
����������
�������

Citation: Rodriguez-Pilco, M.A.;
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Abstract: Metopaulias depressus is a non-marine crab endemic to Jamaica that dwells in rainforest
bromeliads and exhibits elaborate active parental care behavior. Current genomic resources on
M. depressus are rare, limiting the understanding of its adaptation to terrestrial life in species that
evolved from marine ancestors. This study reports the complete mitochondrial genome of M. depressus
assembled using Sanger sequencing. The AT-rich mitochondrial genome of M. depressus is 15,765 bp in
length and comprises 13 protein-coding genes (PCGs), 2 ribosomal RNA genes, and 22 transfer RNA
genes. A single 691 bp-long intergenic space is assumed to be the control region (CR) or D-loop. A
set of selective pressure analyses indicate that the entirety of the PCGs experience purifying selection.
Cox1, cox2, nad5, cox3, and atp6 experience strong purifying selection, and atp8 experiences weak
purifying selection compared to the rest of the PCGs. The secondary structures of most tRNA genes
exhibit a standard ‘cloverleaf’ structure, with the exception of trnS1, which lacks the dihydroxyuridine
(DHU) arm but not the loop, the trnH gene, which lacks the thymine pseudouracil cytosine (T) loop
but not the arm, and trnM, which exhibits an overly developed T loop. A maximum likelihood
phylogenetic analysis based on all PCGs indicated that M. depressus is more closely related to the
genera Clistocoeloma, Nanosesarma, and Parasesarma than to Chiromantes, Geosesarma, and Orisarma.
This study contributes to deciphering the phylogenetic relationships within the family Sesarmidae
and represents a new genomic resource for this iconic crab species.

Keywords: mitochondrial DNA; Sanger sequencing; mitogenome; selective pressure

1. Introduction

Within the Decapoda, crabs belonging to the Infraorder Brachyura are recognized
for their astonishing anatomical, ecological, physiological, and behavioral diversity [1,2].
Among them, the family Sesarmidae is a speciose clade that has successfully colonized ma-
rine intertidal and supratidal zones [3–5]. Some lineages have even radiated into freshwater
and terrestrial habitats, and these non-marine sesarmids often exhibit abbreviated larval
development and complex parental–offspring interactions [6]. Metopaulias depressus sets
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itself apart even within this remarkable family due to its unique forest-dwelling lifestyle
and active parental care behavior [3,7,8].

Metopaulias depressus is endemic to Jamaica and inhabits epiphytic and bottom-dwelling
large bromeliads in central and western rainforests of the island [7]. As in most decapod
crabs, embryos of M. depressus hatch as planktonic larvae, but larval development is abbre-
viated (9–10 days). Breeding females release their larvae in small water reservoirs located
in bromeliad leaf axils, tending their offspring for about eight weeks. Females actively
clean the leaf axil of all litter and organic debris except for land snail shells, which are
retained. This manipulation in the “nursery axil” improves the dissolved oxygen and the
carbon dioxide balance of the axil water and changes the pH from acid to neutral [9,10].
Additionally, female protective behavior reduces the mortality of offspring in the nursery
by predatory damselfly nymphs and spiders [11]. Mothers feed their young with prey (i.e.,
snails, millipedes) caught nearby and carried into the nursery axil [7]. Parental care in this
species results in the establishment of a family or a helper group–i.e., a mother and its
offspring. This example shows the behavioral plasticity of primarily marine crustaceans
when inhabiting unusually harsh, i.e., non-marine, environments.

Active parental care of post-hatching offspring has been observed in other sesarmid
crabs that have adapted to adverse terrestrial or semi-terrestrial environments (e.g., Geosesarma
notophorum [12], Sesarma jarvisi [13]). In addition, post-hatching parental care is widely
recognized among freshwater Astacidea (e.g., Procambarus clarkii [14–16]; Orconectes inermis
inermis and O. pellucidus [17]; see review in [18]). These examples show the behavioral
plasticity and the potential for advanced social behavior in crustaceans evolving from
marine ancestors when colonizing unusually harsh environments.

