameters: TR =9,800 ms, TE 
=95 ms, FOV =256×256 mm2, number of excitations =1, 
matrix =128×128, slice thickness =2 mm, and slice gap =0 
mm. Diffusion gradients were applied in 30 noncollinear 
directions with a b factor of 1,000 s/mm2 after an acquisition 
without diffusion weighting (b=0 s/mm2) used as the 
reference.

Preprocessing of rs-fMRI data and VTA-based FC analysis

rs-fMRI data were preprocessed with the Data Processing 

Assistant for Resting-State fMRI (DPARSF; http://
www.restfmri.net/forum/dparsf) (37). The first 10 time-
point resting-state images were discarded due to the 
instability of the initial rs-fMRI signals. The remaining 
data were corrected for slice timing and then realigned to 
the middle time-point image using a six-parameter rigid 
body transformation. Following this, the generated rs-
fMRI images were spatially normalized into the Montreal 
Neurological Institute (MNI) standard anatomic space at a 
resolution of a 3×3×3 mm3 and smoothed with a Gaussian 
kernel of 6 mm at full width at half maximum. After removal 
of the linear trend, the temporal filtering (0.01–0.08 Hz)  
was conducted to minimize the effects of low- and high-
frequency physiological noise. We focused on a low-
frequency spectrum (typically around 0.01–0.08 Hz) of 
BOLD signals due to its neurophysiological properties (38). 
Moreover, to further reduce the effects of confounding 
factors, we removed several sources of spurious variance 
using linear regression. The sources included 24 head 
motion-related covariates (39) and average signals from the 
white matter and cerebrospinal fluid. To avoid potential 
spurious negative correlations, the global signal was not 
regressed out (40,41). Two patients with PD-PA and two 
HCs whose head motions exceeded 2.5° of rotation or  
2.5 mm of translation were excluded. We also calculated the 
mean framewise displacement (FD) of each participant. 

VTA-based, voxel-wise FC analysis was performed using 
the DPARSF and SPM12 (http://www.fil.ion.ucl.ac.uk/
spm/). The VTA seed region, namely the region of interest 
(ROI), (with the left and right regions being combined 
into a whole) was extracted from the probabilistic VTA 
atlas (Figure 2) based on 7 T MRI data from 27 healthy 
participants (42). The VTA seed was generated from the 
probabilistic atlas at a 50% threshold. We conducted a 
voxel-wise FC analysis by computing temporal cross-
correlation between the average time series of the VTA seed 
region and those of all brain voxels. Fisher Z-transformation 
was used to improve normality. Analysis of covariance 
(ANCOVA) was conducted to investigate the brain regions 
with significant differences in FC among the three groups 
[voxel-wise P<0.001; cluster-wise family-wise error (FWE)-
corrected P (PFWE)<0.05]. P value tests were one-sided. To 
control for potential confounders, age, gender, education, 
HAMA score, HAMD score, MMSE score, and mean FD 
were introduced as covariates. These significant regions 
were then obtained as an explicit mask. Subsequently, two-
sample post hoc t-tests were performed within this mask, 
with the same covariates as abovementioned, to detect the 

http://www.restfmri.net/forum/dparsf
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significant differences between groups (voxel-wise P<0.001; 
cluster-wise PFWE<0.05).

Processing of DTI data and tract-based spatial statistics 
(TBSS)

DTI data were preprocessed via the Pipeline for Analyzing 
Brain Diffusion Images (PANDA) toolkit (PANDA; http://
www.nitrc.org/projects/panda) based on the Functional 
Magnetic Resonance Imaging of the Brain (FMRIB) 
Software Library 5.0 (FSL 5.0; https://www.nitrc.org/
projects/fsl). The preprocessing of diffusion images 
included brain extraction, realignment, eddy current and 
motion artifact correction, and calculation of fractional 
anisotropy (FA) and mean diffusivity (MD) maps.

