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Adult spinal deformity (ASD) is a complex disease that significantly affects the lives of many 
patients. Surgical correction has proven to be effective in achieving improvement of spino-
pelvic parameters as well as improving quality of life (QoL) for these patients. However, 
given the relatively high complication risk associated with ASD correction, it is of para-
mount importance to develop robust prognostic tools for predicting risk profile and out-
comes. Historically, statistical models such as linear and logistic regression models were 
used to identify preoperative factors associated with postoperative outcomes. While these 
tools were useful for looking at simple associations, they represent generalizations across 
large populations, with little applicability to individual patients. More recently, predictive 
analytics utilizing artificial intelligence (AI) through machine learning for comprehensive 
processing of large amounts of data have become available for surgeons to implement. The 
use of these computational techniques has given surgeons the ability to leverage far more 
accurate and individualized predictive tools to better inform individual patients regarding 
predicted outcomes after ASD correction surgery. Applications range from predicting QoL 
measures to predicting the risk of major complications, hospital readmission, and reopera-
tion rates. In addition, AI has been used to create a novel classification system for ASD pa-
tients, which will help surgeons identify distinct patient subpopulations with unique risk-
benefit profiles. Overall, these tools will help surgeons tailor their clinical practice to ad-
dress patients’ individual needs and create an opportunity for personalized medicine within 
spine surgery.
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INTRODUCTION

For decades, adult spinal deformity (ASD) has continued to 
be a complex and often crippling disease, causing significant 
pain and disability,1,2 with worse deformity associated with great-
er pain and disability.3,4 ASD is not a single entity but a very 
heterogeneous disease with many etiologies: degenerative, idio-
pathic, congenital and commonly iatrogenic (prior surgery). 
While our understanding of the complexity of this disease has 
increased, so has our ability to surgically manage this condition, 
with many studies showing that correction of spinopelvic pa-
rameters to more normal values can significantly improve mul-
tiple health-related quality of life (HRQoL) measures especially 
in severely disabled patients.5-8 In almost all cases, soft tissue re-
lease and osteotomies are required in order to obtain satisfacto-

ry correction of the deformity. In rigid, inflexible ASD cases, 
high grade 3-column osteotomies may be warranted.4 Such for-
midable techniques are associated with greater surgical inva-
siveness, risk for complications (perioperative and long-term), 
neurological risks, and direct cost.7,9-14

Due to the unique nature of ASD and multifaceted nature of 
the patients, ASD offers a perfect niche for utilization of advanced 
analytics throughout nonsurgical and surgical care. For decades, 
spine surgeons have relied on established literature, extensive 
training, and clinical judgment to counsel patients regarding 
the risks and benefits of surgery for ASD; often the most accu-
rate information was based on their overall personal experience 
and was not patient specific. Most studies in the literature were 
conducted using simple statistical methods such as linear or lo-
gistic regressions, and gave surgeons averages across entire pop-
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ulations that in reality may be minimally relevant for the intri-
cacies of a specific patient. As medical data has become digitized 
giving us access to dizzying arrays of patient information, so 
has our ability to process this data in far more meaningful and 
robust ways. The past few years have seen the medical field’s 
gradual adoption of computational techniques that can process 
vast amounts of data to create complex mathematical models 
describing the relationship between seemingly disparate vari-
ables. The most widely used of these techniques has been ma-
chine learning, which has surged in popularity over the past 
decade as the most commonly utilized tool for implementing 
artificial intelligence (AI).

The idea behind AI, is to create a system that can mimic our 
natural ability to continually learn as we gain access to new data 
and apply it to novel situations in the future. In the context of 
machine learning, which is considered a subset of AI, this in-
volves “training” algorithms on immense datasets, and allowing 
the algorithm to discern mathematical relationships within the 
data (Fig. 1). Once an algorithm has been trained on previously 
acquired data, it can then prospectively be applied to new data 
in order to make specific predictions or determinations based 
on the model that has been developed. This ability to interpret 
patterns in data that may not be readily apparent offers power-