Despite the remarkable lifestyle and behavior of M. depressus and other semi-terrestrial
sesarmid crabs, only a limited number of genomic resources exist for these crabs [19,20]),
which, in turn, limits the understanding of adaptations to terrestrial life and the genomic
mechanisms driving abbreviated development and active parental care. This study forms
part of a broader effort aimed at developing genomic resources for comparing marine,
semi-terrestrial, and terrestrial crabs, especially those belonging to the subsection Thora-
cotremata, as it includes most crabs with terrestrial adaptations. This subsection, however,
is in need of taxonomic stability, because the most commonly used superfamily classifica-
tion [21] does not correspond to current knowledge of phylogenetic relationships [22–25].
Herein, we sequenced and characterized in detail the complete mitochondrial genome of an
additional representative of the family Sesarmidae, M. depressus, known as one of the most
successful and ecologically specialized crabs that became independent of the sea in a rela-
tively short time frame [8]. The comparison with other known thoracotreme mitogenomes
will also help to outline and support the establishment of phylogeny-based groupings.

2. Materials and Methods
2.1. Specimen Collection and Mitochondrial Genome Sequencing

The used specimen was collected during a field trip and visit to the Windor Great
House near Sherwood (Trelawny) in Cockpit Country, Jamaica. Collecting permits were
obtained beforehand. DNA extraction was conducted using the DNeasy Tissue Kit (Qiagen,
Hilden, Germany), following the manufacturer’s protocol. Next, the mitochondrial genome
of M. depressus was assembled using a primer-walking strategy with the set of primer pairs
developed by [26]. More specifically, the whole mitochondrial genome of M. depressus was
first amplified in three long overlapping PCR products. Next, these products were used
as templates for amplifying shorter fragments (PCR products > 800 bp) using the Sanger
sequencing method, employing a primer-walking strategy. For more details such as primer
sequences and PCR conditions, see [26].

2.2. Mitochondrial Genome Annotation and Characterization

The in silico annotation of the mitochondrial genome of M. depressus was conducted
with the web servers MITOS (http://mitos.bioinf.uni-leipzig.de/index.py, accessed on
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15 May 2021 [27]) and MITOS 2 (http://mitos2.bioinf.uni-leipzig.de/index.py, accessed
on 15 May 2021 [28]) using the invertebrate genetic code. Manual curation of the in silico
annotation, including start and stop codon corrections, was conducted using the web server
Expasy Translate Tool (https://web.expasy.org/translate/, accessed on 15 May 2021 [29])
and the software MEGA 7 [30]. Mitochondrial genome circular visualization was performed
with the web server GenomeVx (http://wolfe.ucd.ie/GenomeVx/, accessed on 15 May
2021 [31]).

The nucleotide composition of the entire mitochondrial chromosome and each protein
coding gene (PCG) was estimated with the software MEGA 7 [30].

Codon usage of each PCG was estimated using the invertebrate genetic code in the
Sequence Manipulation Suite: Codon usage web server (https://www.bioinformatics.org/
sms2/codon_usage.html, accessed on 15 May 2021 [32]), and visualization of the Relative
Synonymous Codon Usage (RSCU) was performed using the EZcodon tool in the EZmito
web server (http://ezmito.unisi.it/ezcodon, accessed on 15 May 2021 [33]).

To explore selective pressures on each mitochondrial PCG, a pairwise comparison
was performed between M. depressus and Clistocoeloma sinense (GenBank: NC_033866).
The number of nonsynonymous substitutions per nonsynonymous site (Ka), synonymous
substitutions per synonymous site (Ks), and the ratio Ka/Ks (ω) were estimated using the
software KaKs_calculator 2.0 [6]. If a PCG experiences neutral selection, thenω = 1. Nega-
tive or purifying selection is indicated by values ω < 1, whereas positive or diversifying
selection is denoted by valuesω > 1. The γ-MYN model was used to account for variable
mutation rates along each sequence during calculations [34].

tRNA and their secondary structures were predicted using the program MiTFi [35], as
implemented in MITOS and MITOS2. The visualization of the secondary structure for each
tRNA was conducted using the FORNA web server (http://rna.tbi.univie.ac.at/forna/,
accessed on 15 May 2021 [35,36]).

The control region was examined in detail. First, microsatellites were detected
using the web server Microsatellite Repeats Finder (http://insilico.ehu.es/mini_tools/
microsatellites/, accessed on 15 May 2021 [37]). Next, the presence of tandem repeats in
this region was explored using the web server Tandem Repeats Finder (https://tandem.bu.
edu/trf/trf.html, accessed on 15 May 2021 [38]). Lastly, the secondary structure, including
the presence of hairpin structures, in the control region was explored using the RNAstruc-
ture Secondary Structure web server (https://rna.urmc.rochester.edu/RNAstructureWeb/
Servers/Predict1/Predict1.html, accessed on 15 May 2021 [39]).