TBSS was performed to analyze the DTI images. This 
analysis mainly included the following procedures: (I) FA 
images were realigned to an FMRIB-58 FA map from 
MNI space using nonlinear registration. (II) The mean FA 
image was then created and thinned to generate a mean FA 
skeleton at the 0.2 threshold. (III) FA and MD images of 
participants were projected onto the skeleton. The voxel-
wise statistic analysis of skeletonized FA and MD images 
was performed using a general linear model. This analysis 
used threshold-free cluster enhancement (TFCE) for 
multiple comparison correction (randomized permutation 
test =5,000 permutations). The nuisance covariates included 
age, gender, education, MMSE score, HAMD score, and 
HAMA score. Results were deemed significant at a TFCE-
corrected P value of <0.05. P value tests were one-sided.

Statistical analysis

The demographic and clinical data of all participants were 
analyzed using SPSS 20.0 (IBM Corp., Armonk, NY, USA). 
Demographic and clinical characteristics were compared 
with the two-sample t-test, chi-square test, Kruskal-Wallis 
test, Mann-Whitney test, or one-way analysis of variance 
(ANOVA), as appropriate. P value tests were two-sided, and 
Bonferroni correction was used for multiple comparisons. 
Additionally, we extracted the brain region showing 
significant differences between the PD-PA and PD-NPA 
group as the ROI. We employed partial correlation analysis 
to compute the correlation between the average FC values 
of the ROI and the AS scores in patients with PD-PA. Age, 
education level, MMSE score, HAMA score, and HAMD 
score were introduced as covariates. 

Results

Demographic and clinical data

The characteristics of all participants are summarized 
in Table 1. There were no remarkable differences in age 
(P=0.76), gender (P=0.93), years of education (P=0.47), 
MMSE (P=0.29), HAMA (P=0.51), or HAMD (P=0.92) 
across the three groups. Moreover, no significant 
differences in PD duration (P=1.00), UPDRS-III (P=0.72), 
H-Y (P=0.51), or LEDD (P=0.60) between the PD-PA 
and PD-NPA groups were found. However, the AS scores 
(P<0.001) were significantly different between the three 
groups. The PD-PA group exhibited more severe apathy 

A B C
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Figure 2 Seed region of the VTA. The probabilistic atlas of the VTA in MNI space was displayed in the transverse (A), coronal (B), and 
sagittal (C) views. A threshold of more than 50% gray matter probability was used for seed region of interest. VTA, ventral tegmental area; 
MNI, Montreal Neurological Institute.
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Table 1 Clinical characteristics of all participants 