ful applications to the field of spine surgery, especially ASD. Giv-
en the wide spectrum of data available for patients undergoing 
ASD surgery, incorporating machine learning algorithms into 
predictive analytics helps remove bias regarding which variables 
are relevant or not, and has the potential to make predictions 
tailored specifically to a patient’s individual profile. The appli-
cability of machine learning models to prospective data for in-
dividual patients offers an immense advantage over traditional 
statistical methods that portray estimates for largely diverse pa-
tient populations with little prospective utility. As a result, ma-
chine learning models can meaningfully augment a surgeon’s 
ability to counsel patients. Spinal deformity surgeons are at the 
forefront of incorporating these techniques for a wide variety of 
potential applications, including predictive modeling for out-
comes, cost analysis for both patients and healthcare systems, 
and complication risk profiling.

EARLY PREDICTIVE ANALYTICS

1. Methodology and Statistics
For ASD specifically, spine surgeons have made great strides 

in the development and implementation of machine learning 
techniques. The largest advancements have been in the utiliza-
tion of increasingly complex predictive analytics that is built on 
machine learning algorithms. Both surgeons and patients alike 
are interested in better tools for predicting outcomes, as it al-
lows for more comprehensive preoperative discussions and sur-
gical decision making. Predictive analytics has now been applied 
across a wide variety of topics within ASD surgery, including 
predicting intraoperative,15 perioperative,16,17 and postoperative 
complications and outcomes.18-25

The majority of studies published on this topic share similar 
principles and methodologies in the development of their re-
spective predictive models. The most common technique em-
ployed across the studies mentioned in this article relies on de-
cision tree-based machine learning, where either classification 
or regression trees are built based on the target variable (out-
put). The idea behind decision tree learning is that the algorithm 
will build a tree-like model of decisions and their correspond-
ing consequences (similar to a flow chart) (Fig. 2). In this case, 
the tree will navigate from observations represented as the “bran
ches” (clinical variables) about an item (the patient) to conclu-
sions about the item’s target (desired output – outcome variable) 
represented as the “leaves.”

In order to create the predictive model, these decision trees 
are first created by learning from a “training set,” which is gen-

Fig. 1. Visual representation of artificial intelligence and its 
corresponding subsets. Data science can be seen as traversing 
all domains, as these are all commonly employed techniques 
in data science and analytics.
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erally a 70%–80% partition of the entire dataset. Once created, 
the parameters of the model are fine-tuned using a “validation 
set”, generally a 20%–30% partition of the data. Final metrics 
for testing the accuracy of predictions generated by the predic-
tive model are usually derived using a “test set” where the actual 
outputs are already known, and reported using metrics such as 
% accuracy and area under the curve (AUC) (Fig. 3). Variations 
of the decision tree learning concept help make the analytics 
more robust and generalizable (minimize overfitting) for mak-
ing predictions on new data. These variations include using 
bootstrapping, which randomly samples data for the creation of 
decision trees during the training phase, and random forest al-
gorithms – a slight modification of the actual decision tree al-
gorithm that randomly selects a subset of features (variables) 
and builds decision trees with different structures to find vari-
ables which are the strongest predictors of the desired output. 
Ensemble methods such as random forests or bootstrapped de-
cision trees combine several different learned algorithms (dif-
ferently structured trees) to create a single stronger classifier 
that will have better predictive value and lower variance.

2. �Strengths, Limitations, and Pitfalls: Statistical Models vs. 
Machine Learning
While statistical models still remain highly relevant for health-