2.3. Phylogenetic Position of Metopaulias Depressus

The phylogenetic position of M. depressus among other representatives of the family
Sesarmidae was examined based on PCGs. Our analysis was conducted with amino
acids instead of nucleotides due to the fact that the phylogenetic signal from nucleotide
characters alone has the potential to be saturated. The newly sequenced and annotated
mitogenome of M. depressus, together with those of 11 other species (6 genera) belonging to
the family Sesarmidae available in GenBank (consulted: 19 December 2021) were used for
the phylogenetic analysis conducted using the software MitoPhAST V2.0 [40].

Outgroups included species from each of the families Grapsidae, Gecarcinidae, Ocy-
podidae, Xenograpsidae, and Varunidae. MitoPhAST first extracted all 13 PCG nucleotide
sequences from the species available in GenBank and any others provided by the user (i.e.,
M. depressus). Next, each PCG nucleotide sequence was translated to amino acids and each
PCG amino acid sequence was then aligned using Clustal Omega [41,42]. Poorly aligned
regions were removed with trimAl v1.2.0 [43] before the dataset was partitioned and the
best fitting models of sequence evolution were selected with ProtTest3 v3.4 [44]. Lastly, the
concatenated and partitioned PCG amino acid alignments were used to perform a maxi-
mum likelihood phylogenetic tree search in the software IQ-TREE [45]. The robustness of
the ML tree topology was ascertained by 1000 bootstrap pseudoreplicates of the tree search.
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3. Results and Discussion

The mitochondrial genome of Metopaulias depressus (KX118277) is 15,765 bp in length
and encodes 13 protein coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA
genes (rrnL [16S] and rrnS [12S]), and a single, relatively long (691 bp) non-coding putative
control region. Most of the PCGs and tRNA genes are encoded on the L-strand, whereas
only four PCGs (nad5, nad4, nad4l, and nad1), the two ribosomal RNA genes, and eight
tRNA genes (trnH, trnF, trnP, trnL2, trnQ, trnV, trnC, and trnY) are encoded in the H-strand
(Table 1) (Figure 1). Gene order and strand arrangement in M. depressus is identical to that
reported before in all co-familiar species (except G. penangense [46]) with mitochondrial
genomes deposited in GenBank (i.e., O. neglectum, O. sinense, P. bidens, and P. tripectinis,
among others [47–50]). In contrast to the gene arrangement observed in all sesarmid
crabs, with a trnQ-trnI-trnM, G. penangense exhibits a trnI-trnQ-trnM gene arrangement [46].
Compared to other decapod infraorders, brachyuran crabs (infraorder Brachyura) contain
a translocation of the trnH gene between the trnE and trnF genes, rather than between the
nad5 and nad4 genes [5]. This translocation is present in M. depressus and all co-familiar
species [5,47–49,51].
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Table 1. Mitochondrial genome of Metopaulias depressus. Arrangement and annotation.

Name Type Start Stop Strand Length
(bp) Start Stop Anticodon Continuity

cox1 pcg 1 1560 + 1560 ATG TAG −25
trnL2 tRNA 1536 1601 + 66 TAA +8
cox2 pcg 1610 2317 + 708 ATG TAA −20

trnK(aaa) tRNA 2298 2366 + 69 TTT +1
trnD(gac) tRNA 2368 2433 + 66 GTC 0

atp8 pcg 2434 2592 + 159 ATG TAA +59
atp6 pcg 2652 3260 + 609 ATT TAA −1
cox3 pcg 3260 4051 + 792 ATG TAA 0

trnG(gga) tRNA 4052 4116 + 65 TCC +9
nad3 pcg 4126 4464 + 340 ATA T +1

trnA(gca) tRNA 4466 4528 + 63 TGC +6
trnR(cga) tRNA 4535 4602 + 67 TCG +2
trnN(aac) tRNA 4605 4671 + 67 GTT +2
trnS1(aga) tRNA 4674 4740 + 67 TCT +5
trnE(gaa) tRNA 4746 4813 + 68 TTC +3
trnH(cac) tRNA 4817 4878 − 62 GTG +1
trnF(ttc) tRNA 4880 4944 − 65 GAA 0