Variable PD-PA PD-NPA HC P value

N 27 37 26 NA

Gender (M/F) 19/8 25/12 17/9 0.93a

Age (y) 61.63±10.58 63.30±9.40 62.73±5.90 0.76e

Education (y) 11.41±2.95 11.14±3.65 12.23±3.87 0.47b

Disease duration (y) 4.81±2.72 4.81±3.10 NA 1.00c

H-Y 1.89±0.68 2.00±0.65 NA 0.51c

LEDD (mg/d) 539.58±226.93 503.04±308.34 NA 0.60c

Motor sign

UPDRS-III score 25.15±5.96 24.22±12.67 NA 0.72d

Nonmotor performance

AS 21.63±5.97 6.27±3.15 4.12±3.19 <0.001e

HAMD 2.41±1.34 2.43±1.77 2.27±1.54 0.92b

HAMA 3.33±1.64 3.35±1.50 2.92±1.55 0.51b

Cognitive performance

MMSE 28.19±1.18 27.86±4.85 29.15±1.12 0.29b

FAB 15.70±1.71 16.24±1.79 16.85±1.64 0.059b

FD 0.11±0.05 0.12±0.06 0.12±0.06 0.57b

Data are expressed as the mean ± SD. a, Chi-square test; b, one-way analysis of variance; c, two-sample t-test; d, Mann-Whitney test; e, 
Kruskal-Wallis test. PD-PA, Parkinson’s disease with pure apathy; PD-NPA, Parkinson’s disease without pure apathy; HC, healthy control; 
M, male; F, female; y, year; NA, not applicable; H-Y, Hoehn and Yahr stage; LEDD, levodopa equivalent daily dose; UPDRS, Unified 
Parkinson’s Disease Rating Scale; AS, apathy score; HAMD, 17-item Hamilton Depression Rating Scale; HAMA, Hamilton Anxiety Rating 
Scale; MMSE, Mini Mental State Examination; FAB, Frontal Assessment Battery; FD, framewise displacement; SD, standard deviation.

symptoms than did the PD-NPA group (P<0.001). The 
patients with PD-PA showed a nonsignificant tendency for 
worse executive function than did the HCs (corrected P 
value =0.053). No significant differences in mean FD were 
found among the PD-PA, PD-NPA, and HC groups (PD-PA 
group: 0.11±0.05; PD-NPA group: 0.12±0.06; HC group: 
0.12±0.06; P=0.57) (43).

VTA-based FC data

Compared to the patients with PD-NPA, patients with 
PD-PA showed reduced VTA FC with the left SFGmed 
(Figure 3, Table 2), after age, gender, and education, along 
with mean FD, HAMD, HAMA, and MMSE scores, were 
controlled for. Relative to HCs, patients with PD-PA 
demonstrated reduced VTA FC with the left SFGmed, right 
orbital superior frontal gyrus (SFGorb), and right middle 

frontal gyrus (MFG) (Figure 3; Table 2). Compared with 
HCs, patients with PD-NPA exhibited decreased VTA FC 
with the right MFG (Figure 3, Table 2). Increased FC of the 
VTA with different brain regions was not found in patients 
with PD-PA as compared to HCs group or those with  
PD-NPA.

TBSS data

We applied TBSS to compare the three groups in terms of 
the white-matter tract alterations across the whole brain; 
however, no significant differences between the three 
groups were found.

Correlation analysis

The brain region (i.e., left SFGmed) that showed significant 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 7 July 2024 4741

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4735-4748 | https://dx.doi.org/10.21037/qims-23-1673

3

0

−3

P A

PD-PA vs. PD-NPA SFGmed_L

SFGmed_L

x=−3 mm

x=−3 mm

z=−12 mm

z=4 mm

z=4 mm

x=22 mm

x=35 mm

x=30 mm

y=27 mm

y=27 mm

y=53 mm

y=53 mm

y=51 mm

z=53 mm

z=53 mm

SFGmed_R

MFG_R

MFG_R

PD-PA vs. HC

PD-NPA vs. HC

R L

A

B

C

Figure 3 Differences in VTA FC between the groups. Brain areas showing altered functional connectivity of the VTA between the groups 
are displayed (voxel-wise P<0.001, cluster-wise FWE-corrected P<0.05). (A) Altered VTA FC of PD-PA vs. patients with PD-NPA. (B) 
Altered VTA FC of PD-PA vs. HCs. (C) Altered VTA FC of PD-NPA vs. HCs. PD-PA, Parkinson’s disease with pure apathy; PD-NPA, 
Parkinson’s disease without pure apathy; P, posterior; A, anterior; R, right; L, light; SFGmed_L, left medial superior frontal gyrus; SFGorb_R, 
right orbital superior frontal gyrus; MFG_R, right middle frontal gyrus; HC, healthy control; VTA, ventral tegmental area; FC, functional 
connectivity; FWE, family-wise error.
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FC differences between the PD-PA and PD-NPA groups 
was selected (Figure 4A). Following this, we correlated its 
FC values with AS scores in patients with PD-PA, aiming 
to examine whether the observed connectivity alterations 
were related to apathy symptoms in patients with PD-PA. 
Correlation analysis revealed a negative relationship between 
AS scores and mean VTA FC values in the left SFGmed in 
the PD-PA group (r=−0.600; P=0.003; Figure 4B).