Fig. 2. Schematic depicting decision tree classifiers, and how they iteratively form tree structures to make predictions for a de-
sired output. In this diagram, attributes represent clinical variables, and the attribute values depicted as arrows correspond to 
different observations for the given attribute/clinical variable. The final outcome/target is the desired variable or prediction (i.e., 
complication yes/no).
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Fig. 3. Flow chart demonstrating the general process of train-
ing, validating, and testing utilized during the development of 
machine learning models. This diagram shows how training 
data is generated from the original data, and then split (gener-
ally 80/20) into a training set and validation set, most often 
using a technique called cross-validation. The training data is 
randomly split 80/20 k-number of times, such that the model 
learns from the training set, and then parameter tuning is 
done with the validation set k-number of times; ultimately the 
learned models are averaged to select the optimal one. The re-
sulting model is then tested on a distinct test set for final per-
formance evaluation, usually given by % accuracy and area 
under the curve values. The model can then be deployed to 
make predictions on new data.
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care analytics, they do possess several limitations in their appli-
cability, especially when compared to machine learning. The 
primary differences between statistical modeling and machine 
learning lie in their data requirements, ease of interpretation 
and understanding of the model generated. Statistical modeling 
serves the purpose of actually explaining or inferring the rela-
tionship between variables in a model. The strength of machine 
learning, on the other hand, lies in its capability to process im-
mense amounts of data across large numbers of often diverse 
variables, to generate predictions with high accuracy for specif-
ic outcomes. The tradeoff here is that statistical models while 
less accurate for predicting outcomes are generally easier to in-
terpret, and machine learning models which grant higher pre-
dictive accuracy are more difficult to interpret given their in-
creased complexity.

Machine learning algorithms are extremely powerful when 
used appropriately but present some limitations, especially re-
garding their adoption as an analytic tool for medicine. A key 
difference between machine learning methods and statistical 
modeling lies with their differing requirements for data. In gen-
eral, statistics can be applied to relatively small amounts of data 
and still allow for reasonable inferences to be made of the rela-
tionship between variables. Machine learning, on the other hand, 
requires much larger amounts of data in order to effectively cre-
ate predictive models, which then improve with subsequent ad-
dition of new data. Given the scarcity of large prospectively col-
lected datasets in spine surgery, some of the predictive models 
described later on should be viewed cautiously, as predictive ac-
curacy can vary greatly when sufficient data is not provided to 
train machine learning models. Additionally, given the readily 
accessible applications that currently exist for applying machine 
learning, many of the subtleties underlying the implementation 
of these models are often lost to the general user. Some of these 
include being careful about managing data that exists in different 
forms (comorbidities, lab results, binary outcomes, free text, etc.), 
and skimping on model and parameter training.

Oftentimes in medicine, we are presented with class imbal-
ance problems, where one outcome class can represent a signif-
icant majority and outweigh a different minority outcome, caus-
ing our predictions to become heavily biased towards one way 
or another. Additionally, models that are not trained on suffi-
cient sample sizes can be hindered by overfitting, meaning the 
model is effective at describing the existing data, but cannot be 
extrapolated with the same accuracy to new data. Data scien-
tists utilize many common techniques to circumvent these short-
comings, most common of which requires proper training, val-

idation, and testing of the desired model. Physicians and re-
searchers must take care to follow appropriate steps in develop-
ment of machine learning models for clinical outcomes research, 
as avoidance of such practices as well as careful parameter cali-
bration and tuning can result in misleading conclusions.

3. Perioperative Analytics and Outcomes
Though predictive analytics have primarily been applied to 

postoperative outcomes, Durand et al.15 studied a group of 1,029 
ASD patients to develop a predictive model for intra- and post-
operative blood transfusion. Single decision tree and random 
forest models were both developed with a training set of 824 
patients and tested on a validation set of 205 patients. The final 
classification tree model and random forest model exhibited 
AUCs of 0.79 and 0.85, respectively, with no significant differ-
ence between the 2 models. The resulting models can provide 
surgeons with accurate tools to predict transfusion rates among 
their ASD patients, allowing for more informed surgical plan-
ning. Models have also been created to assess length of stay 
(LOS)16 and major early complications.17 In the study by Scheer 
et al.17 a predictive model for early complications (intraopera-
tive and within 6 weeks postoperative) was created using 45 
variables from baseline demographic, radiographic, and surgi-
cal factors for 557 ASD patients. An ensemble of decision trees 
was trained with 5 different bootstrapped models and internal 
validation was accomplished using a 70:30 data split. The model 
was a good fit with an overall accuracy of 87.6% and AUC of 0.89. 
This study was followed by Safaee et al.16 who used a bootstrapped 
group of 653 patients to train a generalized linear model (an 
improvement over linear regressions used for samples from 
nonnormal arbitrary distributions) for LOS after ASD surgery, 
and validated on a separate set of 240 patients in a test set. Pre-
dictive accuracy resulting from the test set was 75.4% within 2 
days of actual LOS values.