nad5 pcg 4945 6639 − 1695 ATA TAA +51
nad4 pcg 6691 8043 − 1353 ATG TAA −7
nad4l pcg 8037 8312 − 276 ATA TAA +37

trnT(aca) tRNA 8350 8416 + 67 TGT 0
trnP(cca) tRNA 8417 8483 − 67 TGG +8

nad6 pcg 8492 8980 + 489 ATA TAA 0
cob pcg 8980 10,084 + 1105 ATG T +21

trnS2(tca) tRNA 10,106 10,173 + 68 TGA +19
nad1 pcg 10,193 11,128 − 936 ATA TAA +36

trnL2(tta) tRNA 11,165 11,235 − 71 TAA −29
rrnL rib 11,206 12,574 − 1369 0

trnV(gta) tRNA 12,575 12,647 − 73 TAC 0
rrnS rib 12,648 13,479 − 832 0
CR 13,480 14,170 691 0

trnQ(caa) tRNA 14,171 14,238 − 68 TTG +168
trnI(atc) tRNA 14,407 14,473 + 67 GAT +21

trnM(atg) tRNA 14,495 14,569 + 75 CAT −6
nad2 pcg 14,564 15,562 + 999 ATG TAG −2

trnW(tga) tRNA 15,561 15,628 + 68 TCA +5
trnC(tgc) tRNA 15,634 15,698 − 65 GCA 0
trnY(tac) tRNA 15,699 15,765 − 67 GTA 0

The overall nucleotide composition of the mitochondrial genome’s light DNA strand
was as follows: A = 37.9%, G = 8.7%, C = 14%, and T = 39.4%, with a GC-content equal to
22.7% and an AT-content equal to 77.3%. This nucleotide usage is within the range reported
for other sesarmid crab species (Supplementary Table S1). The highest AT-content value
has been reported for Geosesarma penangense (78.44%) [46], whereas the lowest reported
AT-content value belongs to Parasesarma tripectinis (74.22%) [50]. AT-skewed mitochondrial
genomes are often reported across metazoan clades, including crustaceans and brachyuran
crabs [48,52,53].

In the mitochondrial genome of M. depressus, PCGs comprise a total of 3673 codons.
Seven (cox1, cox2, atp8, cox3, nad4, cob, and nad2) and five (nad3, nad5, nad6, nad1, and nad4l)
of the 13 PCGs use ATG and ATA, respectively, as start codon, whereas atp6 uses ATT
as start codon. Nine PCGs use TAA (cox2, atp8, atp6, cox3, nad5, nad4, nad4l, nad6, and
nad1) as stop codon and two PCGs use TAG (cox1 and nad2). Lastly, two genes (nad3 and
cob) exhibit incomplete (T) stop codons (Table 1). An incomplete stop codon in the cob
gene is also observed in the co-familiar species Parasesarma affine, P. pictum, O. neglectum,
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and E. lafondii [5,6,47,51]. It is assumed that truncated stop codons are completed via
post-transcriptional polyadenylation ([54] and references therein).

Relative synonymous codon usage (RSCU) and amino acid composition in the PCGs
of M. depressus are summarized in Figure 2. The most frequently used codons (amino acids)
were: TTA (Leu) used 434 times (73%), ATT (Ile) used 336 times (94%), TTT (Phe) used
317 times (91%), and ATA (Met) used 225 times (92%). Codons (amino acids) that were
the least commonly used to encode their respective amino acids (excluding stop codons)
included CGC (Ala), used one time (0.01%), CTG (Leu), used one time (undefined %), CGG
(Arg), used one time (0.02%), AGC (Ser), used two times (0.01%), and CCC (Pro,) used two
times (0.02%) (Supplementary Table S2). RSCU and amino acid composition of PCGs in M.
depressus is similar to that reported before in other representatives of the family Sesarmidae.
For instance, the most frequently used codons in P. affine, O. sinense, and P. bidens were
Leu, Ile, and Phe, in agreement with that observed in this study for M. depressus [5,48,49].
In addition to M. depressus, codons for Met are frequently used in P. pictum [6]. All the
codons coding for the aforementioned amino acids are AT-rich, in line with the observed
overrepresentation of A and T nucleotides in the mitogenome of M. depressus and other
co-familiar crabs [5,46].
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Figure 2. Relative synonymous codon usage (RSCU) in Metopaulias depressus. Photo credit:
Rudolph Diesel.

