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Frontometaphyseal dysplasia 1 (FMD1) is a rare otopalatodigital spectrum disorder

(OPDSD) that is inherited as an X-linked trait and it is caused by gain-of-function

mutations in the FLNA. It is characterized by generalized skeletal dysplasia, and

craniofacial abnormalities including facial dysmorphism (supraorbital hyperostosis,

hypertelorism, and down-slanting palpebral fissures). The involvement of the central

nervous system in patients with OPDSD is rare. Herein, we present the case of a

12-year-old boy with facial dysmorphism, multiple joint contractures, sensorineural

hearing loss, scoliosis, craniosynostosis, and irregular sclerosis with hyperostosis of the

skull. Brain and whole-spine magnetic resonance imaging revealed Chiari I malformation

with extensive hydrosyringomyelia from the C1 to T12 levels. Targeted next-generation

sequencing identified a hemizygous pathologic variant (c.3557C>T/p.Ser1186Leu) in the

FLNA, confirming the diagnosis of FMD1. This is the first report of a rare case of OPDSD

with pansynostosis and Chiari I malformation accompanied by extensive syringomyelia.

Keywords: frontometaphyseal dysplasia 1, otopalatodigital spectrum disorder, syringomyelia, Chiari I

malformation, FLNA gene mutation, pansynostosis

INTRODUCTION

Otopalatodigital spectrum disorder (OPDSD), which is characterized by skeletal dysplasia,
includes six disorders, OPD type 1 (OMIM #311300) and 2 (OMIM #304120), frontometaphyseal
dysplasia 1 (FMD1; OMIM #305620), Melnick–Needles syndrome (MNS; OMIM #309350),
digitocutaneous dysplasia (DCD; OMIM #300244), and a disorder characterized by keloid scarring,
joint contractures, and cardiac valvulopathy (1, 2). Patients with these diseases commonly have
mutations in the filamin A (FLNA) (3). The FLNA is located on chromosome Xq28 and is known to
cause OPDSD (4). It encodes a 280-kDa cytoskeletal protein containing an actin-binding domain,
which is important for cytoplasmic signaling. This protein interacts with transmembrane receptors
or intracellular signaling molecules as well as filamentous actin and anchors transmembrane
proteins to the actin cytoskeleton (5–8). The diseases accompanying the pathogenic variant of
FLNA are termed X-linked filaminopathies. Disorders with a pathogenic variant of FLNA are
classified as either a gain-of-function or a loss-of-function FLNA disorder, and OPDSD is classified
as a gain-of-function disorder (2). Patients with OPDSD show various clinical manifestations, such
as skeletal dysplasia, craniofacial dysmorphism, or sensorineural and/or conductive hearing loss
(3, 9). Although clinical manifestations vary in females, the severity of this disease is generally
milder in females than inmales (10). The cardinal criteria for the diagnosis of FMD1 are craniofacial
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abnormalities including facial dysmorphism such as supraorbital
hyperostosis, hypertelorism, and down-slanting palpebral
fissures (2, 11). FMD2 caused by MAP3K7 mutations and
FMD3 caused by TAB2 mutations exhibit clinical features
similar to those of FMD1, but show autosomal dominant trait
(2, 12, 13). Among the clinical manifestations of OPDSD, the
involvement of central nervous system (CNS) is relatively
rare. The presence of Chiari I malformation (CM1), cerebellar
hypoplasia, hydrocephalus, and cerebellar tonsillar herniation
have been previously reported in a few patients with OPDSD
(14–17); however, these cases were only clinically reported
and did not undergo genetic confirmation. Herein, we report
for the first case of FMD1, with pansynostosis and Chiari I
malformation accompanied by extensive syringomyelia.

CASE PRESENTATION

Clinical Presentation
A 12-year-old boy visited our clinic with complaints of back pain
since 2 years. His medical history included bilateral sensorineural
hearing loss and multiple joint contractures on both wrists and
fingers, most prominently in the proximal interphalangeal joint
of the left fifth finger. He has twomale cousins who resemble him
in appearance. His parents and sister show no obvious anomalies
(Figure 1).