Discussion

Our study provides valuable insights into the neural 
mechanisms underlying apathy in PD. To the best of our 
knowledge, this is the first study to examine the relationship 
between apathy and abnormal VTA FC networks in 
patients with PD-PDA via rs-fMRI. We found that 
patients with PD-PA exhibited decreased VTA FC mainly 
in the prefrontal regions. Specifically, patients with PD-
PA showed reduced VTA FC with the left SFGmed as 
compared to the patients with PD-NPA. Relative to HCs, 

Table 2 Differences in VTA FC among the groupsa

Brain region Side
Cluster 

size

MNI coordinate
t score

x y z

PD-PA vs. PD-NPA

Frontal_Sup_Medial L 11 −3 30 54 −3.67

PD-PA vs. HC

Frontal_Sup_Medial L 36 −6 36 54 −4.98

Frontal_Mid R 64 15 54 −12 −5.08

Frontal_Sup_Orb R

PD-NPA vs. HC

Frontal_Mid R 29 33 54 3 −4.17
a, voxel-wise P<0.001, cluster-wise FWE-corrected P<0.05. 
VTA, ventral tegmental area; FC, functional connectivity; MNI, 
Montreal Neurological Institute; PD-PA, Parkinson’s disease with 
pure apathy; PD-NPA, Parkinson’s disease without pure apathy; 
HC, healthy control; L, left; R, right; FWE, family-wise error; 
Frontal_Sup_Medial, superior frontal gyrus, medial; Frontal_Mid, 
middle frontal gyrus; Frontal_Sup_Orb, superior frontal gyrus, 
orbital part. 
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Figure 4 Correlation between VTA-SFGmed_L FC values and AS scores in patients with PD-PA. (A) The SFGmed_L, which showed 
significant FC differences between the PD-PA and PD-NPA groups, was selected, and its FC values were extracted. (B) There was a negative 
relationship between AS scores and VTA-SFGmed_L FC values in the PD-PA group. SFGmed_L, left medial superior frontal gyrus; AS, 
apathy scale; VTA, ventral tegmental area; FC, functional connectivity; PD-PA, Parkinson’s disease with pure apathy; PD-NPA, Parkinson’s 
disease without pure apathy.
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patients with PD-PA demonstrated reduced VTA FC with 
the left SFGmed, right SFGorb, and right MFG. Moreover, 
the VTA FC reductions in left SFGmed were associated 
with severe apathy symptoms. However, there were no 
significant differences in fiber tracts between the three 
groups according to TBSS.

We only found reduced FC in patients with PD-
PA, while significant differences were not observed in 
the DTI analysis. This indicates a disrupted functional 
organization of the connectome in individuals with PD-
PA but a relatively intact structural organization. In fact, 
this difference between FC and structural connectivity has 
also been observed in patients with early-stage PD (44) 
and may partly result from differences in imaging analyses. 
Moreover, BOLD signals, which were used to measure 
FC in our study, are thought to be primarily influenced 
by neurons but also by other nonneuronal elements, such 
as astrocytes and vascular cells (45). DTI analysis mainly 
aims to detect potential white-matter tract impairment, 
and white-matter tract is mainly influenced by neuronal 
fibers. Therefore, this disparity may also result from the 
fact BOLD and DTI signals are shaped by different cellular 
elements and highlights the nuanced relationship between 
FC and structural brain networks. While rs-fMRI reveals 
the coordination between brain regions, DTI maps the 
brain’s physical connections. The absence of correlating 
structural changes suggests functional reorganization might 
occur without visible structural alterations.