In the mitochondrial genome of M. depressus, the Ka/Ks ratio estimated for all PCGs
show values < 1 PCGs (all p values < 0.05), indicating that purifying selection is acting
upon all these PCGs. The Ka/Ks ratio estimated for atp8 is the highest observed value
(0.16017) compared to the rest of the PCGs and indicates that the purifying selection was
relatively weak in this gene. In turn, Ka/Ks ratios calculated for cox1, cox2, nad5, cox3,
and atp6 are the lowest observed values (0.029, 0.01069, 0.02027, 0.03302, and 0.03196,
respectively) and indicate strong selective pressure affecting the latter PCGs (Figure 3).
Selective pressure in PCGs has not been studied before in any other crab belonging to the
family Sesarmidae. However, a strong pattern of purifying selection has been reported for
many other brachyuran crabs, crustaceans, and arthropods in general ([34] and references
therein). A recent study of caridean shrimps (genus Synalpheus) found a relationship
between PCG length and the strength of purifying selection, with short genes (e.g., atp8)
being subject to weaker purifying selection than longer PCGs [55]. Our observations are
in agreement with the aforementioned pattern. Whether or not an association between
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gene length and the strength of purifying selection exists in sesarmid and other brachyuran
crabs remains to be addressed.
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In the mitochondrial genome of M. depressus, 19 out of the 22 tRNA genes exhibited
a cloverleaf secondary structure (Figure 4). The trnS1 gene exhibited a deletion of the
dihydroxyuridine (DHU) arm, having only its loop. Other co-familiar crabs, including O.
sinense, P. pictum, P. affine, P. bidens, G. faustum, G. penangense, C. sinense, and C. haematocheir,
presented the same deletion of the DHU arm in the trnS1 gene [5,6,46,48,49,51–58], with
the exception of O. neglectum [47], in which all tRNAs exhibited the typical cloverleaf
secondary structure. A truncated trnS1 gene represents a conserved mitochondrial feature
in eumetazoans, including crabs and other decapod crustaceans [6,49,56].
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Unexpectedly, we found two other tRNA genes with a secondary structure that devi-
ates from the expected ‘cloverleaf’ shape: the trnH gene lacks the thymine pseudouracil
cytosine (T) loop, and the trnM exhibits an overly developed T loop (Supplementary Figure
S1). Some studies have examined the secondary structure of mitochondrial tRNA genes in
co-familiar species (Orisarma sinense as C. haematocheir [57], O. sinense [48], P. pictum [6], P.
affine [5], P. bidens [49], E. lafondii [51], G. penangense and G. faustum [46], O. neglectum [47],
and C. sinense [58]), and truncated arms have also been observed in G. penangense (trnC), G.
faustum (trnD, trnH, and trnR) [46], and C. haematocheir (trnS) [57]. Whether or not truncated
tRNAs are functional remains to be explored. It has been hypothesized that tRNA editing
after the translation of truncated tRNAs might make them functional [59].

In M. depressus, the 691 bp-long control region (CR) is located between the rrnS and
trnQ genes, starting at position 13,480 and ending at position 14,170. The length of the CR
was similar in range (630 to 751 bp) to that previously reported in other crabs belonging
to the family Sesarmidae [5,6,47–49,58]. The Microsatellite Repeats Finder analysis found
18 TA-rich microsatellites (SSRs) distributed from position 57 to 680. Most SSRs exhibited
TA, AA, and TT di-nucleotide repeats (Supplementary Table S3). The tandem repeat
analysis identified one TA-rich tandem repeat, 17 bp in length, repeated four times and
located between positions 572 and 637 of the CR. The RNA structure Web Server tool
revealed 20 possible secondary structures (Gibbs free energy (∆G) ranged from −77.8 to
−76.7 kcal/mol, Supplementary Figure S2), and in all of them, hairpin structures were
observed along most of the entire length of this region. A detailed characterization of the
CR is not available for any other sesarmid crab. However, the presence of SSRs, tandem
repeats, and numerous hairpin secondary structures are often observed in the CR of other
brachyuran crabs as well as other closely or more distantly related decapod crustaceans
(e.g., [34] and references therein).