Physical examination revealed facial dysmorphism with
micrognathia, frontal bossing, prominent supraorbital ridge, and
hypertelorism. Furthermore, hypodontia, hypoplasia of the left
fifth digital phalanx and great toes, and thoracic scoliosis were
noted. The intrinsic muscles of both hands were graded as
2/5 based on the manual muscle test. There was no sensory
impairment. Knee and ankle jerks were hyperreflexic and ankle
clonus was evoked. His height was 154 cm (63.9 percentile).

Whole-spine X-ray revealed thoracic scoliosis (Cobb angle of
17◦) and flattening of the vertebral body. X-ray of the upper
and lower extremities revealed valgus deformity of the elbow
and knee joints with mild humerus and tibia bone bowing.
Computed tomography (CT) of the skull revealed irregular
sclerosis with hyperostosis, obliteration of the frontal sinus,
frontal bone thickening and protrusion. Three-dimensional (3D)
CT of skull demonstrated premature closure of all cranial sutures
(pansynostosis) (Figure 2). Brain and whole-spine magnetic
resonance imaging (MRI) revealed cerebellar tonsillar inferior
herniation, which clinically translates to CM1, with extensive
hydrosyringomyelia from the C1 to T12 levels and C2 spina
bifida occulta (Figure 3). Laboratory test, including complete
blood cell count, blood chemistry, and immunochemistry, were
normal. Electrodiagnostic tests, including nerve conduction
study, electromyography, and somatosensory and motor-evoked
potential tests, were within the normal range.

Cytogenetic and Molecular Analyses
Chromosomal study revealed a karyotype of 46,XY without
anomalies. No significant microdeletion or duplication was
detected via the chromosomal microarray test. Targeted
gene panel sequencing was performed using the Illumina
MiSeqDxTM Platform (Illumina Inc., San Diego, CA,

USA) with 150-bp paired-end sequencing. The targeted
gene panel was custom-made and included 124 genes
spanning a 461,040-bp region related to skeletal dysplasia
(see Supplementary Material). Exomes were captured using
a customized Target Enrichment Kit (Celemics, Seoul, Korea).
The enrichment of sequenced target genes was hybridized with
oligonucleotide probes. The reference genome used was hg19.
Alignment was performed using BWA-mem (version 0.7.10),
and variant annotation was performed using Variant Effect
Predictor and dbNSFP (18, 19).

A hemizygousmissense variant (c.3557C>T/p.Ser1186Leu) in
FLNA (NM_001456.3), which was previously reported as being
pathogenic and related to FMD1, was detected (11, 20, 21).
Family gene analysis revealed that his mother, aunt, and sister
(who had no symptoms) carried the same heterozygous FLNA
variant and that his maternal male cousin with similar facial
dysmorphism had the same hemizygous FLNA variant as the
proband. Finally, the patient was diagnosed with FMD1 inherited
from the asymptomatic maternal carrier (Figure 4).

DISCUSSION

OPDSD was first described in 1962 by Taybi, and FMD1 was
reported in 1969 by Gorlin and Cohen (22, 23). Since then,
various clinical features related to OPDSD have been reported. In
the past, molecular genetic studies found a relationship between
OPDSD and the distal Xq28 chromosome in the form of allelic
variants of the FLNA (10, 24). The diagnosis of FMD1 is based
on X-linked inheritance, clinical manifestations, and radiological
studies and can be confirmed by detecting a FLNA pathogenic
variant viamolecular cytogenetic studies. Recently, technological
advances, such as next-generation sequencing, have increased
the accessibility and accuracy of diagnosis. The FLNA is not
only associated with OPDSD caused by gain-of-function but also
with loss-of-function diseases that do not cause skeletal dysplasia,
such as periventricular heterotopia 1 (OMIM #300049), X-linked
cardiac valvular dysplasia (OMIM #314400), and congenital
short-bowel syndrome (OMIM #300048) (25).