The vast majority of studies published using predictive ana-
lytics in ASD patients have been to assess postoperative outcomes. 
Predictive models were built to assess for surgical outcomes in 
ASD patients, looking at: proximal junctional failure (PJF) or 
clinically significant proximal junctional kyphosis (PJK),18,19 
pseudoarthrosis,20 and major complications at 2 years.21 Scheer 
et al.18 were one of the first groups to create predictive models 
assessing for PJF or PJK in a cohort of 510 ASD patients. Deci-
sion trees were trained using 5 bootstrapped models and inter-
nally validated via a 70:30 data split for model training and test-
ing. Overall model accuracy was 86% with AUC of 0.89, high-
lighting the feasibility and utility of predictive models in ASD. 
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This study was then followed up by Yagi et al.,19 who similarly 
used an ensemble of 10 different bootstrapped decision trees, 
but also included bone mineral density score as a variable to 
generate a predictive model that was 100% accurate in the test 
set, albeit in a much smaller dataset of 112 patients for training 
and 33 patients for testing. In addition to PJK and PJF, predic-
tive analytics have also been applied to pseudarthrosis in ASD 
surgery. Scheer et al.20 applied the same methods of ensemble 
decision tree learning from bootstrapped models to a group of 
336 ASD patients. From 82 variables initially assessed, 21 vari-
ables were used in model generation, which upon testing showed 
91% accuracy and AUC of 0.94 for predicting pseudarthrosis at 
2-year follow-up. A similar study was conducted by Yagi et al.21 
to predict any major complication in a cohort of 195 surgically 
treated ASD patients at 2-year follow-up. With similar ensemble 
methods of 5 bootstrapped decision trees trained and tested via 
70:30 split, they achieved a test accuracy of 92%, with AUC 0.96.

Importantly, numerous studies have also been published pre-
dicting QoL measures23-25 and cervical alignment22 following 
thoracolumbar ASD surgery. Passias et al.22 used predictive an-
alytics to produce a model for predicting reciprocal changes, 
specifically cervical alignment, following thoracolumbar spinal 
deformity surgery in a cohort of 225 ASD patients. Multivari-
able logistic stepwise regression models built using bootstrap-
ping were utilized to generate a model with AUC of 89% for 
predicting cervical malalignment following thoracolumbar cor-
rection surgery. The results of this study showed that patients 
with increased preoperative C2-T3 cobb angle at baseline (odds 
ratio [OR], 1.048; p= 0.005), and the number of Smith-Peterson 
osteotomies used in surgery (OR, 1.336; p= 0.017), were both 
significantly associated with developing poor cervical alignment 
postoperatively. With respect to QoL outcomes in ASD patients, 
Oh et al.23 were among the first to apply predictive analytics to 
determine how patients would fare postoperatively using pa-
tient-derived metrics. Similar to previous studies, they used an 
ensemble of 5 different bootstrapped decision trees in a cohort 
of 234 ASD patients with 2-year follow-up, with a total of 46 
variables for model development. Using a 70:30 data split for 
training and internal validation their model exhibited an accu-
racy of 85.5% with 0.96 AUC for predicting which patients would 
reach a minimum clinically important difference (MCID) in 
their 2-year postoperative Oswestry Disability Index (ODI). 
While Oh et al. performed their analysis on patients with a pre-
operative ODI> 15, Scheer et al.24 used the same methods on a 
group of 198 patients with a preoperative ODI> 30, achieving a 
predictive accuracy of 86% with AUC 0.94. Interestingly, the 

most important predictive variables were quite different between 
the 2 studies despite having similar training variables, highlight-
ing one of the strengths of these supervised machine learning 
methods. Studies predicting QoL impacts for patients are criti-
cal to the future of spine surgery, as they can help with preoper-
ative patient selection and surgical planning, to maximize pa-
tient benefit and minimize patient and hospital expenditures.