The ML phylogenetic tree with various representatives of the Thoracotremata (25 termi-
nals, 3695 amino acid characters, and 1074 informative sites) fully supports the monophyly
of the family Sesarmidae and the other selected crab families (Ocypodidae, Grapsidae,
Varunidae, Xenograpsidae, and Gecarcinidae), with bootstrap values (bv) of 100 (except for
the Gecarcinidae with bv = 80). Even if inter-familiar relationships are not fully resolved,
clear trends become visible. The Ocypodidae, with fiddler and ghost crabs, splits off first,
so that all other included families group together as a clear-cut monophylum. This serves
as additional evidence that the former superfamily Ocypodoidea has to be redefined with
exclusion of the family Macrophthalmidae, for which we provide additional evidence that
the latter forms a sister taxon to the Varunidae (bv = 98) (see also [23–25]). This will require
redefinition of the Grapsoidea at the same time, and one solution is to create a separate
superfamily for the Sesarmidae. Within this family, two well-supported clades comprise rep-
resentatives belonging to the genera Clistocoeloma + Metopaulias + Nanosesarma + Parasesarma
(CMNPP clade, bv = 98) and Chiromantes + Geosesarma + Orisarma (CCGO clade, bv = 97).
In the first CMNPP clade, Metopaulias and Clistocoeloma form a well-supported clade
(bv = 85), sister to representatives of the genera Parasesarma and Nanosesarma (bv = 100).
Within the second clade, the genus Parasesarma appears paraphyletic due to the position
of Nanosesarma minutum, but the latter genus is in need of revision, because it currently
includes all small-sized representatives of the family (Figure 5). In the first CCGO clade,
the real Chiromantes haematocheir (as Cristarma eulimene in GenBank, moleculary re-assigned
in [60]) is sister to all other species comprised in this clade. The two species of Geosesarma
used in this analysis cluster together as a fully supported monophyletic clade. With the
species re-assignment [60], the monophyly of the genus Orisarma becomes well supported,
considering that the record of “Chiromantes haematocheir” is shown to be another representa-
tive of Orisarma sinense [60] and the two together are sister to a second clade that comprises
O. dehaani and O. neglectum (Figure 5). Overall, the phylogenetic relationships among
genera and families reported in this study are not in full agreement with inferences drawn
by previous phylogenetic studies that used complete mitochondrial genomes. However,
these included a smaller number of species belonging to the family Sesarmidae and other
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and fewer members of the Thoracotremata than were included in the present study ([6]
and references therein).
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Figure 5. Total evidence phylogenetic tree obtained from ML analysis based on a concatenated
alignment of amino acids of the 13 protein-coding genes present in the mitochondrial genome of
Metopaulias depressus and other representatives of the family Sesarmidae. Outgroups included a total
of four species belonging to the families Gecarcinidae and Xenograpsidae. The robustness of the
ML tree topology was ascertained by 1000 bootstrap pseudoreplicates (numbers above or below the
nodes) of the tree search. *: full support, boostrap value = 100.

4. Conclusions

This study sequenced and characterized in detail the mitochondrial genome of the
bromeliad crab Metopaulias depressus. Characterization of the complete mitochondrial
genome of M. depressus enhances the genomic resources available for the family Sesarmi-
dae and the Thoracotremata and Brachyura in general, particularly its radiation into
semi-terrestrial and terrestrial environments. Present and future mitochondrial genomes
assembled for other species in these taxa will permit the exploration of the interlink be-
tween the colonization of harsh, i.e., non-marine, including terrestrial, environments from
marine ancestral species and selective pressures and rates of molecular evolution in mito-
chondrial genomes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13020299/s1, Figure S1: tRNA-M gene secondary structure of Metopaulias depressus
exhibiting an unusually developed loop in the T arm; Figure S2: Secondary structure prediction of

https://www.mdpi.com/article/10.3390/genes13020299/s1
https://www.mdpi.com/article/10.3390/genes13020299/s1
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the control region (CR) in the mitochondrial genome of Metopaulias depressus. Table S1: Nucleotide
usage, AT-content, and GC-content in crabs belonging to the family Sesarmidae; Table S2: Codon
usage analysis of protein coding genes (PCGs) in the mitochondrial genome; Table S3: Microsatellites
present in the control region (CR) of Metopaulias depressus.
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