FMD1 account for ∼50% of all the FMD patients, and
the other 50% are diagnosed with FMD2 or FMD3, with
pathogenic variants ofMAP3K7 or TAB2, respectively (2). FMD1
shows X-linked recessive inheritance, whereas other OPDSDs
show X-linked dominant inheritance. Dozens of unrelated
families with FMD1 have been reported to date; they mostly
carry single-nucleotide variants of FLNA, resulting in missense
mutations. Among the missense mutations, the c.3557C>T
transition, which causes Ser1186Leu substitution (as detected
in the current patient) is the most frequent mutation. The
clinical manifestations of FMD1 include hyperostosis of the
skull, supraorbital hyperostosis, sensorineural and/or conductive
hearing loss, hypertelorism, agenesis of the sinuses in the
skull, oligohypodontia, distal phalangeal hypoplasia, progressive
joint contracture, scoliosis, limb bowing, shoulder girdle and
hand intrinsic muscle underdevelopment, and hydronephrosis
(11). FMD1 is distinguished from other OPDSDs based on
the presence of a cleft palate, a joint contracture, or a
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FIGURE 1 | Pedigree chart of the family with FMD1. The asterisk indicates people tested for the FLNA pathogenic variant. The affected members are indicated by

gray shading. Symbols divided into halves indicate heterozygous carriers of FMD1. The arrow indicates the proband.

FIGURE 2 | X-ray showing (A) scoliosis of the whole spine; (B) mild bowing of the tibia and (C) humerus; (D) flexion contracture of the left fifth proximal phalangeal

joint; (E) hyperostosis, irregular sclerosis, frontal bone thickening, and protrusion; and (F) craniosynostosis.

tracheobronchial tree malformation (3). To date, only one case
of CNS involvement, i.e., a CM1, has been reported in FMD1
in 1999 (26). However, the author was unsure whether the CM1
was a characteristic of FMD1 or an incidental finding because
it was the first report of such an occurrence. In addition, many
previous reports of FMD1 did not mention whether brain MRI
was performed, and it is not clear whether CM1 was present.
Because CM1 was observed in our patient with FMD1, there is

a possibility that this type of malformation is a manifestation of
this disease.

CM1 is defined as a cerebellar tonsillar herniation below
the foramen magnum >5mm. The common neurological
symptoms caused by CM1 include headache, gait disturbance,
weakness, sensory disturbance, poor coordination, or hypo-
or hyper-reflexia. Two-third of the patients with CM1 show
small and shallow posterior fossa and foramen magnum
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FIGURE 3 | Brain and whole-spine magnetic resonance imaging and computed tomography showing (A,B) Chiari I malformation with extensive hydrosyringomyelia

from the C1 to T12 levels and (C) C2 spina bifida.
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FIGURE 4 | Reverse DNA sequencing chromatogram of the patients and his family members.

overcrowding, possibly resulting from craniocervical bony
dysplasia caused by a paraxial mesodermal defect (27–29).
Moreover, CM1 can be observed as secondary to other pathology
causing increased intracranial pressure, overcrowding in the
posterior fossa with space-occupying lesions, or lower intrathecal
pressure (e.g., leaking of spinal fluid or lumbar-to-peritoneal
shunt) (30). Bidot et al. revealed that idiopathic intracranial
hypertension can be accompanied by CM1 (31). In addition,
CMs have been reported in patients with craniosynostosis
similar to that in our patient. Cinalli et al. reported that
∼70% of the Crouzon’s syndrome, which is characterized
by craniosynostosis, had CMs, particularly in the lambdoid
suture premature closure (32, 33). Several genetic studies
revealed that CM1 is related to genetic factors and candidate
genes include FGFR2, PAX1, DFNB1, GDF3, CDX1, FLT1,
and ALDH1A2 (34–37). Several syndromic disorders, such as
Klippel–Feil syndrome, achondroplasia, Crouzon’s syndrome,
neurofibromatosis are found to be related to CM1 (38, 39).
Most genetic predispositions for CM1 have been found to be
caused by genetic factors related to the overcrowding of posterior
fossa or underdevelopment of occipital bone. However, the

genetic background is still uncertain and various factors are
considered to be combined (40). Approximately 15–26% of
CM1 patients suffer from lower brain stem or cranial nerve
dysfunction, such as vocal cord paralysis, sensorineural hearing
loss, sleep apnea, recurrent aspiration, or sinus bradycardia (41–
43). Our patient also showed mild dysarthria, possibly owing
to an association with cranial nerve involvement. However,
sensorineural hearing loss appears to have little correlation
with cranial nerve dysfunction secondary to CM1 because
sensorineural or conductive hearing loss is commonly observed
in patients with OPDSDs (44).