Highly accurate models are key to having informed discus-
sions with patients and for the construction of the optimal sur-
gical plan for each individual patient.26 As detailed above, pre-
dictive analytics have the capacity to generate accurate models 
across a range of outcomes in ASD surgery. However, as men-
tioned earlier, many of these studies are limited by their sample 
size, and the use of relatively simple algorithms. Given the pro-
pensity of decision trees to overfit developed models, it is criti-
cal that we also begin to explore additional, higher quality meth-
odologies. The application of predictive analytics to ASD pa-
tients started surgeons on a path towards leveraging modern 
computational methods to create improved predictive models. 
Now, to achieve even better and more robust models, the field 
turns to incorporating AI via more complex machine learning 
algorithms for predictive model generation.

ARTIFICIAL INTELLIGENCE FOR ADULT 
SPINAL DEFORMITY CLASSIFICATION 
AND OUTCOME PREDICTION

Building on the success of earlier studies piloting the feasibili-
ty of basic machine learning algorithms for predictive analytics 
in ASD, the International Spine Study Group (ISSG) and Euro-
pean Spine Study Group (ESSG) have published landmark pa-
pers evolving the discipline of spine surgery further into the 
field of complex analytics. In what is currently the largest appli-
cation of predictive analytics for HRQoL measures using pa-
tient-reported outcomes (PRO), Ames et al.25 developed a pre-
dictive model including 570 prospective ASD patients, assessing 
the probability of achieving MCID in ODI, Scoliosis Research 
Society-22 (SRS-22), and Short Form-36 PROs at 1- and 2-year 
follow-up postoperatively. A total of 8 different machine learn-
ing algorithms were trained at 4-time horizons (preoperative 
baseline, immediate postoperative baseline, 1-year follow-up, 
and 2-year follow-up) across 75 variables for each patient. Final 
model selection for each patient per time horizon was ultimate-
ly determined by minimization of the mean average error 
(MAE). External validation was conducted with an 80% train-
ing and 20% test set split, with goodness of fit measures such as 
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R2 ranging from 20%–45% and MAE across selected models 
ranging from 8%–15%, indicating successful model fitting.

The ISSG and ESSG also sought to build upon the work of 
prior postoperative outcomes studies on a much larger scale, to 
validate the utility of prognostic tools for predicting major com-
plications, hospital readmission, and unplanned reoperation in 
surgically treated ASD patients.27 A large concern for patients 
considering deformity correction surgery for ASD continues to 
be the relatively high rate of complications, given the complexi-
ty of surgical intervention. Currently, surgeons are only able to 
inform patients about the risks of major complications based 
on prospective registries, which contain generalized estimates 
for entire populations, and have little utility for individual pa-
tients. In an effort to create more robust prognostic tools for 
patients considering these invasive surgeries, 2 random forest 
models were developed for each of the desired outcomes. A to-
tal of 105 variables were used to train the predictive models in a 
cohort of 1,612 prospectively collected ASD patients. Models 
consisted of demographics, comorbidities, radiographic param-
eters PROs, surgical characteristics, and intraoperative data, 
with the difference being inclusion of immediate postoperative 
outcomes in one of the 2 models. The models were trained us-
ing a standard 80% partition for the training set, and a 20% par-
tition for independent testing, showcasing adequate predictive 
accuracy with AUC ranging from 0.67–0.92.27 Accurate prog-
nostic models such as these will prove to be incredible resourc-
es for optimizing patient selection, which in turn maximizes 
chances for surgical success by minimizing risk of complica-
tions and readmissions.

An additional study similarly seeking to push ASD surgery 
towards individualized and personalized medicine was pub-
lished by Ames et al.,28 using machine learning models to create 
predictive models for all individual questions listed in the SRS-
22, a commonly used survey for gathering PRO data. Using 2 
prospective cohorts of 561 patients and a total of 6 different ma-
chine learning algorithms for 150 patient variables, the authors 
successfully built a model that could predict patient answers to 
each individual SRS-22 question with AUC ranging from 0.57 
to 0.87. These new technologies can help provide more reliable 
and individually catered information to patients regarding spe-
cific care goals. The use of machine learning algorithms such as 
random forest models and decision trees were additionally ap-
plied to predict which patients may experience catastrophic 
costs after ASD surgery, with adequate goodness of fit measures 
of R2 ranging from 56%–57% for 90-day cost prediction, and 
29%–35% for 2-year direct cost prediction.29 While these esti-

mates reflect lower predictive accuracies than prior models for 
other applications, they were consistent in describing top pre-
dictors for catastrophic costs associated with ASD surgery.