Our findings are consistent with previous studies. Several 
studies reported that apathy is significantly more likely to 
occur if the infarction lesion includes the SFGmed (46) 
and that the degree of apathy is more severe in patients 
with bilateral SFGmed lesions than in those with unilateral 
lesions (47). In line with this, multimodal neuroimaging 
studies have observed gray-matter atrophy and altered 
metabolism of the SFGmed in apathetic patients with 
neurodegenerative diseases (14,48). Taken together, these 
findings point to the significant role of the SFGmed in the 
emergence of apathy in patients with PD. 

Apathy is characterized by a reduction in goal-directed 
behavior, which is a complex, multifaceted process (49) 
that includes series of actions. It involves the integration of 
cost, reward and information into a value signal in driving 
behavior toward goals (14,15). There are three dissociable 
phases involved in goal-directed behavior: the activation 
of behavior toward a particular goal, the persistence of this 
behavior over time, and finally, learning from the outcome 
of this behavior (14). Indeed, the SFGmed, a core node of 

the mesocorticolimbic network, has been suggested to have 
roles in motivated behaviors (14) and multifaceted cognitive 
processes including action selection, inhibitory control, and 
set shifting. For instance, the SFGmed, together with its 
closely related region, the anterior cingulate cortex (50), 
is suggested to be involved in selection of action sets (50) 
and in guiding decisions about which actions are worth 
undertaking. These processes are vital to the initiation of 
goal-directed behavior. More specifically, in an earlier study 
on the selection of action sets among conflicting choices, 
the anterior and posterior SFGmed were found to be 
related to conflict and volition processing, respectively (51). 
Apart from the action selection role in the start of behavior, 
inhibitory control is also frequently related to the SFGmed 
(52-56). After behavioral generation, continued persistence 
and invigoration are required to attain a goal. Importantly, 
inhibitory control, a vital part of executive function, exerts 
a top-down influence in sculpting and sustaining behaviors 
toward the desired goal in the presence of competing 
behaviors arising from the changing environment (47,57). 
The SFGmed is also reported to be involved in set 
shifting (58,59), a core ingredient of cognitive flexibility. 
To maintain behaviors toward achieving rewarding goals, 
the flexible shifting of cognitive processes in response to 
a changing environment is also important. In line with 
this, a recent study found that patients with PD-PA exhibit 
impaired cognitive flexibility and inhibitory control (60). 
Cumulatively, this evidence suggests that the SFGmed may 
be a crucial node of the neuronal circuits involved in apathy. 

The VTA, one of the largest dopaminergic nuclei, has 
reciprocal connectivity with the SFGmed (21) and is known 
to be implicated in reward processing (22). Mastwal et al. 
reported that VTA activity and dopamine release modulate 
the SFGmed and have an impact on synaptic plasticity (23). 
Evidence of the dopaminergic modulation on the SFGmed 
from experiments in MPTP-treated Parkinson primates 
has also emerged, with the dopamine concentrations 
within the SFGmed being significantly decreased (61). It is 
believed that dopaminergic signaling within the SFGmed 
supports spatial guidance and temporal structuring (62). 
Furthermore, another clinical investigation on patients 
with PD demonstrated that the administration of dopamine 
agonist drugs can improve frontal cerebral blood flow, 
particularly in the SFGmed (63). Higher regional blood 
flow in the SFGmed is associated with improved cognitive 
processing, including inhibitory control. Moreover, 
dopamine treatments can improve frontal cortical activity 
in patients with PD. Collectively, these findings point to 
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the potential modulating role of the VTA on the SFGmed. 
Therefore, any disruption of the communication between 
the VTA and the SFGmed may lead to the failure of a 
multitude of cognitive processes, including action selection, 
inhibitory control, and set shifting, and subsequently, the 
reduction of goal-directed behaviors, or apathy. In line with 
our hypothesis, the correlation analysis of our study showed 
that the lower FC between the VTA and the SFGmed was 
correlated with a greater severity of apathy symptoms. 
This might suggest that with the aggravation of apathy 
symptoms, functional intercommunication between the 
VTA and SFGmed worsens.