Extensive hydrosyringomyelia associated with CM1
was observed in the present case. To date, there have
been no reports of hydrosyringomyelia in patients with
OPDSD. Pathophysiologically, CM1 may be accompanied by
syringomyelia. A study reported that 65% of patients with
symptomatic CM1 exhibited syringomyelia (45). In the presence
of CM1, cerebellar tonsil occlude the narrow subarachnoid
space located around the foramen magnum. The propagation
of existing syringomyelia may occur via the expansion of the
brain during systole, which obstructs the subarachnoid space
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across the foramen magnum; moreover, the piston-like rapid
movement of CSF during systole generates pressure, which
propels the fluid inferiorly (46). However, the mechanism
underlying syringomyelia formation remains unclear, although
several hypotheses have been proposed based on the narrowed
space and high subarachnoid space pressure; nevertheless, this
cannot explain the rare passage between the fourth ventricle and
syrinx and has not been confirmed (47).

Craniofacial anomaly is one of the major features of OPDSD,
and several cases with craniosynostosis have been reported. To
date, six patients with gain-of-function variants of FLNA have
been reported to show craniosynostosis, and there was only
one patient who was diagnosed with FMD1 with pansynostosis
similar to our patient (48). Our case is the seventh case
of craniosynostosis in OPDSD and second for pansynostosis,
emphasizing that FMD1 can be associated with craniosynostosis.
Therefore, if the patient is diagnosed as having gain-of-function
variants of FLNA, craniosynostosis should be promptly checked,
and if necessary, immediate surgical treatment can prevent CM1
and thus, complications such as syringomyelia.

Several reported FMD1 cases exhibit hypoplasia of hand
intrinsicmuscles (11). Similarly, the strength of the hand intrinsic
muscles was graded as 2/5 in our patient. The development
of hand weakness has not been explored in previous studies.
Therefore, it is currently difficult to determine whether extensive
syringomyelia, as observed in our patient, is the direct cause of
hand weakness or whether hand weakness can appear without
any CNS lesions because it is a clinical characteristic of FMD1.
Additional research is warranted to address this issue.

OPDSD is an allelic condition, and the mutations identified
to date are in-frame mutations that preserve the reading frame
and length of the translated filamin A protein. Robertson et al.
performed genotypic and phenotypic correlation in 41 unrelated
patients with OPDSD (10). All five disorders of OPDSDs
were caused by 17 mutations in four regions of FLNA. All
mutations resulted in OPD1 and OPD2 were located in the
calponin homology domains of the N-terminal actin-binding
domain of FLNA. Some common and frequent mutations were
620C>T in OPD1, 760G>A in OPD2, and 3562G>A and
3596C>T in MNS. In addition, patients with the same mutations
showed similar phenotypes. For example, four males with
OPD2, possessing the 760G>Amutation, exhibited omphalocele
and perinatal death. However, although they carried the same
mutation, two of four patients showed hydrocephalus, while
the others did not (10). Our patient exhibited CM1 with
syringomyelia; however, CNS anomalies were not reported in
other patients with FMD1 who carried the same missense

mutation. The genotypic and phenotypic correlation in patients
with OPDSD is complex and difficult to define. Further genotypic
and phenotypic correlation studies are needed to address
these issues.

CONCLUSION

We reported a rare case of FMD1 resulting from a pathogenic
variant (c.3557C>T) of FLNA. This case was distinguished
from those previously reported in that the patient had
pansynostosis and showed CNS involvement in the form of
Chiari I malformation accompanied by extensive syringomyelia.
If OPDSD is diagnosed, evaluation of craniosynostosis and CM1
malformation may be essential and proper treatment is critical
for the prognosis of these patients. Further studies are warranted
to determine whether CNS involvement is a phenotype of FMD1.
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