A more recent pioneering study was published by Ames et 
al.30 in which they demonstrated for the first time the use of un-
supervised learning via hierarchical clustering to create a novel 
classification system for ASD. This monumental study showed 
how an unsupervised learning method, where there are no spe-
cific outputs corresponding to inputs within the dataset, can it-
eratively learn the inherent structure of the data, and investigate 
all available data to form representative models. These models 
are more complex than the supervised decision tree methods 
highlighted above, as they have completely free reign to mathe-
matically model the natural structure of the data, without any 
knowledge of inputs or outputs. While prior ASD classifications 
have relied primarily on radiographic parameters that have been 
shown to be associated with patient outcomes, there has been 
no study as of yet investigating the whole gamut of available 
data to determine clinically relevant information. A total of 2 
prospective cohorts were queried for ASD patients with base-
line, 1- and 2-year follow-up data, resulting in a total of 570 pa-
tients being analyzed. Clustering performed based on both pa-
tient characteristics and surgical characteristics including ob-
jective measures and PRO data identified distinct populations 
of patient types within the cohort. Each of the 3 clusters based 
on patient characteristics (young with coronal deformity, old 
with high incidence of prior spine surgery, and old with low in-
cidence of prior spine surgery) exhibited unique complication 
and outcomes profiles. Among the groups, they found that old-
er revision patients had the greatest preoperative disability (like-
ly requiring more invasive procedures for correction) and high-
er complications; but these patients had the greatest clinical im-
provement among the groups at follow-up. Clustering based on 
surgical characteristics yielded 4 distinct patient types (high 
number of levels fused with 3-column osteotomy, high num-
bers of levels fused with Smith-Peterson osteotomy, no osteoto-
my/no interbody fusion, and highest use of interbody fusion). 
In addition, efficiency grids were created to evaluate the theo-
retical safety of various surgical approaches as they directly re-
late to improvement in ASD patients (risk-benefit analysis). Hav-
ing this granular information available can help surgeons with 
hypothesis building by examining risk-benefit ratios for distinct 
patient subpopulations, and significantly bolster the surgeon’s 
ability to determine the best treatment for an individual patient.
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Table 1. Summary of studies presented in the manuscript including relevant information

Study Study and outcome Computational technique AUC Accuracy Other performance 
measure

Durand et al.15 
(2018)

Predicting intra and postopera-
tive blood transfusion

Single decision tree; random forest 0.79; 0.85 - -

Safaee et al.16 
(2018)

Predicting hospital length of stay Generalized linear model with bootstrap-
ping

- 75.4% with-
in 2 days

-

Scheer et al.17 
(2017)

Predicting early complications 
(intraoperative and within 
6-week postoperative period)

Ensemble of 5 bootstrapped decision trees 0.89 87.60% -

Scheer et al.18 
(2016)

Predicting PJF or PJK within  
2 years of ASD surgery

Ensemble of 5 bootstrapped decision trees 0.89 86% -

Yagi et al.19 
(2018)

Predicting PJF within 2 years of 
ASD surgery

Ensemble of 10 bootstrapped decision trees 1 100% -

Scheer et al.20 
(2018)

Predicting pseudoarthrosis at 
2-year follow-up

Ensemble of 5 bootstrapped decision trees 0.94 91% -

Yagi et al.21 
(2019)

Predicting major complications 
in 2-year postoperative period

Ensemble of 5 bootstrapped decision trees 0.96 92% -

Passias et al.22 
(2016)

Predicting cervical malalignment 
following thoracolumbar ASD 
surgery

Stepwise multivariable logistic regression 
with bootstrapping

0.89 - -

Oh et al.23 
(2017)

Predicting MCID in 2-year ODI 
score (preoperative ODI > 15)

Ensemble of 5 bootstrapped decision trees 0.96 85.50% -

Scheer et al.24 
(2018)

Predicting MCID in 2-year ODI 
score (preoperative ODI > 30)

Ensemble of 5 bootstrapped decision trees 0.94 86% -

Ames et al.25 
(2019)