C l i n i c a l l y,  t h e  a s y m m e t r i c a l  d o p a m i n e r g i c 
neurodegeneration and consequent lateralization of motor 
symptoms are cardinal features in the emergence and 
progression of PD (64). Moreover, a growing amount 
of evidence indicates that nonmotor symptoms are also 
related to lateralized neuropathophysiological changes, 
such as olfaction, fatigue, cognitive function, impulse 
control disorder, and apathy (64-67). In our study, we 
found the reduction in SFGmed connectivity only in 
the left hemisphere. Considering that interhemispheric 
coordination is essential for physiological functions, we 
speculate that the laterality of the observed reduction in 
SFGmed connectivity may be related to the mechanism 
of apathy in PD. In line with our assumption, the 
infarction of the genu of corpus callosum, which connects 
interhemispheric prefrontal cortex, can lead to sudden 
emergence apathy (68). Although a causal relationship 
between human brain laterality and handedness has not 
been established (69), human brain function shows laterality. 
In most right-handed individuals, the left hemisphere of 
the brain is typically dominant in language processing (70),  
including speech production and comprehension. 
Additionally, the left hemisphere is often associated with 
analytical thinking, sequential processing, logical reasoning, 
verbal memory, and fine motor control (71-73), all of 
which are vital goal-directed behaviors. In line with this, 
Zhang et al. found that patients with PD-PA demonstrated 
brain laterality in the mesocorticolimbic and nigrostriatal  
systems (65). Thus, the findings in our study might have been 
influenced by the predominance of right-handed participants 
in the sample, and the possibility that hemispheric dominance 
is involved in apathy cannot be completely ruled out. Future 
research on PD-PA in left-handed individuals will provide 
further evidence for this hypothesis.

In our study, when the two patient groups were 
respectively compared with HCs, a difference in FC with the 

SFGorb was only observed in patients with PD-PA but not in 
patients with PD-NPA. Therefore, we suggest that reduced 
FC between VTA and the SFGorb may also have a role in 
apathy in patients with PD. The SFGorb is mainly located 
in the vmPFC. The VTA is to project to the vmPFC (21),  
which allows for the subjective valuation of events (22). 
Reduced FC between the VTA and SFGorb may underlie 
the dysfunction of subjective valuation of a given event and 
poor reward incentivization in patients with PD-PA.

Some limitations to our study to be mentioned. First, 
the sample size was relatively small, which might have 
limited the detection of minor white-matter changes. 
Second, as this was a preliminary study, there were certain 
biological and technical limitations. Future studies with  
7 T MRI could provide higher resolution on the midbrain 
structures and better help explore the mesocorticolimbic 
networks. Third, we employed a cross-sectional design, 
and a longitudinal study is urgently needed to clarify the 
dynamic alterations of the VTA FC network correlated 
with the progression of disease in patients with PD-PA. 
Fourth, we assessed cognitive status using the MMSE and 
FAB scales. Future research with a more comprehensive 
battery of cognitive assessments may aid in the detection 
of specific cognitive subdomain impairment in those with 
PD-PA. Fifth, we did not include a group of participants 
with apathy without any neurological disease. In a future 
study, we will recruit a group of apathy participants without 
any neurological disease and use FC analysis to ascertain 
whether there are other brain areas involved in apathy. 
Sixth, there is no consensus regarding what steps should 
be included in a pipeline, or in which order they should be 
performed in fMRI analysis, and modular preprocessing 
pipelines can reintroduce artifacts into fMRI data. 
Therefore, the preliminary findings of present study should 
be interpreted with caution. Finally, resting-state networks 
are broadband, and our study might have inadvertently 
removed group-level differences.

Conclusions

We found impaired FC within the mesocortic network in 
patients with PD-PA. Our findings may provide valuable 
insights into potential neuromodulation therapies for 
alleviating the apathy symptoms in patients with PD.
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