Predicting MCID in ODI, SRS-
22, and SF-36 scores at 1- and 
2-year follow-up

Optimal algorithm selected from: ordinary 
least squares, ordinary least squares with 
partitions, elastic net, gradient boosting 
machines, extreme gradient boosting tree, 
extreme gradient boosting linear models, 
random forest, and generalized linear 
models

- - Mean average error: 
8%–15%

Pellisé et al.27 
(2019)

Predicting major complications, 
hospital readmission, and  
unplanned reoperation within 
2-year postoperative period

Random forest 0.67–0.92 - C statistic:  
63.9%–71.7%

Ames et al.28 
(2019)

Predicting answers to each indi-
vidual SRS-22 question at  
1- and 2-year follow-up

Optimal algorithm selected from: elastic net, 
gradient boosting machines, extreme  
gradient boosting tree, extreme gradient 
boosting linear models, random forest, and 
elastic net regularized generalized linear 
models

0.57–0.87 35%–80% -

Ames et al.29 
(2019)

Predicting patients with cata-
strophic costs ( > $100,000) at  
90 days and 2-year postopera-
tive period

Regression tree and random forest - - R2: 56%–57% for  
90-day prediction; 
29%–35% for 
2-year prediction

Ames et al.30 
(2019)

Hierarchical clustering of ASD 
patients

Hierarchical clustering - - Gap statistic K: 0.68 
for 4 clusters; 
p < 0.001 between 
variables across 
clusters

AUC, area under the curve; PJF, proximal junctional failure; PJK, proximal junctional kyphosis; ASD, Adult spinal deformity; MCID, mini-
mum clinically important difference; ODI, Oswestry Disability Index; SRS-22, Scoliosis Research Society-22; SF-36, Short Form-36.
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DISCUSSION

As seen by this overview of predictive models and machine 
learning for ASD, significant headway has been made by spine 
surgeons in creating powerful tools to augment surgeon knowl-
edge (Table 1). While we have definitely taken significant steps 
towards incorporating computational methods and personal-
ized medicine into healthcare, there are still many challenges 
and obstacles left to overcome. One of the biggest challenges is 
the need for comprehensive and expansive data for utilization 
of these advanced models. Currently, there are very few data-
bases for spine surgery patients that have been prospectively 
collected as this is a very time-consuming and expensive pro-
cess. While national surgical registries do exist, they are limited 
in their scope and comprehensiveness. It is imperative for sur-
geons across multiple institutions to collaborate for generation 
of large databases, so that surgeons around the world will have 
the ability to apply robust computational methods.

In addition to database generation, we are currently at an im-
passe for effective incorporation of these tools in our practice. 
With the transition to electronic medical records (EMR), health-
care should be well-poised to integrate newly developed predic-
tive analytics, that can be continually refined by inclusion of 
new data through EMR. In order to properly reconcile the wide 
variety of predictive models that have been developed so far 
and will continue to be developed, many of these tools will need 
to be consolidated into a comprehensive application that can be 
widely adopted by spine surgeons for convenient use. Currently, 
the ISSG has undertaken this initiative by compiling their work 
into the development of an ASD risk calculator, which is able to 
predict complication, readmission, reintervention, and specific 
HRQoL outcomes up to 2-years based on inputted patient-spe-
cific variables. Validation of such initiatives can lead to wide-
spread distribution of similar tools for easy implementation by 
spine surgeons.

CONCLUSION

In aggregate, all of these studies represent the cumulative ef-
fort of spine surgeons and mathematicians from around the 
world to advance the field of ASD surgery into the current tech-
nological age. Our ability to leverage advanced computational 
methods will significantly impact patient care, by allowing sur-
geons to supplement years of clinical expertise and training 
with impactful mathematical estimates, specifically tailored to 
an individual patient’s medical profile. By remaining at the fore-

front of technological advances, deformity surgeons will con-
tinue to strive to provide patients with the highest utility data, 
to better inform preoperative clinic visits and physician-patient 
decision making. The next steps will be to continue advancing 
AI technology, apply this directly to clinical decision making, 
and make the technology readily accessible to surgeons. In 
achieving this, ASD surgery has truly begun to embrace the era 
of personalized medicine.
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